Refactored and commented. Now can also cut along non faux edges

This commit is contained in:
Paolo Cignoni 2016-04-02 08:30:24 +00:00
parent a989737e26
commit 298714ccea
1 changed files with 87 additions and 101 deletions

View File

@ -28,113 +28,99 @@
namespace vcg { namespace vcg {
namespace tri { namespace tri {
/* /** \brief Open a mesh cutting all the edges where the two faces make an angle *larger* than the indicated threshold
Crease Angle */
Assume che:
la mesh abbia la topologia ff
la mesh non abbia complex (o se li aveva fossero stati detached)
Abbia le normali per faccia normalizzate!!
Prende una mesh e duplica tutti gli edge le cui normali nelle facce incidenti formano un angolo maggiore
di <angle> (espresso in rad).
foreach face
foreach unvisited vert vi
scan the star of triangles around vi duplicating vi each time we encounter a crease angle.
the new (and old) vertexes are put in a std::vector that is swapped with the original one at the end.
Si tiene un vettore di interi 3 *fn che dice l'indice del vertice puntato da ogni faccia.
quando si scandisce la stella intorno ad un vertici, per ogni wedge si scrive l'indice del vertice corrsipondente.
*/
template<class MESH_TYPE> template<class MESH_TYPE>
void CreaseCut(MESH_TYPE &m, float angleRad) void CreaseCut(MESH_TYPE &m, float angleRad)
{ {
typedef typename MESH_TYPE::CoordType CoordType; tri::UpdateFlags<MESH_TYPE>::FaceFauxSignedCrease(m, -angleRad, angleRad);
typedef typename MESH_TYPE::ScalarType ScalarType; CutMeshAlongNonFauxEdges(m);
typedef typename MESH_TYPE::VertexType VertexType; }
typedef typename MESH_TYPE::VertexPointer VertexPointer;
typedef typename MESH_TYPE::VertexIterator VertexIterator;
typedef typename MESH_TYPE::FaceIterator FaceIterator;
typedef typename MESH_TYPE::FaceType FaceType;
typedef typename MESH_TYPE::FacePointer FacePointer;
tri::Allocator<MESH_TYPE>::CompactVertexVector(m); /**
tri::Allocator<MESH_TYPE>::CompactFaceVector(m); * \brief Open a mesh along non-faux edges
*
* Duplicate exisiting vertices so that non-faux edges become boundary edges.
* It assume FF topology and manifoldness.
* The idea is that we scan faces around each vertex duplicating it each time we encounter a marked edge.
*
*/
template<class MESH_TYPE>
void CutMeshAlongNonFauxEdges(MESH_TYPE &m)
{
typedef typename MESH_TYPE::FaceIterator FaceIterator;
typedef typename MESH_TYPE::FaceType FaceType;
tri::UpdateNormal<MESH_TYPE>::NormalizePerFace(m); tri::Allocator<MESH_TYPE>::CompactVertexVector(m);
tri::Allocator<MESH_TYPE>::CompactFaceVector(m);
tri::RequireFFAdjacency(m);
assert(tri::HasFFAdjacency(m)); tri::UpdateFlags<MESH_TYPE>::VertexClearV(m);
typename MESH_TYPE::ScalarType cosangle=math::Cos(angleRad); std::vector<int> indVec(m.fn*3,-1);
int newVertexCounter=m.vn;
int startVn=m.vn;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
for(int j=0;j<3;++j)
if(!(*fi).V(j)->IsV() ) // foreach unvisited vertex we loop around it searching for creases.
{
(*fi).V(j)->SetV();
tri::UpdateFlags<MESH_TYPE>::VertexClearV(m); face::JumpingPos<FaceType> iPos(&*fi,j,(*fi).V(j));
std::vector<int> indVec(m.fn*3,-1); size_t vertInd = Index(m, iPos.V());
int newVertexCounter=m.vn; bool isBorderVertex = iPos.FindBorder(); // for border vertex we start from the border.
int startVn=m.vn; face::JumpingPos<FaceType> startPos=iPos;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!isBorderVertex) // for internal vertex we search the first crease and start from it
for(int j=0;j<3;++j) {
if(!(*fi).V(j)->IsV() ) // foreach unvisited vertex we loop around it searching for creases. do {
{ bool creaseFlag = !iPos.IsFaux();
(*fi).V(j)->SetV(); iPos.NextFE();
if(creaseFlag) break;
} while (startPos!=iPos);
startPos=iPos; // the found crease become the new starting pos.
}
face::JumpingPos<FaceType> iPos(&*fi,j,(*fi).V(j)); int locCreaseCounter=0;
size_t vertInd = Index(m,iPos.v); // int curVertexCounter =vertInd;
bool isBorderVertex = iPos.FindBorder(); // for border vertex we start from the border.
face::JumpingPos<FaceType> startPos=iPos;
if(!isBorderVertex) // for internal vertex we search the first crease and start from it
{
do {
ScalarType dotProd = iPos.FFlip()->cN().dot(iPos.f->N());
iPos.NextFE();
if(dotProd<cosangle) break;
} while (startPos!=iPos);
startPos=iPos; // the found crease become the new starting pos.
}
int locCreaseCounter=0; do { // The real Loop
int curVertexCounter =vertInd; size_t faceInd = Index(m,iPos.F());
indVec[faceInd*3+ iPos.VInd()] = curVertexCounter;
do { // The real Loop if(!iPos.IsFaux())
ScalarType dotProd=iPos.FFlip()->cN().dot(iPos.f->N()); // test normal with the next face (fflip) { //qDebug(" Crease FOUND");
size_t faceInd = Index(m,iPos.f); ++locCreaseCounter;
indVec[faceInd*3+ iPos.VInd()] = curVertexCounter; curVertexCounter=newVertexCounter;
newVertexCounter++;
}
iPos.NextFE();
} while (startPos!=iPos);
if(locCreaseCounter>0 && (!isBorderVertex) ) newVertexCounter--;
//printf("For vertex %i found %i creases\n",vertInd,locCreaseCounter);
}
} // end foreach face/vert
if(dotProd<cosangle) // Now the indVec vector contains for each the new index of each vertex (duplicated as necessary)
{ //qDebug(" Crease FOUND"); // We do a second loop to copy split vertexes into new positions
++locCreaseCounter; tri::Allocator<MESH_TYPE>::AddVertices(m,newVertexCounter-m.vn);
curVertexCounter=newVertexCounter;
newVertexCounter++;
}
iPos.NextFE();
} while (startPos!=iPos);
if(locCreaseCounter>0 && (!isBorderVertex) ) newVertexCounter--;
}
// A questo punto ho un vettore che mi direbbe per ogni faccia quale vertice devo mettere. Dopo che ho aggiunto i vertici necessari, tri::UpdateFlags<MESH_TYPE>::VertexClearV(m);
// rifaccio il giro delle facce for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
//qDebug("adding %i vert for %i crease edges ",newVertexCounter-m.vn, creaseCounter); for(int j=0;j<3;++j)
tri::Allocator<MESH_TYPE>::AddVertices(m,newVertexCounter-m.vn); {
size_t faceInd = Index(m, *fi);
tri::UpdateFlags<MESH_TYPE>::VertexClearV(m); size_t vertInd = Index(m, (*fi).V(j));
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) int curVertexInd = indVec[faceInd*3+ j];
for(int j=0;j<3;++j) // foreach unvisited vertex assert(curVertexInd != -1);
{ assert(curVertexInd < m.vn);
size_t faceInd = Index(m, *fi); if(curVertexInd < startVn) assert(size_t(curVertexInd) == vertInd);
size_t vertInd = Index(m, (*fi).V(j)); if(curVertexInd >= startVn)
int curVertexInd = indVec[faceInd*3+ j]; {
assert(curVertexInd != -1); m.vert[curVertexInd].ImportData(*((*fi).V(j)));
assert(curVertexInd < m.vn); (*fi).V(j) = & m.vert[curVertexInd];
if(curVertexInd < startVn) assert(size_t(curVertexInd) == vertInd); }
if(curVertexInd >= startVn) }
{
m.vert[curVertexInd].ImportData(*((*fi).V(j)));
(*fi).V(j) = & m.vert[curVertexInd];
}
}
tri::UpdateNormal<MESH_TYPE>::PerVertexFromCurrentFaceNormal(m);
} }
} // end namespace tri } // end namespace tri