added commets (doxy), uniformed with new style, now using math::, ...

added HomoNormalize(), Zero()... remade StableDot() (hand made sort).
This commit is contained in:
mtarini 2004-03-11 17:17:49 +00:00
parent f36d1e007a
commit 35d6370a57
1 changed files with 104 additions and 75 deletions

View File

@ -24,9 +24,6 @@
History
$Log: not supported by cvs2svn $
Revision 1.2 2004/03/10 00:35:24 cignoni
added a math namespace reference
Revision 1.1 2004/02/10 01:11:28 cignoni
Edited Comments and GPL license
@ -35,25 +32,29 @@ Edited Comments and GPL license
#ifndef __VCGLIB_POINT4
#define __VCGLIB_POINT4
#include <vcg/space/point3.h>
namespace vcg {
/** \addtogroup space */
/*@{*/
/**
The templated class for representing a point in 4D space.
The class is templated over the ScalarType class that is used to represent coordinates. All the usual
operator overloading (* + - ...) is present. This class is also the base for vcg::Color4
The class is templated over the ScalarType class that is used to represent coordinates.
All the usual operator (* + - ...) are defined.
*/
template <class T> class Point4
{
protected:
/// The only data member. Hidden to user.
T _v[4];
public:
typedef T scalar;
typedef T ScalarType;
//@{
/** @name Standard Constructors and Initializers
No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types
**/
inline Point4 () { }
inline Point4 ( const T nx, const T ny, const T nz , const T nw )
@ -68,22 +69,32 @@ public:
{
_v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2]; _v[3]= p._v[3];
}
inline Point4 ( const Point3<T> & p )
inline Zero()
{
_v[0] = p.V(0);
_v[1] = p.V(1);
_v[2] = p.V(2);
_v[3] = 1.0;
_v[0] = _v[1] = _v[2] = _v[3]= 0;
}
inline Point4 & operator = ( const Point4 & p )
template <class Q>
/// importer from different Point4 types
inline void Import( const Point4<Q> & b )
{
_v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2]; _v[3]= p._v[3];
return *this;
_v[0] = T(b[0]); _v[1] = T(b[1]);
_v[2] = T(b[2]);
_v[3] = T(b[3]);
}
inline T &x() {return _v[0];}
inline T &y() {return _v[1];}
inline T &z() {return _v[2];}
inline T &w() {return _v[3];}
/// constuctor that imports from different Point4 types
template <class Q>
static inline Point4 Construct( const Point4<Q> & b )
{
return Point4(T(b[0]),T(b[1]),T(b[2]),T(b[3]));
}
//@}
//@{
/** @name Data Access.
access to data is done by overloading of [] or explicit naming of coords (x,y,z,w)
**/
inline const T & operator [] ( const int i ) const
{
assert(i>=0 && i<4);
@ -94,6 +105,10 @@ public:
assert(i>=0 && i<4);
return _v[i];
}
inline T &X() {return _v[0];}
inline T &Y() {return _v[1];}
inline T &Z() {return _v[2];}
inline T &W() {return _v[3];}
inline T const * V() const
{
return _v;
@ -108,7 +123,18 @@ public:
assert(i>=0 && i<4);
return _v[i];
}
/// Padding function: give a default 0 value to all the elements that are not in the [0..2] range.
/// Useful for managing in a consistent way object that could have point2 / point3 / point4
inline T Ext( const int i ) const
{
if(i>=0 && i<=3) return _v[i];
else return 0;
}
//@}
//@{
/** @name Linear operators and the likes
**/
inline Point4 operator + ( const Point4 & p) const
{
return Point4( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2], _v[3]+p._v[3] );
@ -125,10 +151,6 @@ public:
{
return Point4( _v[0]/s, _v[1]/s, _v[2]/s, _v[3]/s );
}
inline T operator * ( const Point4 & p ) const
{
return _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] + _v[3]*p._v[3];
}
inline Point4 & operator += ( const Point4 & p)
{
_v[0] += p._v[0]; _v[1] += p._v[1]; _v[2] += p._v[2]; _v[3] += p._v[3];
@ -149,25 +171,43 @@ public:
_v[0] /= s; _v[1] /= s; _v[2] /= s; _v[3] /= s;
return *this;
}
inline Point4 operator - () const
{
return Point4( -_v[0], -_v[1], -_v[2], -_v[3] );
}
//@}
//@{
/** @name Norms and normalizations
**/
/// Euclidian normal
inline T Norm() const
{
return Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] );
}
/// Squared euclidian normal
inline T SquaredNorm() const
{
return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3];
}
/// Euclidian normalization
inline Point4 & Normalize()
{
T n = Sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] );
if(n>0.0) { _v[0] /= n; _v[1] /= n; _v[2] /= n; _v[3] /= n; }
return *this;
}
inline Point4 operator - () const
{
return Point4( -_v[0], -_v[1], -_v[2], -_v[3] );
}
/// Homogeneous normalization (division by W)
inline Point4 & HomoNormalize(){
if (_v[3]!=0.0) { _v[0] /= _v[3]; _v[1] /= _v[3]; _v[2] /= _v[3]; _v[3]=1.0; }
return *this;
};
//@}
//@{
/** @name Comparison operators (lexicographical order)
**/
inline bool operator == ( const Point4& p ) const
{
return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2] && _v[3]==p._v[3];
@ -204,45 +244,40 @@ public:
(_v[1]!=p._v[1])?(_v[1]> p._v[1]):
(_v[0]>=p._v[0]);
}
/// Questa funzione estende il vettore ad un qualsiasi numero di dimensioni
/// paddando gli elementi estesi con zeri
inline T Ext( const int i ) const
{
if(i>=0 && i<=3) return _v[i];
else return 0;
}
//@}
T stable_dot ( const Point4<T> & p ) const
{
T k[4];
//@{
/** @name Dot products
**/
k[0] = _v[0]*p._v[0];
k[1] = _v[1]*p._v[1];
k[2] = _v[2]*p._v[2];
k[3] = _v[3]*p._v[3];
sort(k+0,k+4, math::MagnitudoComparer<T>() );
T q = k[0];
q += k[1];
q += k[2];
q += k[3];
return q;
}
template <class Q>
inline void Import( const Point4<Q> & b )
// dot product
inline T operator * ( const Point4 & p ) const
{
_v[0] = T(b[0]);
_v[1] = T(b[1]);
_v[2] = T(b[2]);
_v[3] = T(b[3]);
return _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] + _v[3]*p._v[3];
}
/// slower version, more stable (double precision only)
T StableDot ( const Point4<T> & p ) const
{
T k0=_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2], k3=_v[3]*p._v[3];
int exp0,exp1,exp2,exp3;
frexp( double(k0), &exp0 );frexp( double(k1), &exp1 );
frexp( double(k2), &exp2 );frexp( double(k3), &exp3 );
if (exp0>exp1) { math::Swap(k0,k1); math::Swap(exp0,exp1); }
if (exp2>exp3) { math::Swap(k2,k3); math::Swap(exp2,exp3); }
if (exp0>exp2) { math::Swap(k0,k2); math::Swap(exp0,exp2); }
if (exp1>exp3) { math::Swap(k1,k3); math::Swap(exp1,exp3); }
if (exp2>exp3) { math::Swap(k2,k3); math::Swap(exp2,exp3); }
return ( (k0 + k1) + k2 ) +k3;
}
//@}
}; // end class definition
#ifdef __VCG_USE_P4_INTRINSIC__
#include <vcg/p4/point4p4.h>
#endif
template <class T>
T Angle( const Point4<T>& p1, const Point4<T> & p2 )
{
@ -250,11 +285,9 @@ T Angle( const Point4<T>& p1, const Point4<T> & p2 )
if(w==0) return -1;
T t = (p1*p2)/w;
if(t>1) t=1;
return T( acos(t) );
return T( math::Acos(t) );
}
template <class T>
inline T Norm( const Point4<T> & p )
{
@ -267,15 +300,6 @@ inline T SquaredNorm( const Point4<T> & p )
return p.SquaredNorm();
}
/* Deprecato
template <class T>
inline Point4<T> & Normalize( Point4<T> & p ){
T n = Sqrt( p._v[0]*p._v[0] + p._v[1]*p._v[1] + p._v[2]*p._v[2] + p._v[3]*p._v[3] );
if(n>0.0) p/=n;
return p;
}
*/
template <class T>
inline T Distance( const Point4<T> & p1, const Point4<T> & p2 )
{
@ -288,6 +312,12 @@ inline T SquaredDistance( const Point4<T> & p1, const Point4<T> & p2 )
return SquaredNorm(p1-p2);
}
/// slower version of dot product, more stable (double precision only)
template<class T>
double StableDot ( Point4<T> const & p0, Point4<T> const & p1 )
{
return p0.StableDot(p1);
}
typedef Point4<short> Point4s;
typedef Point4<int> Point4i;
@ -295,6 +325,5 @@ typedef Point4<float> Point4f;
typedef Point4<double> Point4d;
/*@}*/
} // end namespace
#endif