Refactored and commented. Now can also cut along non faux edges
This commit is contained in:
parent
a989737e26
commit
298714ccea
|
@ -28,68 +28,55 @@
|
|||
namespace vcg {
|
||||
namespace tri {
|
||||
|
||||
/*
|
||||
Crease Angle
|
||||
Assume che:
|
||||
la mesh abbia la topologia ff
|
||||
la mesh non abbia complex (o se li aveva fossero stati detached)
|
||||
Abbia le normali per faccia normalizzate!!
|
||||
|
||||
|
||||
Prende una mesh e duplica tutti gli edge le cui normali nelle facce incidenti formano un angolo maggiore
|
||||
di <angle> (espresso in rad).
|
||||
foreach face
|
||||
foreach unvisited vert vi
|
||||
scan the star of triangles around vi duplicating vi each time we encounter a crease angle.
|
||||
|
||||
the new (and old) vertexes are put in a std::vector that is swapped with the original one at the end.
|
||||
|
||||
Si tiene un vettore di interi 3 *fn che dice l'indice del vertice puntato da ogni faccia.
|
||||
quando si scandisce la stella intorno ad un vertici, per ogni wedge si scrive l'indice del vertice corrsipondente.
|
||||
|
||||
|
||||
*/
|
||||
/** \brief Open a mesh cutting all the edges where the two faces make an angle *larger* than the indicated threshold
|
||||
*/
|
||||
|
||||
template<class MESH_TYPE>
|
||||
void CreaseCut(MESH_TYPE &m, float angleRad)
|
||||
{
|
||||
typedef typename MESH_TYPE::CoordType CoordType;
|
||||
typedef typename MESH_TYPE::ScalarType ScalarType;
|
||||
typedef typename MESH_TYPE::VertexType VertexType;
|
||||
typedef typename MESH_TYPE::VertexPointer VertexPointer;
|
||||
typedef typename MESH_TYPE::VertexIterator VertexIterator;
|
||||
tri::UpdateFlags<MESH_TYPE>::FaceFauxSignedCrease(m, -angleRad, angleRad);
|
||||
CutMeshAlongNonFauxEdges(m);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Open a mesh along non-faux edges
|
||||
*
|
||||
* Duplicate exisiting vertices so that non-faux edges become boundary edges.
|
||||
* It assume FF topology and manifoldness.
|
||||
* The idea is that we scan faces around each vertex duplicating it each time we encounter a marked edge.
|
||||
*
|
||||
*/
|
||||
template<class MESH_TYPE>
|
||||
void CutMeshAlongNonFauxEdges(MESH_TYPE &m)
|
||||
{
|
||||
typedef typename MESH_TYPE::FaceIterator FaceIterator;
|
||||
typedef typename MESH_TYPE::FaceType FaceType;
|
||||
typedef typename MESH_TYPE::FacePointer FacePointer;
|
||||
|
||||
tri::Allocator<MESH_TYPE>::CompactVertexVector(m);
|
||||
tri::Allocator<MESH_TYPE>::CompactFaceVector(m);
|
||||
|
||||
tri::UpdateNormal<MESH_TYPE>::NormalizePerFace(m);
|
||||
|
||||
assert(tri::HasFFAdjacency(m));
|
||||
typename MESH_TYPE::ScalarType cosangle=math::Cos(angleRad);
|
||||
tri::RequireFFAdjacency(m);
|
||||
|
||||
tri::UpdateFlags<MESH_TYPE>::VertexClearV(m);
|
||||
std::vector<int> indVec(m.fn*3,-1);
|
||||
int newVertexCounter=m.vn;
|
||||
int startVn=m.vn;
|
||||
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
{
|
||||
for(int j=0;j<3;++j)
|
||||
if(!(*fi).V(j)->IsV() ) // foreach unvisited vertex we loop around it searching for creases.
|
||||
{
|
||||
(*fi).V(j)->SetV();
|
||||
|
||||
face::JumpingPos<FaceType> iPos(&*fi,j,(*fi).V(j));
|
||||
size_t vertInd = Index(m,iPos.v); //
|
||||
size_t vertInd = Index(m, iPos.V());
|
||||
bool isBorderVertex = iPos.FindBorder(); // for border vertex we start from the border.
|
||||
face::JumpingPos<FaceType> startPos=iPos;
|
||||
if(!isBorderVertex) // for internal vertex we search the first crease and start from it
|
||||
{
|
||||
do {
|
||||
ScalarType dotProd = iPos.FFlip()->cN().dot(iPos.f->N());
|
||||
bool creaseFlag = !iPos.IsFaux();
|
||||
iPos.NextFE();
|
||||
if(dotProd<cosangle) break;
|
||||
if(creaseFlag) break;
|
||||
} while (startPos!=iPos);
|
||||
startPos=iPos; // the found crease become the new starting pos.
|
||||
}
|
||||
|
@ -98,11 +85,10 @@ void CreaseCut(MESH_TYPE &m, float angleRad)
|
|||
int curVertexCounter =vertInd;
|
||||
|
||||
do { // The real Loop
|
||||
ScalarType dotProd=iPos.FFlip()->cN().dot(iPos.f->N()); // test normal with the next face (fflip)
|
||||
size_t faceInd = Index(m,iPos.f);
|
||||
size_t faceInd = Index(m,iPos.F());
|
||||
indVec[faceInd*3+ iPos.VInd()] = curVertexCounter;
|
||||
|
||||
if(dotProd<cosangle)
|
||||
if(!iPos.IsFaux())
|
||||
{ //qDebug(" Crease FOUND");
|
||||
++locCreaseCounter;
|
||||
curVertexCounter=newVertexCounter;
|
||||
|
@ -111,16 +97,17 @@ void CreaseCut(MESH_TYPE &m, float angleRad)
|
|||
iPos.NextFE();
|
||||
} while (startPos!=iPos);
|
||||
if(locCreaseCounter>0 && (!isBorderVertex) ) newVertexCounter--;
|
||||
//printf("For vertex %i found %i creases\n",vertInd,locCreaseCounter);
|
||||
}
|
||||
} // end foreach face/vert
|
||||
|
||||
// A questo punto ho un vettore che mi direbbe per ogni faccia quale vertice devo mettere. Dopo che ho aggiunto i vertici necessari,
|
||||
// rifaccio il giro delle facce
|
||||
//qDebug("adding %i vert for %i crease edges ",newVertexCounter-m.vn, creaseCounter);
|
||||
// Now the indVec vector contains for each the new index of each vertex (duplicated as necessary)
|
||||
// We do a second loop to copy split vertexes into new positions
|
||||
tri::Allocator<MESH_TYPE>::AddVertices(m,newVertexCounter-m.vn);
|
||||
|
||||
tri::UpdateFlags<MESH_TYPE>::VertexClearV(m);
|
||||
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
for(int j=0;j<3;++j) // foreach unvisited vertex
|
||||
for(int j=0;j<3;++j)
|
||||
{
|
||||
size_t faceInd = Index(m, *fi);
|
||||
size_t vertInd = Index(m, (*fi).V(j));
|
||||
|
@ -134,7 +121,6 @@ void CreaseCut(MESH_TYPE &m, float angleRad)
|
|||
(*fi).V(j) = & m.vert[curVertexInd];
|
||||
}
|
||||
}
|
||||
tri::UpdateNormal<MESH_TYPE>::PerVertexFromCurrentFaceNormal(m);
|
||||
}
|
||||
|
||||
} // end namespace tri
|
||||
|
|
Loading…
Reference in New Issue