fixed voronoi remesher

This commit is contained in:
Luigi Malomo 2017-07-13 08:38:33 +02:00
parent aaea34f882
commit 30dcc87c1a
1 changed files with 138 additions and 47 deletions

View File

@ -43,9 +43,9 @@
#include <array> #include <array>
#include <utility> #include <utility>
//#define DEBUG_VORO 1 #define DEBUG_VORO 1
//#include <wrap/io_trimesh/export.h> #include <wrap/io_trimesh/export.h>
//#include <QString> #include <QString>
namespace vcg { namespace vcg {
namespace tri { namespace tri {
@ -152,19 +152,66 @@ public:
return nullptr; return nullptr;
} }
// for closed watertight mesh try to split // split on creases
if (Clean<Mesh>::CountHoles(original) < 1)
{
CreaseCut<Mesh>(original, vcg::math::ToRad(borderCreaseAngleDeg)); CreaseCut<Mesh>(original, vcg::math::ToRad(borderCreaseAngleDeg));
Allocator<Mesh>::CompactEveryVector(original); Allocator<Mesh>::CompactEveryVector(original);
UpdateTopology<Mesh>::FaceFace(original); UpdateTopology<Mesh>::FaceFace(original);
UpdateFlags<Mesh>::FaceBorderFromFF(original); UpdateFlags<Mesh>::FaceBorderFromFF(original);
UpdateFlags<Mesh>::VertexBorderFromFaceAdj(original); UpdateFlags<Mesh>::VertexBorderFromFaceAdj(original);
// Mark the non manifold border vertices as visited on the original mesh
// tri::UpdateColor<Mesh>::PerVertexConstant(original);
{
// extract border mesh
EdgeMeshType em;
ThisType::ExtractMeshBorders(original, em);
// get the border edge mesh and leave the non manifold vertices only
tri::Allocator<EdgeMeshType>::CompactEveryVector(em);
vcg::tri::Clean<EdgeMeshType>::SelectNonManifoldVertexOnEdgeMesh(em);
for (EdgeMeshType::VertexType & v : em.vert)
{
if (!v.IsS())
{
tri::Allocator<EdgeMeshType>::DeleteVertex(em, v);
}
}
tri::Allocator<EdgeMeshType>::CompactVertexVector(em);
// clear visited vertices
tri::UpdateFlags<Mesh>::VertexClearV(original);
if (em.vn != 0)
{
// iterate over the mesh and mark as visited all the matching vertices with the non manifold border
tri::UpdateBounding<EdgeMeshType>::Box(em);
EdgeMeshType::BoxType bbox = em.bbox;
bbox.Offset(bbox.Diag()/4.0);
typedef SpatialHashTable<EdgeMeshType::VertexType, EdgeMeshType::ScalarType> HashVertexGrid;
HashVertexGrid HG;
HG.Set(em.vert.begin(), em.vert.end(), bbox);
typedef EdgeMeshType::CoordType Coord;
EdgeMeshType::ScalarType dist_upper_bound = bbox.Diag()/100.0;
for (VertexType & v : original.vert)
{
EdgeMeshType::ScalarType dist;
EdgeMeshType::VertexType * nonManifoldVertex = GetClosestVertex<EdgeMeshType,HashVertexGrid>(em, HG, Coord::Construct(v.cP()), dist_upper_bound, dist);
if (nonManifoldVertex != NULL && dist == 0)
{
v.SetV();
// v.C() = vcg::Color4b::Black;
}
}
}
}
#ifdef DEBUG_VORO #ifdef DEBUG_VORO
io::Exporter<Mesh>::Save(original, "creaseSplit.ply", 0); io::Exporter<Mesh>::Save(original, "creaseSplit.ply", io::Mask::IOM_VERTCOLOR);
#endif #endif
} // }
// One CC // One CC
std::vector<MeshPtr> ccs = splitCC(original); std::vector<MeshPtr> ccs = splitCC(original);
if (ccs.empty()) if (ccs.empty())
@ -211,14 +258,19 @@ public:
typedef typename EdgeMeshType::CoordType Coord; typedef typename EdgeMeshType::CoordType Coord;
EdgeMeshType em; EdgeMeshType em;
// ThisType::ExtractMeshSides(original, em);
ThisType::ExtractMeshBorders(original, em); ThisType::ExtractMeshBorders(original, em);
// wtf we should close the loops
Clean<EdgeMeshType>::RemoveDuplicateVertex(em);
Allocator<EdgeMeshType>::CompactVertexVector(em); Allocator<EdgeMeshType>::CompactVertexVector(em);
Allocator<EdgeMeshType>::CompactEdgeVector(em); Allocator<EdgeMeshType>::CompactEdgeVector(em);
// split on non manifold vertices of edgemesh
vcg::tri::Clean<EdgeMeshType>::SelectNonManifoldVertexOnEdgeMesh(em);
{
// select also the visited vertices (coming from the non manifold vertices of the whole crease-cut mesh)
for (auto & v : em.vert)
{
if (v.IsV()) { v.SetS(); }
}
}
std::cout << vcg::tri::Clean<EdgeMeshType>::SplitSelectedVertexOnEdgeMesh(em) << " non-manifold splits" << std::endl;
#ifdef DEBUG_VORO #ifdef DEBUG_VORO
io::ExporterOBJ<EdgeMeshType>::Save(em, QString("edgeMesh_%1.obj").arg(idx).toStdString().c_str(), io::Mask::IOM_EDGEINDEX); io::ExporterOBJ<EdgeMeshType>::Save(em, QString("edgeMesh_%1.obj").arg(idx).toStdString().c_str(), io::Mask::IOM_EDGEINDEX);
@ -227,6 +279,7 @@ public:
// eventually split on 'creases' // eventually split on 'creases'
if (borderCreaseAngleDeg > 0.0) if (borderCreaseAngleDeg > 0.0)
{ {
// split creases
UpdateFlags<EdgeMeshType>::VertexClearS(em); UpdateFlags<EdgeMeshType>::VertexClearS(em);
UpdateFlags<EdgeMeshType>::VertexClearV(em); UpdateFlags<EdgeMeshType>::VertexClearV(em);
Clean<EdgeMeshType>::SelectCreaseVertexOnEdgeMesh(em, vcg::math::ToRad(borderCreaseAngleDeg)); Clean<EdgeMeshType>::SelectCreaseVertexOnEdgeMesh(em, vcg::math::ToRad(borderCreaseAngleDeg));
@ -254,20 +307,6 @@ public:
UpdateFlags<Mesh>::VertexSetS(poissonEdgeMesh); UpdateFlags<Mesh>::VertexSetS(poissonEdgeMesh);
#ifdef DEBUG_VORO #ifdef DEBUG_VORO
// // temp remove
// UpdateColor<Mesh>::PerVertexConstant(poissonEdgeMesh, vcg::Color4b::Gray);
// typedef typename vcg::SpatialHashTable<VertexType, ScalarType> HashVertexGrid;
// HashVertexGrid HG;
// HG.Set(poissonEdgeMesh.vert.begin(),poissonEdgeMesh.vert.end());
// for (size_t i=0; i<creases.size(); i++)
// {
// const float dist_upper_bound=FLT_MAX;
// ScalarType dist;
// VertexType * vp = GetClosestVertex<MeshType,HashVertexGrid>(poissonEdgeMesh, HG, creases[i], dist_upper_bound, dist);
// assert(vp);
// vp->C() = vcg::Color4b::Red;
// }
io::ExporterPLY<MeshType>::Save(poissonEdgeMesh, QString("borderMesh_%1.ply").arg(idx).toStdString().c_str(), io::Mask::IOM_VERTCOLOR); io::ExporterPLY<MeshType>::Save(poissonEdgeMesh, QString("borderMesh_%1.ply").arg(idx).toStdString().c_str(), io::Mask::IOM_VERTCOLOR);
#endif #endif
} }
@ -509,8 +548,6 @@ protected:
const std::vector<bool> & seedFixed, const std::vector<bool> & seedFixed,
std::vector<VertexType *> & seedVVec) std::vector<VertexType *> & seedVVec)
{ {
// TODO mark here all seeds (cross-border)
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> HashVertexGrid; typedef typename vcg::SpatialHashTable<VertexType, ScalarType> HashVertexGrid;
seedVVec.clear(); seedVVec.clear();
@ -547,29 +584,50 @@ protected:
{ {
const CoordType & p = seedPVec[i]; const CoordType & p = seedPVec[i];
const bool fixed = seedFixed[i]; const bool fixed = seedFixed[i];
if (!fixed) if (!fixed)
{ {
ScalarType dist; ScalarType dist;
vp = GetClosestVertex<MeshType,HashVertexGrid>(m, HG, p, dist_upper_bound, dist); vp = GetClosestVertex<MeshType,HashVertexGrid>(m, HG, p, dist_upper_bound, dist);
if (vp)
{
seedVVec.push_back(vp);
}
} }
else else
{ {
vp = NULL; vp = NULL;
ScalarType dist; ScalarType dist;
VertexType * borderVp = GetClosestVertex<MeshType,HashVertexGrid>(borderMesh, borderHG, p, dist_upper_bound, dist); VertexType * borderVp = GetClosestVertex<MeshType,HashVertexGrid>(borderMesh, borderHG, p, dist_upper_bound, dist);
if (borderVp) if (borderVp)
{ {
vp = GetClosestVertex<MeshType,HashVertexGrid>(m, HG, borderVp->cP(), dist_upper_bound, dist); std::vector<ScalarType> dist;
std::vector<VertexType *> vps;
std::vector<CoordType> pts;
// vp = GetClosestVertex<MeshType,HashVertexGrid>(m, HG, borderVp->cP(), dist_upper_bound, dist);
unsigned int n = GetKClosestVertex<MeshType,HashVertexGrid>(m, HG, 16, borderVp->cP(), dist_upper_bound, vps, dist, pts);
if (n>0)
{
ScalarType d = dist[0];
seedVVec.push_back(vps[0]);
assert(dist.size() == size_t(n));
for (size_t j=1; j<dist.size(); j++)
{
if (dist[j] <= d)
{
seedVVec.push_back(vps[j]);
d = dist[j];
}
else
{
break;
}
}
}
} }
} }
if (vp)
{
seedVVec.push_back(vp);
}
} }
} }
@ -663,15 +721,48 @@ protected:
pos.V()->SetV(); pos.V()->SetV();
// assert(edgeVoroVertices.size() >= 2); // assert(edgeVoroVertices.size() >= 2);
// TODO
// add face if 3 different voronoi regions are crossed by the edge // 1) handle 5 vertices holes
if (edgeVoroVertices.size() == 3) // 2) make coherent split/border-sampling on different connected components (e.g., left eye raptor50k)
{
VertexPointer v0 = & outMesh.vert[seedMap[edgeVoroVertices[0]]];
VertexPointer v1 = & outMesh.vert[seedMap[edgeVoroVertices[1]]]; if (edgeVoroVertices.size() >= 3)
VertexPointer v2 = & outMesh.vert[seedMap[edgeVoroVertices[2]]]; {
Allocator<MeshType>::AddFace(outMesh, v0,v1,v2); std::vector<VertexPointer> v;
} for (size_t i=0; i<edgeVoroVertices.size(); i++)
{
v.push_back(&outMesh.vert[seedMap[edgeVoroVertices[i]]]);
}
for (size_t i=0; i<edgeVoroVertices.size()-2; i++)
{
Allocator<MeshType>::AddFace(outMesh, v[0],v[i+1],v[i+2]);
}
if (edgeVoroVertices.size() > 3)
{
std::cout << "Weird case!! " << edgeVoroVertices.size() << " voroseeds on one border" << std::endl;
}
}
// // add face if 3 different voronoi regions are crossed by the edge
// if (edgeVoroVertices.size() == 3)
// {
// VertexPointer v0 = & outMesh.vert[seedMap[edgeVoroVertices[0]]];
// VertexPointer v1 = & outMesh.vert[seedMap[edgeVoroVertices[1]]];
// VertexPointer v2 = & outMesh.vert[seedMap[edgeVoroVertices[2]]];
// Allocator<MeshType>::AddFace(outMesh, v0,v1,v2);
// }
// else
// {
// std::cout << "Weird case!! " << edgeVoroVertices.size() << " voroseeds on one border" << std::endl;
// if (edgeVoroVertices.size() == 4)
// {
// VertexPointer v0 = & outMesh.vert[seedMap[edgeVoroVertices[0]]];
// VertexPointer v1 = & outMesh.vert[seedMap[edgeVoroVertices[1]]];
// VertexPointer v2 = & outMesh.vert[seedMap[edgeVoroVertices[2]]];
// VertexPointer v3 = & outMesh.vert[seedMap[edgeVoroVertices[3]]];
// Allocator<MeshType>::AddFace(outMesh, v0,v1,v2);
// Allocator<MeshType>::AddFace(outMesh, v0,v2,v3);
// }
// }
} while ((pos.V() != startBorderVertex)); } while ((pos.V() != startBorderVertex));
} }