Updated a number of sample app for the vcg lib

This commit is contained in:
Paolo Cignoni 2016-01-25 14:47:06 +00:00
parent a437952298
commit 2bb91ac57a
15 changed files with 299 additions and 281 deletions

View File

@ -45,13 +45,11 @@ class MyEdge : public Edge<MyUsedTypes,edge::VertexRef, edge::VEAdj, edge::EE
class MyMesh : public tri::TriMesh< vector<MyVertex>, vector<MyFace> , vector<MyEdge> > {}; class MyMesh : public tri::TriMesh< vector<MyVertex>, vector<MyFace> , vector<MyEdge> > {};
int main( int argc, char **argv ) int main( int argc, char **argv )
{ {
if(argc<2) if(argc<2)
{ {
printf("Usage trimesh_base <meshfilename.obj> radius\n"); printf("Usage edgemesh_sampling <meshfilename.off> radius\n");
return -1; return -1;
} }
@ -90,7 +88,7 @@ int main( int argc, char **argv )
tri::TrivialSampler<MyMesh> ps(sampleVec); tri::TrivialSampler<MyMesh> ps(sampleVec);
tri::SurfaceSampling<MyMesh>::EdgeMeshUniform(e,ps,m.bbox.Diag()/90.0f); tri::SurfaceSampling<MyMesh>::EdgeMeshUniform(e,ps,m.bbox.Diag()/90.0f);
MyMesh sampleMesh; MyMesh sampleMesh;
tri::Build(sampleMesh,sampleVec); tri::BuildMeshFromCoordVector(sampleMesh,sampleVec);
tri::io::ExporterPLY<MyMesh>::Save(sampleMesh,"sampleMesh.ply"); tri::io::ExporterPLY<MyMesh>::Save(sampleMesh,"sampleMesh.ply");
return 0; return 0;
} }

View File

@ -28,17 +28,14 @@
#include <vcg/complex/algorithms/update/bounding.h> #include <vcg/complex/algorithms/update/bounding.h>
#include <vcg/complex/algorithms/update/normal.h> #include <vcg/complex/algorithms/update/normal.h>
/*include the algorithms for mesh fixing */
#include <vcg/complex/algorithms/clean.h> #include <vcg/complex/algorithms/clean.h>
#include <vcg/complex/algorithms/create/platonic.h>
#include <wrap/io_trimesh/import.h> #include <wrap/io_trimesh/import.h>
#include <wrap/io_trimesh/export_ply.h> #include <wrap/io_trimesh/export_ply.h>
/* include the support for polygon meshes (function to convert from/to trimesh)*/ /* include the support for polygon meshes (function to convert from/to trimesh)*/
#include <vcg/complex/algorithms/polygon_support.h> //#include <vcg/complex/algorithms/polygon_support.h>
/* include the support for polygon meshes (the component for the face )*/
#include <vcg/simplex/face/component_polygon.h>
/* include the support for half edges */ /* include the support for half edges */
#include <vcg/complex/algorithms/update/halfedge_indexed.h> #include <vcg/complex/algorithms/update/halfedge_indexed.h>
@ -48,25 +45,22 @@ using namespace vcg;
using namespace std; using namespace std;
// forward declarations // forward declarations
class CFace; class TFace;
class CVertex; class TVertex;
class CHEdge;
class CEdge;
class MyPolyVertex;
struct CUsedTypes: public vcg::UsedTypes< vcg::Use<CVertex>::AsVertexType, vcg::Use<CFace>::AsFaceType >{}; struct TUsedTypes: public vcg::UsedTypes< vcg::Use<TVertex>::AsVertexType, vcg::Use<TFace>::AsFaceType >{};
/* Definition of a mesh of triangles /* Definition of a mesh of triangles
*/ */
class CVertex : public Vertex< CUsedTypes, class TVertex : public Vertex< TUsedTypes,
vertex::BitFlags, vertex::BitFlags,
vertex::Coord3f, vertex::Coord3f,
vertex::Normal3f, vertex::Normal3f,
vertex::Mark >{}; vertex::Mark >{};
class CFace : public Face< CUsedTypes, class TFace : public Face< TUsedTypes,
face::VertexRef, // three pointers to vertices face::VertexRef, // three pointers to vertices
face::Normal3f, // normal face::Normal3f, // normal
face::BitFlags, // flags face::BitFlags, // flags
@ -74,29 +68,32 @@ class CFace : public Face< CUsedTypes,
> {}; > {};
/* the mesh is a container of vertices and a container of faces */ /* the mesh is a container of vertices and a container of faces */
class CMesh : public vcg::tri::TriMesh< vector<CVertex>, vector<CFace> > {}; class TMesh : public vcg::tri::TriMesh< vector<TVertex>, vector<TFace> > {};
/* Definition of a mesh of polygons that also supports half-edges /* Definition of a mesh of polygons that also supports half-edges
*/ */
class MyPolyFace; class PFace;
class MyPolyVertex; class PVertex;
struct PolyUsedTypes: public vcg::UsedTypes<vcg::Use<MyPolyVertex> ::AsVertexType, class PHEdge;
vcg::Use<CEdge> ::AsEdgeType, class PEdge;
vcg::Use<CHEdge> ::AsHEdgeType,
vcg::Use<MyPolyFace> ::AsFaceType struct PUsedTypes: public vcg::UsedTypes<vcg::Use<PVertex> ::AsVertexType,
vcg::Use<PEdge> ::AsEdgeType,
vcg::Use<PHEdge>::AsHEdgeType,
vcg::Use<PFace> ::AsFaceType
>{}; >{};
//class DummyEdge: public vcg::Edge<PolyUsedTypes>{}; //class DummyEdge: public vcg::Edge<PolyUsedTypes>{};
class MyPolyVertex:public vcg::Vertex< PolyUsedTypes, class PVertex:public vcg::Vertex< PUsedTypes,
vcg::vertex::Coord3f, vcg::vertex::Coord3f,
vcg::vertex::Normal3f, vcg::vertex::Normal3f,
vcg::vertex::Mark, vcg::vertex::Mark,
vcg::vertex::BitFlags, vcg::vertex::BitFlags,
vcg::vertex::VHAdj>{} ; vcg::vertex::VHAdj>{} ;
class CEdge : public Edge<PolyUsedTypes>{}; class PEdge : public Edge<PUsedTypes>{};
class CHEdge : public HEdge< PolyUsedTypes, hedge::BitFlags, class PHEdge : public HEdge< PUsedTypes, hedge::BitFlags,
//hedge::HFAdj, // pointer to the face //hedge::HFAdj, // pointer to the face
//hedge::HOppAdj, // pointer to the opposite edge //hedge::HOppAdj, // pointer to the opposite edge
//hedge::HVAdj, // pointer to the vertex //hedge::HVAdj, // pointer to the vertex
@ -105,8 +102,8 @@ class CHEdge : public HEdge< PolyUsedTypes, hedge::BitFlags,
//,hedge::HPrevAdj // pointer to the previous halfedge //,hedge::HPrevAdj // pointer to the previous halfedge
>{}; >{};
class MyPolyFace:public vcg::Face< class PFace:public vcg::Face<
PolyUsedTypes PUsedTypes
,vcg::face::PolyInfo // this is necessary if you use component in vcg/simplex/face/component_polygon.h ,vcg::face::PolyInfo // this is necessary if you use component in vcg/simplex/face/component_polygon.h
// It says "this class is a polygon and the memory for its components (e.g. pointer to its vertices // It says "this class is a polygon and the memory for its components (e.g. pointer to its vertices
// will be allocated dynamically") // will be allocated dynamically")
@ -118,28 +115,21 @@ class MyPolyFace:public vcg::Face<
,vcg::face::Normal3f // normal ,vcg::face::Normal3f // normal
> {}; > {};
class MyPolyMesh: public class PMesh: public
vcg::tri::TriMesh< vcg::tri::TriMesh<
std::vector<MyPolyVertex>, // the vector of vertices std::vector<PVertex>, // the vector of vertices
std::vector<MyPolyFace >, // the vector of faces std::vector<PFace >, // the vector of faces
std::vector<CHEdge> , // the vector of edges std::vector<PHEdge> , // the vector of edges
std::vector<CEdge> // the vector of edges std::vector<PEdge> // the vector of edges
>{}; >{};
MyPolyMesh pm; PMesh pm;
TMesh tm0;
////////////////////////////////////////////////////////////////////////////
// Globals: the mesh, the OpenGL wrapper to draw the mesh and the trackball.
CMesh mesh,mesh1;
int main(int argc, char *argv[]) { int main(int argc, char *argv[]) {
int loadmask; int loadmask;
vcg::tri::io::PlyInfo pi;
// pm.hedge.reserve(100000);
if(true){ if(true){
/* /*
first way: first way:
@ -149,40 +139,39 @@ if(true){
3) import the tagged triangle mesh in a polygon mesh 3) import the tagged triangle mesh in a polygon mesh
*/ */
// vcg::tri::io::ImporterOBJ<CMesh>::Open(mesh,argv[1],loadmask); // vcg::tri::io::ImporterOBJ<CMesh>::Open(mesh,argv[1],loadmask);
vcg::tri::io::ImporterOFF<CMesh>::Open(mesh,argv[1],loadmask); // vcg::tri::io::ImporterOFF<TMesh>::Open(tm0,argv[1],loadmask);
vcg::tri::Hexahedron(tm0);
vcg::tri::Clean<CMesh>::RemoveUnreferencedVertex(mesh); vcg::tri::Clean<TMesh>::RemoveUnreferencedVertex(tm0);
vcg::tri::Clean<CMesh>::RemoveZeroAreaFace(mesh); vcg::tri::Clean<TMesh>::RemoveZeroAreaFace(tm0);
vcg::tri::UpdateTopology<CMesh>::FaceFace(mesh); vcg::tri::UpdateTopology<TMesh>::FaceFace(tm0);
vcg::tri::Clean<CMesh>::RemoveNonManifoldFace(mesh); vcg::tri::Clean<TMesh>::RemoveNonManifoldFace(tm0);
vcg::tri::UpdateTopology<CMesh>::FaceFace(mesh); vcg::tri::UpdateTopology<TMesh>::FaceFace(tm0);
assert(vcg::tri::Clean<CMesh>::CountNonManifoldEdgeFF(mesh)==0); assert(vcg::tri::Clean<TMesh>::CountNonManifoldEdgeFF(tm0)==0);
assert(vcg::tri::Clean<CMesh>::CountNonManifoldVertexFF(mesh)==0); assert(vcg::tri::Clean<TMesh>::CountNonManifoldVertexFF(tm0)==0);
// create a polygon meshe from a trimesh with tagged faces // create a polygon meshe from a trimesh with tagged faces
vcg::tri::PolygonSupport<CMesh,MyPolyMesh>::ImportFromTriMesh(pm,mesh); vcg::tri::PolygonSupport<TMesh,PMesh>::ImportFromTriMesh(pm,tm0);
} }
else else
{ {
/* second way: /* second way:
Load into a polygon mesh straight away. Load into a polygon mesh straight away.
*/ */
vcg::tri::io::ImporterOBJ<MyPolyMesh>::Open(pm,argv[1],loadmask); vcg::tri::io::ImporterOBJ<PMesh>::Open(pm,argv[1],loadmask);
vcg::tri::UpdateTopology<MyPolyMesh>::FaceFace(pm); vcg::tri::UpdateTopology<PMesh>::FaceFace(pm);
vcg::tri::Clean<MyPolyMesh>::RemoveNonManifoldFace(pm); vcg::tri::Clean<PMesh>::RemoveNonManifoldFace(pm);
vcg::tri::UpdateTopology<MyPolyMesh>::FaceFace(pm); vcg::tri::UpdateTopology<PMesh>::FaceFace(pm);
assert(vcg::tri::Clean<MyPolyMesh>::CountNonManifoldEdgeFF(pm)); assert(vcg::tri::Clean<PMesh>::CountNonManifoldEdgeFF(pm));
} }
// compute the half edges because I'm a half-edge programmer // compute the half edges because I'm a half-edge programmer
vcg::tri::UpdateHalfEdges<MyPolyMesh>::FromIndexed(pm); vcg::tri::UpdateHalfEdges<PMesh>::FromIndexed(pm);
// .... my half edge based code ...... // .... my half edge based code ......
// check for consistency // check for consistency
assert(vcg::tri::UpdateHalfEdges<MyPolyMesh>::CheckConsistency(pm)); assert(vcg::tri::UpdateHalfEdges<PMesh>::CheckConsistency(pm));
int size = pm.face.size(); int size = pm.face.size();
@ -191,12 +180,12 @@ else
for(int i = 0; i < size; ++i) for(int i = 0; i < size; ++i)
if(!(pm.face[i].IsD())) if(!(pm.face[i].IsD()))
if(pm.face[i].VN()>3){ if(pm.face[i].VN()>3){
MyPolyMesh::HEdgePointer ef = pm.face[i].FHp(); PMesh::HEdgePointer ef = pm.face[i].FHp();
MyPolyMesh::HEdgePointer ef1 = ef -> HNp(); PMesh::HEdgePointer ef1 = ef -> HNp();
ef1 = ef1->HNp(); ef1 = ef1->HNp();
vcg::tri::UpdateHalfEdges<MyPolyMesh>::AddHEdge(pm, ef, ef1 ); vcg::tri::UpdateHalfEdges<PMesh>::AddHEdge(pm, ef, ef1 );
} }
assert(vcg::tri::UpdateHalfEdges<MyPolyMesh>::CheckConsistency(pm)); assert(vcg::tri::UpdateHalfEdges<PMesh>::CheckConsistency(pm));
size = pm.face.size(); size = pm.face.size();
// remove an edge for each face // remove an edge for each face
@ -204,23 +193,25 @@ else
for(int i = 0; i < size; ++i) for(int i = 0; i < size; ++i)
if(!(pm.face[i].IsD() )) if(!(pm.face[i].IsD() ))
{ {
MyPolyMesh::HEdgePointer ef = pm.face[i].FHp(); PMesh::HEdgePointer ef = pm.face[i].FHp();
if( ef->HOp()->HFp() !=NULL){ if( ef->HOp()->HFp() !=NULL){
vcg::tri::UpdateHalfEdges<MyPolyMesh>::RemoveHEdge(pm,ef); vcg::tri::UpdateHalfEdges<PMesh>::RemoveHEdge(pm,ef);
} }
} }
// check for consistency // check for consistency
assert(vcg::tri::UpdateHalfEdges<MyPolyMesh>::CheckConsistency(pm)); assert(vcg::tri::UpdateHalfEdges<PMesh>::CheckConsistency(pm));
// recompute indexed data structure from the half edge data structure // recompute indexed data structure from the half edge data structure
vcg::tri::UpdateIndexed<MyPolyMesh>::FromHalfEdges(pm ); // vcg::tri::UpdateIndexed<PMesh>::FromHalfEdges(pm );
// create a triangle mesh from a polygon mesh // create a triangle mesh from a polygon mesh
vcg::tri::PolygonSupport<CMesh,MyPolyMesh>::ImportFromPolyMesh(mesh1,pm); TMesh tm1;
vcg::tri::PolygonSupport<TMesh,PMesh>::ImportFromPolyMesh(tm1,pm);
// write out the triangle mesh vcg::tri::io::PlyInfo pi;
vcg::tri::io::ExporterPLY<CMesh>::Save(mesh1,"converted_out.ply",true,pi); vcg::tri::io::ExporterPLY<TMesh>::Save(tm1,"converted_tri.ply",false,pi);
vcg::tri::io::ExporterPLY<PMesh>::Save(pm,"converted_poly.ply",false,pi);
} }

View File

@ -55,8 +55,6 @@ int main(int argc, char **argv)
if(argc<3) if(argc<3)
{ {
printf( printf(
"\n trimesh_ball_pivoting ("__DATE__")\n"
" Visual Computing Group I.S.T.I. C.N.R.\n"
"Usage: trimesh_ball_pivoting filein.ply fileout.ply [opt]\n" "Usage: trimesh_ball_pivoting filein.ply fileout.ply [opt]\n"
"options: \n" "options: \n"
"-r <val> radius of the rolling ball\n" "-r <val> radius of the rolling ball\n"

View File

@ -68,14 +68,6 @@ class OcfMesh : public vcg::tri::TriMesh< vcg::vertex::vector_ocf<OcfVertex>,
void Usage() void Usage()
{ {
printf( printf(
"---------------------------------\n"
" TriMeshCopy V.1.0 \n"
" http://vcg.isti.cnr.it\n"
" http://vcg.sourceforge.net\n"
" release date: "__DATE__"\n"
"---------------------------------\n\n"
"TriMeshCopy 1.0 \n"__DATE__"\n"
"Copyright 2003-2012 Visual Computing Lab I.S.T.I. C.N.R.\n"
"\nUsage: "\ "\nUsage: "\
"trimeshcopy fileIn -(n|o) [fileOut]\n"\ "trimeshcopy fileIn -(n|o) [fileOut]\n"\
"trimeshcopy test vcg::MeshCopy efficiency.\nIt imports a fileIn file into a user defined mesh and test how long vcg::MeshCopy needs to copy the imported mesh in a second one.The copy time is expressed in milliseconds.\nIf the -n flag is used a non-optional attributes mesh will be tested, defining -o, instead, the target mesh will be an ocf one.\nA fileOut file can be passed to the tool in order to check if the mesh was successfully copied.\nThe file will be exported in PLY file format.\n" "trimeshcopy test vcg::MeshCopy efficiency.\nIt imports a fileIn file into a user defined mesh and test how long vcg::MeshCopy needs to copy the imported mesh in a second one.The copy time is expressed in milliseconds.\nIf the -n flag is used a non-optional attributes mesh will be tested, defining -o, instead, the target mesh will be an ocf one.\nA fileOut file can be passed to the tool in order to check if the mesh was successfully copied.\nThe file will be exported in PLY file format.\n"

View File

@ -22,9 +22,12 @@
****************************************************************************/ ****************************************************************************/
#include<vcg/complex/complex.h> #include<vcg/complex/complex.h>
#include<wrap/io_trimesh/import_off.h> #include<wrap/io_trimesh/import_ply.h>
#include<wrap/io_trimesh/export_ply.h>
#include<vcg/complex/algorithms/point_sampling.h>
#include<vcg/complex/algorithms/geodesic.h> #include<vcg/complex/algorithms/geodesic.h>
#include<vcg/complex/algorithms/update/color.h>
using namespace vcg; using namespace vcg;
using namespace std; using namespace std;
@ -36,8 +39,8 @@ struct MyUsedTypes : public UsedTypes< Use<MyVertex> ::AsVertexType,
Use<MyEdge> ::AsEdgeType, Use<MyEdge> ::AsEdgeType,
Use<MyFace> ::AsFaceType>{}; Use<MyFace> ::AsFaceType>{};
class MyVertex : public Vertex<MyUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::BitFlags >{}; class MyVertex : public Vertex<MyUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::Mark, vertex::VFAdj, vertex::Color4b, vertex::Qualityf, vertex::BitFlags >{};
class MyFace : public Face< MyUsedTypes, face::FFAdj, face::VertexRef, face::BitFlags > {}; class MyFace : public Face< MyUsedTypes, face::VFAdj, face::VertexRef, face::Normal3f, face::BitFlags > {};
class MyEdge : public Edge<MyUsedTypes>{}; class MyEdge : public Edge<MyUsedTypes>{};
class MyMesh : public tri::TriMesh< vector<MyVertex>, vector<MyFace> , vector<MyEdge> > {}; class MyMesh : public tri::TriMesh< vector<MyVertex>, vector<MyFace> , vector<MyEdge> > {};
@ -45,20 +48,47 @@ int main( int argc, char **argv )
{ {
if(argc<2) if(argc<2)
{ {
printf("Usage trimesh_base <meshfilename.obj>\n"); printf("Usage trimesh_geodesic <meshfilename.obj>\n");
return -1; // return -1;
} }
MyMesh m; MyMesh m;
if(tri::io::ImporterOFF<MyMesh>::Open(m,argv[1])!=0) // if(tri::io::ImporterPLY<MyMesh>::Open(m,"../../meshes/disk_irregular_1k.ply")!=0)
if(tri::io::ImporterPLY<MyMesh>::Open(m,"../../meshes/disk_irregular_650k.ply")!=0)
{ {
printf("Error reading file %s\n",argv[1]); printf("Error reading file %s\n",argv[1]);
exit(0); exit(0);
} }
vector<Point3f> pointVec;
float radius; Point3f c=m.bbox.Center();
tri::PoissonSampling<MyMesh>(m,pointVec,1000,radius); MyVertex*closest=&*m.vert.begin();
float minDist = Distance(closest->P(),c);
for(MyMesh::VertexIterator vi=m.vert.begin();vi!=m.vert.end(); ++vi)
{
if(Distance(vi->P(),c)<minDist)
{
minDist = Distance(vi->P(),c);
closest = &*vi;
}
}
vector<MyVertex*> seedVec;
seedVec.push_back(closest);
tri::EuclideanDistance<MyMesh> ed;
tri::Clean<MyMesh>::RemoveUnreferencedVertex(m);
tri::Allocator<MyMesh>::CompactEveryVector(m);
tri::UpdateTopology<MyMesh>::VertexFace(m);
tri::Geodesic<MyMesh>::Compute(m,seedVec,ed);
pair<float,float> minmax = tri::Stat<MyMesh>::ComputePerVertexQualityMinMax(m);
tri::UpdateColor<MyMesh>::PerVertexQualityRamp(m);
printf("min %f max %f\n",minmax.first,minmax.second);
tri::io::ExporterPLY<MyMesh>::Save(m,"base.ply",tri::io::Mask::IOM_VERTCOLOR | tri::io::Mask::IOM_VERTQUALITY);
int t0=clock();
tri::Geodesic<MyMesh>::PerVertexDijsktraCompute(m,seedVec,ed);
int t1=clock();
printf("Geodesic dijkstra %6.3f\n",float(t1-t0)/CLOCKS_PER_SEC);
tri::UpdateColor<MyMesh>::PerVertexQualityRamp(m);
tri::io::ExporterPLY<MyMesh>::Save(m,"base_d.ply",tri::io::Mask::IOM_VERTCOLOR | tri::io::Mask::IOM_VERTQUALITY);
return 0; return 0;
} }

View File

@ -1,3 +1,3 @@
include(../common.pri) include(../common.pri)
TARGET = trimesh_geodesic TARGET = trimesh_geodesic
SOURCES += trimesh_geodesic.cpp SOURCES += trimesh_geodesic.cpp ../../../wrap/ply/plylib.cpp

View File

@ -73,13 +73,13 @@ bool NormalTest(typename face::Pos<typename MESH::FaceType> pos)
{ {
//giro intorno al vertice e controllo le normali //giro intorno al vertice e controllo le normali
typename MESH::ScalarType thr = 0.0f; typename MESH::ScalarType thr = 0.0f;
typename MESH::CoordType NdP = vcg::Normal<typename MESH::FaceType>(*pos.f); typename MESH::CoordType NdP = vcg::TriangleNormal<typename MESH::FaceType>(*pos.f);
typename MESH::CoordType tmp, oop, soglia = typename MESH::CoordType(thr,thr,thr); typename MESH::CoordType tmp, oop, soglia = typename MESH::CoordType(thr,thr,thr);
face::Pos<typename MESH::FaceType> aux=pos; face::Pos<typename MESH::FaceType> aux=pos;
do{ do{
aux.FlipF(); aux.FlipF();
aux.FlipE(); aux.FlipE();
oop = Abs(tmp - ::vcg::Normal<typename MESH::FaceType>(*pos.f)); oop = Abs(tmp - ::vcg::TriangleNormal<typename MESH::FaceType>(*pos.f));
if(oop < soglia )return false; if(oop < soglia )return false;
}while(aux != pos && !aux.IsBorder()); }while(aux != pos && !aux.IsBorder());

View File

@ -52,9 +52,7 @@ int main(int argc,char **argv )
{ {
if(argc<2) if(argc<2)
{ {
printf( "\n trimesh_join ("__DATE__")\n" printf( "Usage: trimesh_join [opt] filename.ply [filename.ply | *] \n"
"Visual Computing Group I.S.T.I. C.N.R.\n"
"Usage: trimesh_join [opt] filename.ply [filename.ply | *] \n"
"where opt can be:\n" "where opt can be:\n"
" -b xmin ymin zmin xmax ymax zmax : \n" " -b xmin ymin zmin xmax ymax zmax : \n"
" Returns only mesh composed by faces inside specified bbox\n" " Returns only mesh composed by faces inside specified bbox\n"

View File

@ -23,9 +23,9 @@
/*! \file trimesh_kdtree.cpp /*! \file trimesh_kdtree.cpp
\ingroup code_sample \ingroup code_sample
\brief An example about using the kdtree and meshes \brief An example about using a kdtree to spatially index the vertexes of a mesh
KdTree are one of the Spatial indexing data structure available. KdTree are one of the Spatial indexing data structures available.
They are tailored for storing point-based structures and performing k-neighbours queries. They are tailored for storing point-based structures and performing k-neighbours queries.
In this simple example we simply compute the average distance of a vertex from its neighbours. In this simple example we simply compute the average distance of a vertex from its neighbours.
\ref spatial_indexing for more Details \ref spatial_indexing for more Details

View File

@ -61,17 +61,18 @@ int main( int argc, char **argv )
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::SamplingRandomGenerator().initialize(time(0)); tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::SamplingRandomGenerator().initialize(time(0));
//---------------------------------------------------------------------- //----------------------------------------------------------------------
// Basic Sample, // Basic Sample of a mesh surface
// Build a point cloud with points with a plain poisson disk distribution // Build a point cloud with points with a plain poisson disk distribution
int t0=clock(); int t0=clock();
vector<Point3f> pointVec; vector<Point3f> pointVec;
float rad; float rad=0;
if(argc>2) rad=atof(argv[2]); if(argc>2) rad=atof(argv[2]);
int sampleNum=rad?0:1000; int sampleNum=rad?0:1000;
tri::PoissonSampling<MyMesh>(m,pointVec,sampleNum,rad); tri::PoissonSampling<MyMesh>(m,pointVec,sampleNum,rad);
int t1=clock(); int t1=clock();
MyMesh BasicPoissonMesh; MyMesh BasicPoissonMesh;
tri::Build(BasicPoissonMesh,pointVec); tri::BuildMeshFromCoordVector(BasicPoissonMesh,pointVec);
tri::io::ExporterOFF<MyMesh>::Save(BasicPoissonMesh,"BasicPoissonMesh.off"); tri::io::ExporterOFF<MyMesh>::Save(BasicPoissonMesh,"BasicPoissonMesh.off");
printf("Computed a basic poisson disk distribution of %i vertices radius is %6.3f in %5.2f sec\n",BasicPoissonMesh.VN(),rad,float(t1-t0)/CLOCKS_PER_SEC); printf("Computed a basic poisson disk distribution of %i vertices radius is %6.3f in %5.2f sec\n",BasicPoissonMesh.VN(),rad,float(t1-t0)/CLOCKS_PER_SEC);
@ -90,32 +91,32 @@ int main( int argc, char **argv )
tri::UpdateNormal<MyMesh>::PerFace(m); tri::UpdateNormal<MyMesh>::PerFace(m);
tri::UpdateFlags<MyMesh>::FaceFauxCrease(m,math::ToRad(40.0f)); tri::UpdateFlags<MyMesh>::FaceFauxCrease(m,math::ToRad(40.0f));
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::EdgeMontecarlo(m,mps,10000,false); tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::EdgeMontecarlo(m,mps,10000,false);
tri::Build(MontecarloEdgeMesh,sampleVec); tri::BuildMeshFromCoordVector(MontecarloEdgeMesh,sampleVec);
tri::io::ExporterOFF<MyMesh>::Save(MontecarloEdgeMesh,"MontecarloEdgeMesh.off"); tri::io::ExporterOFF<MyMesh>::Save(MontecarloEdgeMesh,"MontecarloEdgeMesh.off");
sampleVec.clear(); sampleVec.clear();
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::VertexCrease(m, mps); tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::VertexCrease(m, mps);
tri::Build(PoissonEdgeMesh,sampleVec); tri::BuildMeshFromCoordVector(PoissonEdgeMesh,sampleVec);
tri::io::ExporterOFF<MyMesh>::Save(PoissonEdgeMesh,"CreaseMesh.off"); tri::io::ExporterOFF<MyMesh>::Save(PoissonEdgeMesh,"VertexCreaseMesh.off");
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskParam pp; tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskParam pp;
pp.preGenMesh = &PoissonEdgeMesh; pp.preGenMesh = &PoissonEdgeMesh;
pp.preGenFlag=true; pp.preGenFlag=true;
sampleVec.clear(); sampleVec.clear();
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, MontecarloEdgeMesh, rad, pp); tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, MontecarloEdgeMesh, rad, pp);
tri::Build(PoissonEdgeMesh,sampleVec); tri::BuildMeshFromCoordVector(PoissonEdgeMesh,sampleVec);
tri::io::ExporterOFF<MyMesh>::Save(PoissonEdgeMesh,"PoissonEdgeMesh.off"); tri::io::ExporterOFF<MyMesh>::Save(PoissonEdgeMesh,"PoissonEdgeMesh.off");
sampleVec.clear(); sampleVec.clear();
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::Montecarlo(m,mps,50000); tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::Montecarlo(m,mps,50000);
tri::Build(MontecarloSurfaceMesh,sampleVec); tri::BuildMeshFromCoordVector(MontecarloSurfaceMesh,sampleVec);
tri::io::ExporterOFF<MyMesh>::Save(MontecarloSurfaceMesh,"MontecarloSurfaceMesh.off"); tri::io::ExporterOFF<MyMesh>::Save(MontecarloSurfaceMesh,"MontecarloSurfaceMesh.off");
pp.preGenMesh = &PoissonEdgeMesh; pp.preGenMesh = &PoissonEdgeMesh;
pp.preGenFlag=true; pp.preGenFlag=true;
sampleVec.clear(); sampleVec.clear();
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, MontecarloSurfaceMesh, rad, pp); tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, MontecarloSurfaceMesh, rad, pp);
tri::Build(PoissonMesh,sampleVec); tri::BuildMeshFromCoordVector(PoissonMesh,sampleVec);
tri::io::ExporterOFF<MyMesh>::Save(PoissonMesh,"PoissonMesh.off"); tri::io::ExporterOFF<MyMesh>::Save(PoissonMesh,"PoissonMesh.off");
printf("Computed a feature aware poisson disk distribution of %i vertices radius is %6.3f\n",PoissonMesh.VN(),rad); printf("Computed a feature aware poisson disk distribution of %i vertices radius is %6.3f\n",PoissonMesh.VN(),rad);

View File

@ -73,7 +73,7 @@ int main(int ,char ** )
std::vector<std::pair<int,MyMesh::FacePointer> > fpVec; std::vector<std::pair<int,MyMesh::FacePointer> > fpVec;
tri::UpdateTopology<MyMesh>::FaceFace(tm); tri::UpdateTopology<MyMesh>::FaceFace(tm);
tri::Clean<MyMesh>::ConnectedComponents(tm,fpVec); tri::Clean<MyMesh>::ConnectedComponents(tm,fpVec);
printf("Mesh has %i texture components\n",fpVec.size()); printf("Mesh has %lu texture components\n",fpVec.size());
tri::io::ExporterPLY<MyMesh>::Save(tm,"out.ply"); tri::io::ExporterPLY<MyMesh>::Save(tm,"out.ply");
std::vector< std::vector<Point2f> > outline2Vec; std::vector< std::vector<Point2f> > outline2Vec;
@ -99,13 +99,13 @@ int main(int ,char ** )
outline2Vec.push_back(compOutline2Vec[largestInd]); outline2Vec.push_back(compOutline2Vec[largestInd]);
} }
printf("Mesh has %i texture components\n",outline2Vec.size()); printf("Mesh has %lu texture components\n",outline2Vec.size());
Outline2Dumper::Param pp; Outline2Dumper::Param pp;
Similarity2f sim; Similarity2f sim;
sim.sca=1024.0f; sim.sca=1024.0f;
std::vector<Similarity2f> trVec(outline2Vec.size(),sim); std::vector<Similarity2f> trVec(outline2Vec.size(),sim);
printf("Mesh has %i texture components\n",outline2Vec.size()); printf("Mesh has %lu texture components\n",outline2Vec.size());
Outline2Dumper::dumpOutline2VecPNG("PrePack.png",outline2Vec,trVec,pp); Outline2Dumper::dumpOutline2VecPNG("PrePack.png",outline2Vec,trVec,pp);
const Point2i containerSize(1024,1024); const Point2i containerSize(1024,1024);

View File

@ -39,7 +39,7 @@ struct MyUsedTypes : public UsedTypes< Use<MyVertex> ::AsVertexType,
Use<MyFace> ::AsFaceType>{}; Use<MyFace> ::AsFaceType>{};
class MyVertex : public Vertex<MyUsedTypes, vertex::InfoOcf, vertex::Coord3f, vertex::Normal3f, vertex::TexCoord2f, vertex::VFAdj , vertex::Qualityf, vertex::Color4b, vertex::BitFlags >{}; class MyVertex : public Vertex<MyUsedTypes, vertex::InfoOcf, vertex::Coord3f, vertex::Normal3f, vertex::TexCoord2f, vertex::VFAdj , vertex::Qualityf, vertex::Color4b, vertex::BitFlags >{};
class MyFace : public Face< MyUsedTypes, face::InfoOcf, face::VertexRef, face::BitFlags, face::FFAdjOcf ,face::VFAdj , face::WedgeTexCoord2f> {}; class MyFace : public Face< MyUsedTypes, face::InfoOcf, face::VertexRef, face::CurvatureDirf, face::BitFlags, face::FFAdjOcf ,face::VFAdj , face::WedgeTexCoord2f> {};
class MyEdge : public Edge< MyUsedTypes>{}; class MyEdge : public Edge< MyUsedTypes>{};
class MyMesh : public tri::TriMesh< vertex::vector_ocf<MyVertex>, face::vector_ocf<MyFace> , vector<MyEdge> > {}; class MyMesh : public tri::TriMesh< vertex::vector_ocf<MyVertex>, face::vector_ocf<MyFace> , vector<MyEdge> > {};

View File

@ -54,9 +54,9 @@ int main( int argc, char **argv )
printf("Usage trimesh_voronoiclustering mesh region_num iterNum\n"); printf("Usage trimesh_voronoiclustering mesh region_num iterNum\n");
return -1; return -1;
} }
int seed = atoi(argv[2]); int seedNum = atoi(argv[2]);
int iterNum = atoi(argv[3]); int iterNum = atoi(argv[3]);
printf("Reading %s and sampling %i \n",argv[1],seed); printf("Reading %s and sampling %i \n",argv[1],seedNum);
int ret= tri::io::ImporterPLY<MyMesh>::Open(baseMesh,argv[1]); int ret= tri::io::ImporterPLY<MyMesh>::Open(baseMesh,argv[1]);
if(ret!=0) if(ret!=0)
{ {
@ -66,15 +66,14 @@ int main( int argc, char **argv )
int randSeed=time(0); int randSeed=time(0);
tri::UpdateTopology<MyMesh>::VertexFace(baseMesh); tri::UpdateTopology<MyMesh>::VertexFace(baseMesh);
std::vector<MyVertex *> seedVec; tri::TrivialPointerSampler<MyMesh> cs;
tri::ClusteringSampler<MyMesh> cs(seedVec); tri::SurfaceSampling<MyMesh, tri::TrivialPointerSampler<MyMesh> >::SamplingRandomGenerator().initialize(randSeed);
tri::SurfaceSampling<MyMesh, vcg::tri::ClusteringSampler<MyMesh> >::SamplingRandomGenerator().initialize(randSeed); tri::SurfaceSampling<MyMesh, tri::TrivialPointerSampler<MyMesh> >::VertexUniform(baseMesh,cs,seedNum);
tri::SurfaceSampling<MyMesh, vcg::tri::ClusteringSampler<MyMesh> >::VertexUniform(baseMesh,cs,seed);
tri::VoronoiProcessingParameter vpp; tri::VoronoiProcessingParameter vpp;
tri::EuclideanDistance<MyMesh> df; tri::EuclideanDistance<MyMesh> df;
tri::VoronoiProcessing<MyMesh>::VoronoiRelaxing(baseMesh, seedVec, iterNum, df, vpp); tri::VoronoiProcessing<MyMesh>::VoronoiRelaxing(baseMesh, cs.sampleVec, iterNum, df, vpp);
tri::VoronoiProcessing<MyMesh>::TopologicalVertexColoring(baseMesh, seedVec); tri::VoronoiProcessing<MyMesh>::TopologicalVertexColoring(baseMesh, cs.sampleVec);
tri::VoronoiProcessing<MyMesh>::ConvertDelaunayTriangulationToMesh(baseMesh,clusteredMesh,seedVec); tri::VoronoiProcessing<MyMesh>::ConvertDelaunayTriangulationToMesh(baseMesh,clusteredMesh,cs.sampleVec);
tri::io::ExporterPLY<MyMesh>::Save(baseMesh,"base.ply",tri::io::Mask::IOM_VERTCOLOR ); tri::io::ExporterPLY<MyMesh>::Save(baseMesh,"base.ply",tri::io::Mask::IOM_VERTCOLOR );
tri::io::ExporterPLY<MyMesh>::Save(clusteredMesh,"clustered.ply"); tri::io::ExporterPLY<MyMesh>::Save(clusteredMesh,"clustered.ply");

View File

@ -70,7 +70,8 @@ int main( int argc, char **argv )
int sampleNum = atoi(argv[2]); int sampleNum = atoi(argv[2]);
int iterNum = atoi(argv[3]); int iterNum = atoi(argv[3]);
bool fixCornerFlag=false; bool fixCornerFlag=true;
bool uniformEdgeSamplingFlag = true;
printf("Reading %s and sampling %i points with %i iteration\n",argv[1],sampleNum,iterNum); printf("Reading %s and sampling %i points with %i iteration\n",argv[1],sampleNum,iterNum);
int ret= tri::io::ImporterPLY<MyMesh>::Open(baseMesh,argv[1]); int ret= tri::io::ImporterPLY<MyMesh>::Open(baseMesh,argv[1]);
@ -91,21 +92,30 @@ int main( int argc, char **argv )
tri::VoronoiProcessing<MyMesh>::PreprocessForVoronoi(baseMesh,radius,vpp); tri::VoronoiProcessing<MyMesh>::PreprocessForVoronoi(baseMesh,radius,vpp);
tri::UpdateFlags<MyMesh>::FaceBorderFromVF(baseMesh); tri::UpdateFlags<MyMesh>::FaceBorderFromVF(baseMesh);
tri::UpdateFlags<MyMesh>::VertexBorderFromFace(baseMesh); tri::UpdateFlags<MyMesh>::VertexBorderFromFaceBorder(baseMesh);
// -- Build a sampling with just corners (Poisson filtered) // -- Build a sampling with just corners (Poisson filtered)
MyMesh poissonCornerMesh; MyMesh poissonCornerMesh;
std::vector<Point3f> sampleVec; std::vector<Point3f> sampleVec;
tri::TrivialSampler<MyMesh> mps(sampleVec); tri::TrivialSampler<MyMesh> mps(sampleVec);
if(fixCornerFlag)
{
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::VertexBorderCorner(baseMesh,mps,math::ToRad(150.f)); tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::VertexBorderCorner(baseMesh,mps,math::ToRad(150.f));
tri::Build(poissonCornerMesh,sampleVec); tri::BuildMeshFromCoordVector(poissonCornerMesh,sampleVec);
tri::io::ExporterPLY<MyMesh>::Save(poissonCornerMesh,"cornerMesh.ply"); tri::io::ExporterPLY<MyMesh>::Save(poissonCornerMesh,"cornerMesh.ply");
sampleVec.clear(); sampleVec.clear();
MyMesh borderMesh,poissonBorderMesh;
if(uniformEdgeSamplingFlag)
{
}
else
{
if(fixCornerFlag)
{
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, poissonCornerMesh, radius, pp); tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, poissonCornerMesh, radius, pp);
tri::Build(poissonCornerMesh,sampleVec); tri::BuildMeshFromCoordVector(poissonCornerMesh,sampleVec);
tri::io::ExporterPLY<MyMesh>::Save(poissonCornerMesh,"poissonCornerMesh.ply"); tri::io::ExporterPLY<MyMesh>::Save(poissonCornerMesh,"poissonCornerMesh.ply");
// Now save the corner as Fixed Seeds for later... // Now save the corner as Fixed Seeds for later...
std::vector<MyVertex *> fixedSeedVec; std::vector<MyVertex *> fixedSeedVec;
@ -115,10 +125,9 @@ int main( int argc, char **argv )
} }
// -- Build a sampling with points on the border // -- Build a sampling with points on the border
MyMesh borderMesh,poissonBorderMesh;
sampleVec.clear(); sampleVec.clear();
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::VertexBorder(baseMesh,mps); tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::VertexBorder(baseMesh,mps);
tri::Build(borderMesh,sampleVec); tri::BuildMeshFromCoordVector(borderMesh,sampleVec);
tri::io::ExporterPLY<MyMesh>::Save(borderMesh,"borderMesh.ply"); tri::io::ExporterPLY<MyMesh>::Save(borderMesh,"borderMesh.ply");
// -- and then prune the border sampling with poisson strategy using the precomputed corner vertexes. // -- and then prune the border sampling with poisson strategy using the precomputed corner vertexes.
@ -126,14 +135,16 @@ int main( int argc, char **argv )
pp.preGenFlag=true; pp.preGenFlag=true;
sampleVec.clear(); sampleVec.clear();
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, borderMesh, radius*0.8f, pp); tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, borderMesh, radius*0.8f, pp);
tri::Build(poissonBorderMesh,sampleVec); tri::BuildMeshFromCoordVector(poissonBorderMesh,sampleVec);
}
tri::io::ExporterPLY<MyMesh>::Save(poissonBorderMesh,"PoissonEdgeMesh.ply"); tri::io::ExporterPLY<MyMesh>::Save(poissonBorderMesh,"PoissonEdgeMesh.ply");
// -- Build the montercarlo sampling of the surface // -- Build the montercarlo sampling of the surface
MyMesh MontecarloSurfaceMesh; MyMesh MontecarloSurfaceMesh;
sampleVec.clear(); sampleVec.clear();
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::Montecarlo(baseMesh,mps,50000); tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::Montecarlo(baseMesh,mps,50000);
tri::Build(MontecarloSurfaceMesh,sampleVec); tri::BuildMeshFromCoordVector(MontecarloSurfaceMesh,sampleVec);
tri::io::ExporterPLY<MyMesh>::Save(MontecarloSurfaceMesh,"MontecarloSurfaceMesh.ply"); tri::io::ExporterPLY<MyMesh>::Save(MontecarloSurfaceMesh,"MontecarloSurfaceMesh.ply");
// -- Prune the montecarlo sampling with poisson strategy using the precomputed vertexes on the border. // -- Prune the montecarlo sampling with poisson strategy using the precomputed vertexes on the border.
@ -141,7 +152,7 @@ int main( int argc, char **argv )
sampleVec.clear(); sampleVec.clear();
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, MontecarloSurfaceMesh, radius, pp); tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, MontecarloSurfaceMesh, radius, pp);
MyMesh PoissonMesh; MyMesh PoissonMesh;
tri::Build(PoissonMesh,sampleVec); tri::BuildMeshFromCoordVector(PoissonMesh,sampleVec);
tri::io::ExporterPLY<MyMesh>::Save(PoissonMesh,"PoissonMesh.ply"); tri::io::ExporterPLY<MyMesh>::Save(PoissonMesh,"PoissonMesh.ply");
std::vector<MyVertex *> seedVec; std::vector<MyVertex *> seedVec;