added commets (doxy), uniformed with new style, now using math::, ...

added HomoNormalize(), Zero()... remade StableDot() (hand made sort).
This commit is contained in:
mtarini 2004-03-11 17:17:49 +00:00
parent f36d1e007a
commit 35d6370a57
1 changed files with 104 additions and 75 deletions

View File

@ -24,9 +24,6 @@
History History
$Log: not supported by cvs2svn $ $Log: not supported by cvs2svn $
Revision 1.2 2004/03/10 00:35:24 cignoni
added a math namespace reference
Revision 1.1 2004/02/10 01:11:28 cignoni Revision 1.1 2004/02/10 01:11:28 cignoni
Edited Comments and GPL license Edited Comments and GPL license
@ -35,25 +32,29 @@ Edited Comments and GPL license
#ifndef __VCGLIB_POINT4 #ifndef __VCGLIB_POINT4
#define __VCGLIB_POINT4 #define __VCGLIB_POINT4
#include <vcg/space/point3.h>
namespace vcg { namespace vcg {
/** \addtogroup space */ /** \addtogroup space */
/*@{*/ /*@{*/
/** /**
The templated class for representing a point in 4D space. The templated class for representing a point in 4D space.
The class is templated over the ScalarType class that is used to represent coordinates. All the usual The class is templated over the ScalarType class that is used to represent coordinates.
operator overloading (* + - ...) is present. This class is also the base for vcg::Color4 All the usual operator (* + - ...) are defined.
*/ */
template <class T> class Point4 template <class T> class Point4
{ {
protected: protected:
/// The only data member. Hidden to user.
T _v[4]; T _v[4];
public: public:
typedef T scalar; typedef T ScalarType;
//@{
/** @name Standard Constructors and Initializers
No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types
**/
inline Point4 () { } inline Point4 () { }
inline Point4 ( const T nx, const T ny, const T nz , const T nw ) inline Point4 ( const T nx, const T ny, const T nz , const T nw )
@ -68,22 +69,32 @@ public:
{ {
_v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2]; _v[3]= p._v[3]; _v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2]; _v[3]= p._v[3];
} }
inline Point4 ( const Point3<T> & p ) inline Zero()
{ {
_v[0] = p.V(0); _v[0] = _v[1] = _v[2] = _v[3]= 0;
_v[1] = p.V(1);
_v[2] = p.V(2);
_v[3] = 1.0;
} }
inline Point4 & operator = ( const Point4 & p ) template <class Q>
/// importer from different Point4 types
inline void Import( const Point4<Q> & b )
{ {
_v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2]; _v[3]= p._v[3]; _v[0] = T(b[0]); _v[1] = T(b[1]);
return *this; _v[2] = T(b[2]);
_v[3] = T(b[3]);
} }
inline T &x() {return _v[0];} /// constuctor that imports from different Point4 types
inline T &y() {return _v[1];} template <class Q>
inline T &z() {return _v[2];} static inline Point4 Construct( const Point4<Q> & b )
inline T &w() {return _v[3];} {
return Point4(T(b[0]),T(b[1]),T(b[2]),T(b[3]));
}
//@}
//@{
/** @name Data Access.
access to data is done by overloading of [] or explicit naming of coords (x,y,z,w)
**/
inline const T & operator [] ( const int i ) const inline const T & operator [] ( const int i ) const
{ {
assert(i>=0 && i<4); assert(i>=0 && i<4);
@ -94,6 +105,10 @@ public:
assert(i>=0 && i<4); assert(i>=0 && i<4);
return _v[i]; return _v[i];
} }
inline T &X() {return _v[0];}
inline T &Y() {return _v[1];}
inline T &Z() {return _v[2];}
inline T &W() {return _v[3];}
inline T const * V() const inline T const * V() const
{ {
return _v; return _v;
@ -108,7 +123,18 @@ public:
assert(i>=0 && i<4); assert(i>=0 && i<4);
return _v[i]; return _v[i];
} }
/// Padding function: give a default 0 value to all the elements that are not in the [0..2] range.
/// Useful for managing in a consistent way object that could have point2 / point3 / point4
inline T Ext( const int i ) const
{
if(i>=0 && i<=3) return _v[i];
else return 0;
}
//@}
//@{
/** @name Linear operators and the likes
**/
inline Point4 operator + ( const Point4 & p) const inline Point4 operator + ( const Point4 & p) const
{ {
return Point4( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2], _v[3]+p._v[3] ); return Point4( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2], _v[3]+p._v[3] );
@ -125,10 +151,6 @@ public:
{ {
return Point4( _v[0]/s, _v[1]/s, _v[2]/s, _v[3]/s ); return Point4( _v[0]/s, _v[1]/s, _v[2]/s, _v[3]/s );
} }
inline T operator * ( const Point4 & p ) const
{
return _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] + _v[3]*p._v[3];
}
inline Point4 & operator += ( const Point4 & p) inline Point4 & operator += ( const Point4 & p)
{ {
_v[0] += p._v[0]; _v[1] += p._v[1]; _v[2] += p._v[2]; _v[3] += p._v[3]; _v[0] += p._v[0]; _v[1] += p._v[1]; _v[2] += p._v[2]; _v[3] += p._v[3];
@ -149,25 +171,43 @@ public:
_v[0] /= s; _v[1] /= s; _v[2] /= s; _v[3] /= s; _v[0] /= s; _v[1] /= s; _v[2] /= s; _v[3] /= s;
return *this; return *this;
} }
inline Point4 operator - () const
{
return Point4( -_v[0], -_v[1], -_v[2], -_v[3] );
}
//@}
//@{
/** @name Norms and normalizations
**/
/// Euclidian normal
inline T Norm() const inline T Norm() const
{ {
return Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] ); return Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] );
} }
/// Squared euclidian normal
inline T SquaredNorm() const inline T SquaredNorm() const
{ {
return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]; return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3];
} }
/// Euclidian normalization
inline Point4 & Normalize() inline Point4 & Normalize()
{ {
T n = Sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] ); T n = Sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] );
if(n>0.0) { _v[0] /= n; _v[1] /= n; _v[2] /= n; _v[3] /= n; } if(n>0.0) { _v[0] /= n; _v[1] /= n; _v[2] /= n; _v[3] /= n; }
return *this; return *this;
} }
inline Point4 operator - () const /// Homogeneous normalization (division by W)
{ inline Point4 & HomoNormalize(){
return Point4( -_v[0], -_v[1], -_v[2], -_v[3] ); if (_v[3]!=0.0) { _v[0] /= _v[3]; _v[1] /= _v[3]; _v[2] /= _v[3]; _v[3]=1.0; }
} return *this;
};
//@}
//@{
/** @name Comparison operators (lexicographical order)
**/
inline bool operator == ( const Point4& p ) const inline bool operator == ( const Point4& p ) const
{ {
return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2] && _v[3]==p._v[3]; return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2] && _v[3]==p._v[3];
@ -204,45 +244,40 @@ public:
(_v[1]!=p._v[1])?(_v[1]> p._v[1]): (_v[1]!=p._v[1])?(_v[1]> p._v[1]):
(_v[0]>=p._v[0]); (_v[0]>=p._v[0]);
} }
/// Questa funzione estende il vettore ad un qualsiasi numero di dimensioni //@}
/// paddando gli elementi estesi con zeri
inline T Ext( const int i ) const //@{
{ /** @name Dot products
if(i>=0 && i<=3) return _v[i]; **/
else return 0;
}
T stable_dot ( const Point4<T> & p ) const // dot product
inline T operator * ( const Point4 & p ) const
{
return _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] + _v[3]*p._v[3];
}
/// slower version, more stable (double precision only)
T StableDot ( const Point4<T> & p ) const
{ {
T k[4];
k[0] = _v[0]*p._v[0]; T k0=_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2], k3=_v[3]*p._v[3];
k[1] = _v[1]*p._v[1]; int exp0,exp1,exp2,exp3;
k[2] = _v[2]*p._v[2];
k[3] = _v[3]*p._v[3]; frexp( double(k0), &exp0 );frexp( double(k1), &exp1 );
sort(k+0,k+4, math::MagnitudoComparer<T>() ); frexp( double(k2), &exp2 );frexp( double(k3), &exp3 );
T q = k[0];
q += k[1]; if (exp0>exp1) { math::Swap(k0,k1); math::Swap(exp0,exp1); }
q += k[2]; if (exp2>exp3) { math::Swap(k2,k3); math::Swap(exp2,exp3); }
q += k[3]; if (exp0>exp2) { math::Swap(k0,k2); math::Swap(exp0,exp2); }
return q; if (exp1>exp3) { math::Swap(k1,k3); math::Swap(exp1,exp3); }
if (exp2>exp3) { math::Swap(k2,k3); math::Swap(exp2,exp3); }
return ( (k0 + k1) + k2 ) +k3;
} }
//@}
template <class Q>
inline void Import( const Point4<Q> & b )
{
_v[0] = T(b[0]);
_v[1] = T(b[1]);
_v[2] = T(b[2]);
_v[3] = T(b[3]);
}
}; // end class definition }; // end class definition
#ifdef __VCG_USE_P4_INTRINSIC__
#include <vcg/p4/point4p4.h>
#endif
template <class T> template <class T>
T Angle( const Point4<T>& p1, const Point4<T> & p2 ) T Angle( const Point4<T>& p1, const Point4<T> & p2 )
{ {
@ -250,11 +285,9 @@ T Angle( const Point4<T>& p1, const Point4<T> & p2 )
if(w==0) return -1; if(w==0) return -1;
T t = (p1*p2)/w; T t = (p1*p2)/w;
if(t>1) t=1; if(t>1) t=1;
return T( acos(t) ); return T( math::Acos(t) );
} }
template <class T> template <class T>
inline T Norm( const Point4<T> & p ) inline T Norm( const Point4<T> & p )
{ {
@ -267,15 +300,6 @@ inline T SquaredNorm( const Point4<T> & p )
return p.SquaredNorm(); return p.SquaredNorm();
} }
/* Deprecato
template <class T>
inline Point4<T> & Normalize( Point4<T> & p ){
T n = Sqrt( p._v[0]*p._v[0] + p._v[1]*p._v[1] + p._v[2]*p._v[2] + p._v[3]*p._v[3] );
if(n>0.0) p/=n;
return p;
}
*/
template <class T> template <class T>
inline T Distance( const Point4<T> & p1, const Point4<T> & p2 ) inline T Distance( const Point4<T> & p1, const Point4<T> & p2 )
{ {
@ -288,6 +312,12 @@ inline T SquaredDistance( const Point4<T> & p1, const Point4<T> & p2 )
return SquaredNorm(p1-p2); return SquaredNorm(p1-p2);
} }
/// slower version of dot product, more stable (double precision only)
template<class T>
double StableDot ( Point4<T> const & p0, Point4<T> const & p1 )
{
return p0.StableDot(p1);
}
typedef Point4<short> Point4s; typedef Point4<short> Point4s;
typedef Point4<int> Point4i; typedef Point4<int> Point4i;
@ -295,6 +325,5 @@ typedef Point4<float> Point4f;
typedef Point4<double> Point4d; typedef Point4<double> Point4d;
/*@}*/ /*@}*/
} // end namespace } // end namespace
#endif #endif