Refactored and commented. Now can also cut along non faux edges

This commit is contained in:
Paolo Cignoni 2016-04-02 08:30:24 +00:00
parent a989737e26
commit 298714ccea
1 changed files with 87 additions and 101 deletions

View File

@ -28,68 +28,55 @@
namespace vcg { namespace vcg {
namespace tri { namespace tri {
/* /** \brief Open a mesh cutting all the edges where the two faces make an angle *larger* than the indicated threshold
Crease Angle */
Assume che:
la mesh abbia la topologia ff
la mesh non abbia complex (o se li aveva fossero stati detached)
Abbia le normali per faccia normalizzate!!
Prende una mesh e duplica tutti gli edge le cui normali nelle facce incidenti formano un angolo maggiore
di <angle> (espresso in rad).
foreach face
foreach unvisited vert vi
scan the star of triangles around vi duplicating vi each time we encounter a crease angle.
the new (and old) vertexes are put in a std::vector that is swapped with the original one at the end.
Si tiene un vettore di interi 3 *fn che dice l'indice del vertice puntato da ogni faccia.
quando si scandisce la stella intorno ad un vertici, per ogni wedge si scrive l'indice del vertice corrsipondente.
*/
template<class MESH_TYPE> template<class MESH_TYPE>
void CreaseCut(MESH_TYPE &m, float angleRad) void CreaseCut(MESH_TYPE &m, float angleRad)
{ {
typedef typename MESH_TYPE::CoordType CoordType; tri::UpdateFlags<MESH_TYPE>::FaceFauxSignedCrease(m, -angleRad, angleRad);
typedef typename MESH_TYPE::ScalarType ScalarType; CutMeshAlongNonFauxEdges(m);
typedef typename MESH_TYPE::VertexType VertexType; }
typedef typename MESH_TYPE::VertexPointer VertexPointer;
typedef typename MESH_TYPE::VertexIterator VertexIterator; /**
* \brief Open a mesh along non-faux edges
*
* Duplicate exisiting vertices so that non-faux edges become boundary edges.
* It assume FF topology and manifoldness.
* The idea is that we scan faces around each vertex duplicating it each time we encounter a marked edge.
*
*/
template<class MESH_TYPE>
void CutMeshAlongNonFauxEdges(MESH_TYPE &m)
{
typedef typename MESH_TYPE::FaceIterator FaceIterator; typedef typename MESH_TYPE::FaceIterator FaceIterator;
typedef typename MESH_TYPE::FaceType FaceType; typedef typename MESH_TYPE::FaceType FaceType;
typedef typename MESH_TYPE::FacePointer FacePointer;
tri::Allocator<MESH_TYPE>::CompactVertexVector(m); tri::Allocator<MESH_TYPE>::CompactVertexVector(m);
tri::Allocator<MESH_TYPE>::CompactFaceVector(m); tri::Allocator<MESH_TYPE>::CompactFaceVector(m);
tri::RequireFFAdjacency(m);
tri::UpdateNormal<MESH_TYPE>::NormalizePerFace(m);
assert(tri::HasFFAdjacency(m));
typename MESH_TYPE::ScalarType cosangle=math::Cos(angleRad);
tri::UpdateFlags<MESH_TYPE>::VertexClearV(m); tri::UpdateFlags<MESH_TYPE>::VertexClearV(m);
std::vector<int> indVec(m.fn*3,-1); std::vector<int> indVec(m.fn*3,-1);
int newVertexCounter=m.vn; int newVertexCounter=m.vn;
int startVn=m.vn; int startVn=m.vn;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
for(int j=0;j<3;++j) for(int j=0;j<3;++j)
if(!(*fi).V(j)->IsV() ) // foreach unvisited vertex we loop around it searching for creases. if(!(*fi).V(j)->IsV() ) // foreach unvisited vertex we loop around it searching for creases.
{ {
(*fi).V(j)->SetV(); (*fi).V(j)->SetV();
face::JumpingPos<FaceType> iPos(&*fi,j,(*fi).V(j)); face::JumpingPos<FaceType> iPos(&*fi,j,(*fi).V(j));
size_t vertInd = Index(m,iPos.v); // size_t vertInd = Index(m, iPos.V());
bool isBorderVertex = iPos.FindBorder(); // for border vertex we start from the border. bool isBorderVertex = iPos.FindBorder(); // for border vertex we start from the border.
face::JumpingPos<FaceType> startPos=iPos; face::JumpingPos<FaceType> startPos=iPos;
if(!isBorderVertex) // for internal vertex we search the first crease and start from it if(!isBorderVertex) // for internal vertex we search the first crease and start from it
{ {
do { do {
ScalarType dotProd = iPos.FFlip()->cN().dot(iPos.f->N()); bool creaseFlag = !iPos.IsFaux();
iPos.NextFE(); iPos.NextFE();
if(dotProd<cosangle) break; if(creaseFlag) break;
} while (startPos!=iPos); } while (startPos!=iPos);
startPos=iPos; // the found crease become the new starting pos. startPos=iPos; // the found crease become the new starting pos.
} }
@ -98,11 +85,10 @@ void CreaseCut(MESH_TYPE &m, float angleRad)
int curVertexCounter =vertInd; int curVertexCounter =vertInd;
do { // The real Loop do { // The real Loop
ScalarType dotProd=iPos.FFlip()->cN().dot(iPos.f->N()); // test normal with the next face (fflip) size_t faceInd = Index(m,iPos.F());
size_t faceInd = Index(m,iPos.f);
indVec[faceInd*3+ iPos.VInd()] = curVertexCounter; indVec[faceInd*3+ iPos.VInd()] = curVertexCounter;
if(dotProd<cosangle) if(!iPos.IsFaux())
{ //qDebug(" Crease FOUND"); { //qDebug(" Crease FOUND");
++locCreaseCounter; ++locCreaseCounter;
curVertexCounter=newVertexCounter; curVertexCounter=newVertexCounter;
@ -111,16 +97,17 @@ void CreaseCut(MESH_TYPE &m, float angleRad)
iPos.NextFE(); iPos.NextFE();
} while (startPos!=iPos); } while (startPos!=iPos);
if(locCreaseCounter>0 && (!isBorderVertex) ) newVertexCounter--; if(locCreaseCounter>0 && (!isBorderVertex) ) newVertexCounter--;
//printf("For vertex %i found %i creases\n",vertInd,locCreaseCounter);
} }
} // end foreach face/vert
// A questo punto ho un vettore che mi direbbe per ogni faccia quale vertice devo mettere. Dopo che ho aggiunto i vertici necessari, // Now the indVec vector contains for each the new index of each vertex (duplicated as necessary)
// rifaccio il giro delle facce // We do a second loop to copy split vertexes into new positions
//qDebug("adding %i vert for %i crease edges ",newVertexCounter-m.vn, creaseCounter);
tri::Allocator<MESH_TYPE>::AddVertices(m,newVertexCounter-m.vn); tri::Allocator<MESH_TYPE>::AddVertices(m,newVertexCounter-m.vn);
tri::UpdateFlags<MESH_TYPE>::VertexClearV(m); tri::UpdateFlags<MESH_TYPE>::VertexClearV(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
for(int j=0;j<3;++j) // foreach unvisited vertex for(int j=0;j<3;++j)
{ {
size_t faceInd = Index(m, *fi); size_t faceInd = Index(m, *fi);
size_t vertInd = Index(m, (*fi).V(j)); size_t vertInd = Index(m, (*fi).V(j));
@ -134,7 +121,6 @@ void CreaseCut(MESH_TYPE &m, float angleRad)
(*fi).V(j) = & m.vert[curVertexInd]; (*fi).V(j) = & m.vert[curVertexInd];
} }
} }
tri::UpdateNormal<MESH_TYPE>::PerVertexFromCurrentFaceNormal(m);
} }
} // end namespace tri } // end namespace tri