Heavily commented, restructured and debugged the basic hole filling code
This commit is contained in:
parent
428967ddac
commit
3742fcef2b
|
@ -36,6 +36,7 @@
|
|||
namespace vcg {
|
||||
namespace tri {
|
||||
|
||||
|
||||
/*
|
||||
An ear is identified by TWO pos.
|
||||
The Three vertexes of an Ear are:
|
||||
|
@ -46,31 +47,32 @@ namespace vcg {
|
|||
e1 == e0.NextB();
|
||||
e1.FlipV() == e0;
|
||||
|
||||
Situazioni ear non manifold, e degeneri (buco triangolare)
|
||||
|
||||
T XXXXXXXXXXXXX A /XXXXX B en/XXXXX
|
||||
/XXXXXXXXXXXXXXX /XXXXXX /XXXXXX
|
||||
XXXXXXep==en XXX ep\ /en XXXX /e1 XXXX
|
||||
XXXXXX ----/| XX ------ ----/| XX ------ ----/|XXX
|
||||
XXXXXX| /e1 XX XXXXXX| /e1 XX XXXXXX| o/e0 XX
|
||||
XXXXXX| /XXXXXX XXXXXX| /XXXXXX XXXXXX| /XXXXXX
|
||||
XXX e0|o/XXXXXXX XXX e0|o/XXXXXXX XXX ep| /XXXXXXX
|
||||
XXX \|/XXXXXXXX XXX \|/XXXXXXXX XXX \|/XXXXXXXX
|
||||
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
|
||||
*/
|
||||
/**
|
||||
* Basic class for representing an 'ear' in a hole.
|
||||
*
|
||||
* Require FF-adajcncy and edge-manifoldness around the mesh (at most two triangles per edge)
|
||||
*
|
||||
* An ear is represented by two consecutive Pos e0,e1.
|
||||
* The vertex pointed by the first pos is the 'corner' of the ear
|
||||
*
|
||||
*
|
||||
*/
|
||||
template<class MESH> class TrivialEar
|
||||
{
|
||||
public:
|
||||
typedef typename MESH::FaceType FaceType;
|
||||
typedef typename MESH::FacePointer FacePointer;
|
||||
typedef typename MESH::FaceType FaceType;
|
||||
typedef typename MESH::VertexType VertexType;
|
||||
typedef typename MESH::FacePointer FacePointer;
|
||||
typedef typename MESH::VertexPointer VertexPointer;
|
||||
typedef typename face::Pos<FaceType> PosType;
|
||||
typedef typename MESH::ScalarType ScalarType;
|
||||
typedef typename MESH::CoordType CoordType;
|
||||
|
||||
typedef typename face::Pos<FaceType> PosType;
|
||||
typedef typename MESH::ScalarType ScalarType;
|
||||
typedef typename MESH::CoordType CoordType;
|
||||
|
||||
PosType e0;
|
||||
PosType e1;
|
||||
CoordType n; // the normal of the face defined by the ear
|
||||
|
||||
const char * Dump() {return 0;}
|
||||
// The following members are useful to consider the Ear as a generic <triangle>
|
||||
// with p0 the 'center' of the ear.
|
||||
|
@ -116,14 +118,50 @@ public:
|
|||
virtual void ComputeQuality() { quality = QualityFace(*this) ; }
|
||||
bool IsUpToDate() {return ( e0.IsBorder() && e1.IsBorder());}
|
||||
// An ear is degenerated if both of its two endpoints are non manifold.
|
||||
bool IsDegen(const int nonManifoldBit)
|
||||
bool IsDegen()
|
||||
{
|
||||
if(e0.VFlip()->IsUserBit(nonManifoldBit) && e1.V()->IsUserBit(nonManifoldBit))
|
||||
if(e0.VFlip()->IsUserBit(NonManifoldBit()) && e1.V()->IsUserBit(NonManifoldBit()))
|
||||
return true;
|
||||
else return false;
|
||||
}
|
||||
bool IsConcave() const {return(angleRad > (float)M_PI);}
|
||||
|
||||
|
||||
/** NonManifoldBit
|
||||
* To handle non manifoldness situations we keep track
|
||||
* of the vertices of the hole boundary that are traversed by more than a single boundary.
|
||||
*
|
||||
*/
|
||||
static int &NonManifoldBit() { static int _NonManifoldBit=0; return _NonManifoldBit; }
|
||||
static int InitNonManifoldBitOnHoleBoundary(const PosType &p)
|
||||
{
|
||||
if(NonManifoldBit()==0)
|
||||
NonManifoldBit() = VertexType::NewBitFlag();
|
||||
int holeSize=0;
|
||||
|
||||
//First loop around the hole to mark non manifold vertices.
|
||||
PosType ip = p; // Pos iterator
|
||||
do{
|
||||
ip.V()->ClearUserBit(NonManifoldBit());
|
||||
ip.V()->ClearV();
|
||||
ip.NextB();
|
||||
holeSize++;
|
||||
} while(ip!=p);
|
||||
|
||||
ip = p; // Re init the pos iterator for another loop (useless if everithing is ok!!)
|
||||
do{
|
||||
if(!ip.V()->IsV())
|
||||
ip.V()->SetV();
|
||||
else // All the vertexes that are visited more than once are non manifold
|
||||
ip.V()->SetUserBit(NonManifoldBit());
|
||||
ip.NextB();
|
||||
} while(ip!=p);
|
||||
return holeSize;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// When you close an ear you have to check that the newly added triangle does not create non manifold situations
|
||||
// This can happen if the new edge already exists in the mesh.
|
||||
// We test that looping around one extreme of the ear we do not find the other vertex
|
||||
|
@ -141,8 +179,38 @@ public:
|
|||
while(!pp.IsBorder());
|
||||
return true;
|
||||
}
|
||||
|
||||
virtual bool Close(PosType &np0, PosType &np1, FaceType * f)
|
||||
/**
|
||||
* @brief Close the current ear by adding a triangle to the mesh
|
||||
* and returning up to two new possible ears to be closed.
|
||||
*
|
||||
* @param np0 The first new pos to be inserted in the heap
|
||||
* @param np1 The second new pos
|
||||
* @param f the already allocated face to be used to close the ear
|
||||
* @return true if it successfully add a triangle
|
||||
*
|
||||
* +\
|
||||
* +++\ -------
|
||||
* +++ep\ /| +++en/\
|
||||
* +++---| /e1 ++++++++\
|
||||
* ++++++| /++++++++++++++\
|
||||
* +++ e0|o /+++++++++++++++++++
|
||||
* +++ \|/+++++++++++++++++++++
|
||||
* +++++++++++++++++++++++++++++
|
||||
*
|
||||
* There are three main peculiar cases:
|
||||
|
||||
* (T)+++++++++++++ (A) /+++++ (B) /en+++++++
|
||||
* /+++++++++++++++ /++++++ /++++++++++
|
||||
* ++++++ep==en +++ ep\ /en ++++ /e1 ++++++++
|
||||
* ++++++ ----/| ++ ------ ----/| ++ ------------/|+++
|
||||
* ++++++| /e1 ++ ++++++| /e1 ++ ++++++| o/e0|+++
|
||||
* ++++++| /++++++ ++++++| /++++++ ++++++| /++++++++
|
||||
* +++ e0|o/+++++++ +++ e0|o/+++++++ +++ ep| /++++++++++
|
||||
* +++ \|/++++++++ +++ \|/++++++++ +++ \|/++++++++++++
|
||||
* ++++++++++++++++ ++++++++++++++++ ++++++++++++++++++++
|
||||
*/
|
||||
|
||||
virtual bool Close(PosType &np0, PosType &np1, FaceType *f)
|
||||
{
|
||||
// simple topological check
|
||||
if(e0.f==e1.f) {
|
||||
|
@ -150,9 +218,8 @@ public:
|
|||
return false;
|
||||
}
|
||||
|
||||
//usato per generare una delle due nuove orecchie.
|
||||
PosType ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
|
||||
PosType en=e1; en.NextB(); // he successivo a e1
|
||||
PosType ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // ep previous
|
||||
PosType en=e1; en.NextB(); // en next
|
||||
if(ep!=en)
|
||||
if(!CheckManifoldAfterEarClose()) return false;
|
||||
|
||||
|
@ -165,7 +232,7 @@ public:
|
|||
face::FFAttachManifold(f,1,e1.f,e1.z);
|
||||
face::FFSetBorder(f,2);
|
||||
|
||||
// caso ear degenere per buco triangolare
|
||||
// First Special Case (T): Triangular hole
|
||||
if(ep==en)
|
||||
{
|
||||
//printf("Closing the last triangle");
|
||||
|
@ -173,30 +240,38 @@ public:
|
|||
np0.SetNull();
|
||||
np1.SetNull();
|
||||
}
|
||||
// Caso ear non manifold a
|
||||
// Second Special Case (A): Non Manifold on ep
|
||||
else if(ep.v==en.v)
|
||||
{
|
||||
//printf("Ear Non manif A\n");
|
||||
assert(ep.v->IsUserBit(NonManifoldBit()));
|
||||
ep.v->ClearUserBit(NonManifoldBit());
|
||||
PosType enold=en;
|
||||
en.NextB();
|
||||
face::FFAttachManifold(f,2,enold.f,enold.z);
|
||||
np0=ep;
|
||||
np1=en;
|
||||
assert(!np0.v->IsUserBit(NonManifoldBit()));
|
||||
np1.SetNull();
|
||||
}
|
||||
// Caso ear non manifold b
|
||||
// Third Special Case (B): Non Manifold on e1
|
||||
else if(ep.VFlip()==e1.v)
|
||||
{
|
||||
assert(e1.v->IsUserBit(NonManifoldBit()));
|
||||
e1.v->ClearUserBit(NonManifoldBit());
|
||||
//printf("Ear Non manif B\n");
|
||||
PosType epold=ep;
|
||||
ep.FlipV(); ep.NextB(); ep.FlipV();
|
||||
face::FFAttachManifold(f,2,epold.f,epold.z);
|
||||
np0=ep; // assign the two new
|
||||
np1=en; // pos that denote the ears
|
||||
assert(!np0.v->IsUserBit(NonManifoldBit()));
|
||||
np1.SetNull(); // pos that denote the ears
|
||||
}
|
||||
else // caso standard // Now compute the new ears;
|
||||
else // Standard Case.
|
||||
{
|
||||
np0=ep;
|
||||
if(np0.v->IsUserBit(NonManifoldBit())) np0.SetNull();
|
||||
np1=PosType(f,2,e1.v);
|
||||
if(np1.v->IsUserBit(NonManifoldBit())) np1.SetNull();
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -315,174 +390,138 @@ public:
|
|||
}
|
||||
}; // end class SelfIntersectionEar
|
||||
|
||||
// Funzione principale per chiudier un buco in maniera topologicamente corretta.
|
||||
// Gestisce situazioni non manifold ragionevoli
|
||||
// (tutte eccetto quelle piu' di 2 facce per 1 edge).
|
||||
// Controlla che non si generino nuove situazioni non manifold chiudendo orecchie
|
||||
// che sottendono un edge che gia'esiste.
|
||||
|
||||
|
||||
/** Hole
|
||||
* Main hole filling templated class.
|
||||
*
|
||||
*/
|
||||
template <class MESH>
|
||||
class Hole
|
||||
{
|
||||
public:
|
||||
typedef typename MESH::VertexType VertexType;
|
||||
typedef typename MESH::VertexPointer VertexPointer;
|
||||
typedef typename MESH::ScalarType ScalarType;
|
||||
typedef typename MESH::FaceType FaceType;
|
||||
typedef typename MESH::FacePointer FacePointer;
|
||||
typedef typename MESH::FaceIterator FaceIterator;
|
||||
typedef typename MESH::CoordType CoordType;
|
||||
typedef typename vcg::Box3<ScalarType> Box3Type;
|
||||
typedef typename face::Pos<FaceType> PosType;
|
||||
|
||||
typedef typename MESH::VertexType VertexType;
|
||||
typedef typename MESH::VertexPointer VertexPointer;
|
||||
typedef typename MESH::ScalarType ScalarType;
|
||||
typedef typename MESH::FaceType FaceType;
|
||||
typedef typename MESH::FacePointer FacePointer;
|
||||
typedef typename MESH::FaceIterator FaceIterator;
|
||||
typedef typename MESH::CoordType CoordType;
|
||||
typedef typename vcg::Box3<ScalarType> Box3Type;
|
||||
typedef typename face::Pos<FaceType> PosType;
|
||||
|
||||
public:
|
||||
|
||||
class Info
|
||||
{
|
||||
public:
|
||||
Info(){}
|
||||
Info(PosType const &pHole, int const pHoleSize, Box3<ScalarType> &pHoleBB)
|
||||
{
|
||||
p=pHole;
|
||||
size=pHoleSize;
|
||||
bb=pHoleBB;
|
||||
}
|
||||
|
||||
PosType p;
|
||||
int size;
|
||||
Box3Type bb;
|
||||
|
||||
bool operator < (const Info & hh) const {return size < hh.size;}
|
||||
|
||||
ScalarType Perimeter()
|
||||
{
|
||||
ScalarType sum=0;
|
||||
PosType ip = p;
|
||||
do
|
||||
{
|
||||
sum+=Distance(ip.v->cP(),ip.VFlip()->cP());
|
||||
ip.NextB();
|
||||
}
|
||||
while (ip != p);
|
||||
return sum;
|
||||
}
|
||||
|
||||
// Support function to test the validity of a single hole loop
|
||||
// for now it test only that all the edges are border;
|
||||
// The real test should check if all non manifold vertices
|
||||
// are touched only by edges belonging to this hole loop.
|
||||
bool CheckValidity()
|
||||
class Info
|
||||
{
|
||||
public:
|
||||
Info(){}
|
||||
Info(PosType const &pHole, int const pHoleSize, Box3<ScalarType> &pHoleBB)
|
||||
{
|
||||
p=pHole;
|
||||
size=pHoleSize;
|
||||
bb=pHoleBB;
|
||||
}
|
||||
|
||||
PosType p;
|
||||
int size;
|
||||
Box3Type bb;
|
||||
|
||||
bool operator < (const Info & hh) const {return size < hh.size;}
|
||||
|
||||
ScalarType Perimeter()
|
||||
{
|
||||
ScalarType sum=0;
|
||||
PosType ip = p;
|
||||
do
|
||||
{
|
||||
if(!p.IsBorder())
|
||||
return false;
|
||||
PosType ip=p;ip.NextB();
|
||||
for(;ip!=p;ip.NextB())
|
||||
{
|
||||
if(!ip.IsBorder())
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
sum+=Distance(ip.v->cP(),ip.VFlip()->cP());
|
||||
ip.NextB();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class EdgeToBeAvoided
|
||||
{
|
||||
VertexPointer v0,v1;
|
||||
EdgeToBeAvoided(VertexPointer _v0, VertexPointer _v1):v0(_v0),v1(_v1)
|
||||
{
|
||||
if(v0>v1) swap(v0,v1);
|
||||
}
|
||||
bool operator < (const EdgeToBeAvoided &e)
|
||||
{
|
||||
if(this->v0!=e.v0) return this->v0<e.v0;
|
||||
return this->v1<e.v1;
|
||||
}
|
||||
};
|
||||
/// Main Single Hole Filling Function
|
||||
/// Given a specific hole (identified by the Info h) it fills it
|
||||
/// It also update a vector of face pointers
|
||||
/// It uses an heap to choose the best ear to be closed
|
||||
while (ip != p);
|
||||
return sum;
|
||||
}
|
||||
|
||||
// Support function to test the validity of a single hole loop
|
||||
// for now it test only that all the edges are border;
|
||||
// The real test should check if all non manifold vertices
|
||||
// are touched only by edges belonging to this hole loop.
|
||||
bool CheckValidity()
|
||||
{
|
||||
if(!p.IsBorder())
|
||||
return false;
|
||||
PosType ip=p;ip.NextB();
|
||||
for(;ip!=p;ip.NextB())
|
||||
{
|
||||
if(!ip.IsBorder())
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/** FillHoleEar
|
||||
* Main Single Hole Filling Function
|
||||
* Given a specific hole (identified by the Info h) it fills it
|
||||
* It also update a vector of face pointers
|
||||
* It uses a priority queue to choose the best ear to be closed
|
||||
*/
|
||||
|
||||
template<class EAR>
|
||||
static void FillHoleEar(MESH &m, // The mesh to be filled
|
||||
Info &h, // the particular hole to be filled
|
||||
const PosType &p, // the particular hole to be filled
|
||||
std::vector<FacePointer *> &facePointersToBeUpdated)
|
||||
{
|
||||
//Aggiungo le facce e aggiorno il puntatore alla faccia!
|
||||
FaceIterator f = tri::Allocator<MESH>::AddFaces(m, h.size-2, facePointersToBeUpdated);
|
||||
|
||||
assert(tri::IsValidPointer(m,p.f));
|
||||
assert(p.IsBorder());
|
||||
int holeSize = EAR::InitNonManifoldBitOnHoleBoundary(p);
|
||||
FaceIterator f = tri::Allocator<MESH>::AddFaces(m, holeSize-2, facePointersToBeUpdated);
|
||||
|
||||
assert(h.p.f >= &*m.face.begin());
|
||||
assert(h.p.f <= &m.face.back());
|
||||
assert(h.p.IsBorder());
|
||||
|
||||
std::vector< EAR > EarHeap;
|
||||
EarHeap.reserve(h.size);
|
||||
int nmBit= VertexType::NewBitFlag(); // non manifoldness bit
|
||||
|
||||
//First loops around the hole to mark non manifold vertices.
|
||||
PosType ip = h.p; // Pos iterator
|
||||
do{
|
||||
ip.V()->ClearUserBit(nmBit);
|
||||
ip.V()->ClearV();
|
||||
ip.NextB();
|
||||
} while(ip!=h.p);
|
||||
|
||||
ip = h.p; // Re init the pos iterator for another loop (useless if everithing is ok!!)
|
||||
do{
|
||||
if(!ip.V()->IsV())
|
||||
ip.V()->SetV(); // All the vertexes that are visited more than once are non manifold
|
||||
else ip.V()->SetUserBit(nmBit);
|
||||
ip.NextB();
|
||||
} while(ip!=h.p);
|
||||
|
||||
PosType fp = h.p;
|
||||
std::priority_queue< EAR > EarHeap;
|
||||
PosType fp = p;
|
||||
do{
|
||||
EAR appEar = EAR(fp);
|
||||
EarHeap.push_back( appEar );
|
||||
if(!fp.v->IsUserBit(EAR::NonManifoldBit()))
|
||||
EarHeap.push( appEar );
|
||||
//printf("Adding ear %s ",app.Dump());
|
||||
fp.NextB();
|
||||
assert(fp.IsBorder());
|
||||
}while(fp!=h.p);
|
||||
}while(fp!=p);
|
||||
|
||||
int cnt=h.size;
|
||||
|
||||
make_heap(EarHeap.begin(), EarHeap.end());
|
||||
|
||||
//finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare.
|
||||
while( cnt > 2 && !EarHeap.empty() )
|
||||
// Main Ear closing Loop
|
||||
while( holeSize > 2 && !EarHeap.empty() )
|
||||
{
|
||||
//printf("Front of the heap is %s", H.front().Dump());
|
||||
pop_heap(EarHeap.begin(), EarHeap.end()); // retrieve the MAXIMUM value and put in the back;
|
||||
EAR BestEar=EarHeap.back();
|
||||
EarHeap.pop_back();
|
||||
EAR BestEar=EarHeap.top();
|
||||
EarHeap.pop();
|
||||
|
||||
if(BestEar.IsUpToDate() && !BestEar.IsDegen(nmBit))
|
||||
if(BestEar.IsUpToDate() && !BestEar.IsDegen())
|
||||
{
|
||||
if((*f).HasPolyInfo()) (*f).Alloc(3);
|
||||
PosType ep0,ep1;
|
||||
if(BestEar.Close(ep0,ep1,&*f))
|
||||
{
|
||||
if(!ep0.IsNull()){
|
||||
EarHeap.push_back(EAR(ep0));
|
||||
push_heap( EarHeap.begin(), EarHeap.end());
|
||||
assert(!ep0.v->IsUserBit(EAR::NonManifoldBit()));
|
||||
EarHeap.push(EAR(ep0));
|
||||
}
|
||||
if(!ep1.IsNull()){
|
||||
EarHeap.push_back(EAR(ep1));
|
||||
push_heap( EarHeap.begin(), EarHeap.end());
|
||||
assert(!ep1.v->IsUserBit(EAR::NonManifoldBit()));
|
||||
EarHeap.push(EAR(ep1));
|
||||
}
|
||||
--cnt;
|
||||
--holeSize;
|
||||
++f;
|
||||
}
|
||||
}//is update()
|
||||
}//fine del while principale.
|
||||
|
||||
}
|
||||
|
||||
// If the hole had k non manifold vertexes it requires less than n-2 face ( it should be n - 2*(k+1) ),
|
||||
// so we delete the remaining ones.
|
||||
while(f!=m.face.end()){
|
||||
tri::Allocator<MESH>::DeleteFace(m,*f);
|
||||
f++;
|
||||
}
|
||||
|
||||
VertexType::DeleteBitFlag(nmBit); // non manifoldness bit
|
||||
}
|
||||
|
||||
template<class EAR>
|
||||
|
@ -504,7 +543,7 @@ template<class EAR>
|
|||
if(cb) (*cb)(indCb*10/vinfo.size(),"Closing Holes");
|
||||
if((*ith).size < sizeHole){
|
||||
holeCnt++;
|
||||
FillHoleEar< EAR >(m, *ith,facePtrToBeUpdated);
|
||||
FillHoleEar< EAR >(m, (*ith).p,facePtrToBeUpdated);
|
||||
}
|
||||
}
|
||||
return holeCnt;
|
||||
|
@ -555,7 +594,7 @@ template<class EAR>
|
|||
for(fpi=EAR::AdjacencyRing().begin();fpi!=EAR::AdjacencyRing().end();++fpi)
|
||||
facePtrToBeUpdated.push_back( &*fpi );
|
||||
|
||||
FillHoleEar<EAR >(m, *ith,facePtrToBeUpdated);
|
||||
FillHoleEar<EAR >(m, ith->p,facePtrToBeUpdated);
|
||||
EAR::AdjacencyRing().clear();
|
||||
}
|
||||
}
|
||||
|
@ -671,207 +710,207 @@ template<class EAR>
|
|||
return false;
|
||||
}
|
||||
|
||||
static Weight computeWeight( int i, int j, int k,
|
||||
std::vector<PosType > pv,
|
||||
std::vector< std::vector< int > > v)
|
||||
static Weight computeWeight( int i, int j, int k,
|
||||
std::vector<PosType > pv,
|
||||
std::vector< std::vector< int > > v)
|
||||
{
|
||||
PosType pi = pv[i];
|
||||
PosType pj = pv[j];
|
||||
PosType pk = pv[k];
|
||||
|
||||
//test complex edge
|
||||
if(existEdge(pi,pj) || existEdge(pj,pk)|| existEdge(pk,pi) )
|
||||
{
|
||||
return Weight();
|
||||
}
|
||||
// Return an infinite weight, if one of the neighboring patches
|
||||
// could not be created.
|
||||
if(v[i][j] == -1){return Weight();}
|
||||
if(v[j][k] == -1){return Weight();}
|
||||
|
||||
//calcolo il massimo angolo diedrale, se esiste.
|
||||
float angle = 0.0f;
|
||||
PosType px;
|
||||
if(i + 1 == j)
|
||||
{
|
||||
px = pj;
|
||||
px.FlipE(); px.FlipV();
|
||||
angle = std::max<float>(angle , ComputeDihedralAngle(pi.v->P(), pj.v->P(), pk.v->P(), px.v->P()) );
|
||||
}
|
||||
else
|
||||
{
|
||||
angle = std::max<float>( angle, ComputeDihedralAngle(pi.v->P(),pj.v->P(), pk.v->P(), pv[ v[i][j] ].v->P()));
|
||||
}
|
||||
|
||||
if(j + 1 == k)
|
||||
{
|
||||
px = pk;
|
||||
px.FlipE(); px.FlipV();
|
||||
angle = std::max<float>(angle , ComputeDihedralAngle(pj.v->P(), pk.v->P(), pi.v->P(), px.v->P()) );
|
||||
}
|
||||
else
|
||||
{
|
||||
angle = std::max<float>( angle, ComputeDihedralAngle(pj.v->P(),pk.v->P(), pi.v->P(), pv[ v[j][k] ].v->P()));
|
||||
}
|
||||
|
||||
if( i == 0 && k == (int)v.size() - 1)
|
||||
{
|
||||
px = pi;
|
||||
px.FlipE(); px.FlipV();
|
||||
angle = std::max<float>(angle , ComputeDihedralAngle(pk.v->P(), pi.v->P(), pj.v->P(),px.v->P() ) );
|
||||
}
|
||||
|
||||
ScalarType area = ( (pj.v->P() - pi.v->P()) ^ (pk.v->P() - pi.v->P()) ).Norm() * 0.5;
|
||||
|
||||
return Weight(angle, area);
|
||||
}
|
||||
|
||||
static void calculateMinimumWeightTriangulation(MESH &m, FaceIterator f,std::vector<PosType > vv )
|
||||
{
|
||||
std::vector< std::vector< Weight > > w; //matrice dei pesi minimali di ogni orecchio preso in conzideraione
|
||||
std::vector< std::vector< int > > vi;//memorizza l'indice del terzo vertice del triangolo
|
||||
|
||||
//hole size
|
||||
int nv = vv.size();
|
||||
|
||||
w.clear();
|
||||
w.resize( nv, std::vector<Weight>( nv, Weight() ) );
|
||||
|
||||
vi.resize( nv, std::vector<int>( nv, 0 ) );
|
||||
|
||||
//inizializzo tutti i pesi possibili del buco
|
||||
for ( int i = 0; i < nv-1; ++i )
|
||||
w[i][i+1] = Weight( 0, 0 );
|
||||
|
||||
//doppio ciclo for per calcolare di tutti i possibili triangoli i loro pesi.
|
||||
for ( int j = 2; j < nv; ++j )
|
||||
{
|
||||
for ( int i = 0; i + j < nv; ++i )
|
||||
{
|
||||
//per ogni triangolazione mi mantengo il minimo valore del peso tra i triangoli possibili
|
||||
Weight minval;
|
||||
|
||||
//indice del vertice che da il peso minimo nella triangolazione corrente
|
||||
int minIndex = -1;
|
||||
|
||||
//ciclo tra i vertici in mezzo a i due prefissati
|
||||
for ( int m = i + 1; m < i + j; ++m )
|
||||
{
|
||||
PosType pi = pv[i];
|
||||
PosType pj = pv[j];
|
||||
PosType pk = pv[k];
|
||||
|
||||
//test complex edge
|
||||
if(existEdge(pi,pj) || existEdge(pj,pk)|| existEdge(pk,pi) )
|
||||
{
|
||||
return Weight();
|
||||
}
|
||||
// Return an infinite weight, if one of the neighboring patches
|
||||
// could not be created.
|
||||
if(v[i][j] == -1){return Weight();}
|
||||
if(v[j][k] == -1){return Weight();}
|
||||
|
||||
//calcolo il massimo angolo diedrale, se esiste.
|
||||
float angle = 0.0f;
|
||||
PosType px;
|
||||
if(i + 1 == j)
|
||||
{
|
||||
px = pj;
|
||||
px.FlipE(); px.FlipV();
|
||||
angle = std::max<float>(angle , ComputeDihedralAngle(pi.v->P(), pj.v->P(), pk.v->P(), px.v->P()) );
|
||||
}
|
||||
else
|
||||
{
|
||||
angle = std::max<float>( angle, ComputeDihedralAngle(pi.v->P(),pj.v->P(), pk.v->P(), pv[ v[i][j] ].v->P()));
|
||||
}
|
||||
|
||||
if(j + 1 == k)
|
||||
{
|
||||
px = pk;
|
||||
px.FlipE(); px.FlipV();
|
||||
angle = std::max<float>(angle , ComputeDihedralAngle(pj.v->P(), pk.v->P(), pi.v->P(), px.v->P()) );
|
||||
}
|
||||
else
|
||||
{
|
||||
angle = std::max<float>( angle, ComputeDihedralAngle(pj.v->P(),pk.v->P(), pi.v->P(), pv[ v[j][k] ].v->P()));
|
||||
}
|
||||
|
||||
if( i == 0 && k == (int)v.size() - 1)
|
||||
{
|
||||
px = pi;
|
||||
px.FlipE(); px.FlipV();
|
||||
angle = std::max<float>(angle , ComputeDihedralAngle(pk.v->P(), pi.v->P(), pj.v->P(),px.v->P() ) );
|
||||
}
|
||||
|
||||
ScalarType area = ( (pj.v->P() - pi.v->P()) ^ (pk.v->P() - pi.v->P()) ).Norm() * 0.5;
|
||||
|
||||
return Weight(angle, area);
|
||||
Weight a = w[i][m];
|
||||
Weight b = w[m][i+j];
|
||||
Weight newval = a + b + computeWeight( i, m, i+j, vv, vi);
|
||||
if ( newval < minval )
|
||||
{
|
||||
minval = newval;
|
||||
minIndex = m;
|
||||
}
|
||||
}
|
||||
|
||||
static void calculateMinimumWeightTriangulation(MESH &m, FaceIterator f,std::vector<PosType > vv )
|
||||
{
|
||||
std::vector< std::vector< Weight > > w; //matrice dei pesi minimali di ogni orecchio preso in conzideraione
|
||||
std::vector< std::vector< int > > vi;//memorizza l'indice del terzo vertice del triangolo
|
||||
|
||||
//hole size
|
||||
int nv = vv.size();
|
||||
|
||||
w.clear();
|
||||
w.resize( nv, std::vector<Weight>( nv, Weight() ) );
|
||||
|
||||
vi.resize( nv, std::vector<int>( nv, 0 ) );
|
||||
|
||||
//inizializzo tutti i pesi possibili del buco
|
||||
for ( int i = 0; i < nv-1; ++i )
|
||||
w[i][i+1] = Weight( 0, 0 );
|
||||
|
||||
//doppio ciclo for per calcolare di tutti i possibili triangoli i loro pesi.
|
||||
for ( int j = 2; j < nv; ++j )
|
||||
{
|
||||
for ( int i = 0; i + j < nv; ++i )
|
||||
{
|
||||
//per ogni triangolazione mi mantengo il minimo valore del peso tra i triangoli possibili
|
||||
Weight minval;
|
||||
|
||||
//indice del vertice che da il peso minimo nella triangolazione corrente
|
||||
int minIndex = -1;
|
||||
|
||||
//ciclo tra i vertici in mezzo a i due prefissati
|
||||
for ( int m = i + 1; m < i + j; ++m )
|
||||
{
|
||||
Weight a = w[i][m];
|
||||
Weight b = w[m][i+j];
|
||||
Weight newval = a + b + computeWeight( i, m, i+j, vv, vi);
|
||||
if ( newval < minval )
|
||||
{
|
||||
minval = newval;
|
||||
minIndex = m;
|
||||
}
|
||||
}
|
||||
w[i][i+j] = minval;
|
||||
vi[i][i+j] = minIndex;
|
||||
}
|
||||
}
|
||||
|
||||
//Triangulate
|
||||
int i, j;
|
||||
i=0; j=nv-1;
|
||||
|
||||
triangulate(m,f, i, j, vi, vv);
|
||||
|
||||
while(f!=m.face.end())
|
||||
{
|
||||
(*f).SetD();
|
||||
++f;
|
||||
m.fn--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void triangulate(MESH &m, FaceIterator &f,int i, int j,
|
||||
w[i][i+j] = minval;
|
||||
vi[i][i+j] = minIndex;
|
||||
}
|
||||
}
|
||||
|
||||
//Triangulate
|
||||
int i, j;
|
||||
i=0; j=nv-1;
|
||||
|
||||
triangulate(m,f, i, j, vi, vv);
|
||||
|
||||
while(f!=m.face.end())
|
||||
{
|
||||
(*f).SetD();
|
||||
++f;
|
||||
m.fn--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void triangulate(MESH &m, FaceIterator &f,int i, int j,
|
||||
std::vector< std::vector<int> > vi, std::vector<PosType > vv)
|
||||
{
|
||||
if(i + 1 == j){return;}
|
||||
if(i==j)return;
|
||||
|
||||
int k = vi[i][j];
|
||||
|
||||
if(k == -1) return;
|
||||
|
||||
//Setto i vertici
|
||||
f->V(0) = vv[i].v;
|
||||
f->V(1) = vv[k].v;
|
||||
f->V(2) = vv[j].v;
|
||||
|
||||
f++;
|
||||
triangulate(m,f,i,k,vi,vv);
|
||||
triangulate(m,f,k,j,vi,vv);
|
||||
}
|
||||
|
||||
{
|
||||
if(i + 1 == j){return;}
|
||||
if(i==j)return;
|
||||
|
||||
int k = vi[i][j];
|
||||
|
||||
if(k == -1) return;
|
||||
|
||||
//Setto i vertici
|
||||
f->V(0) = vv[i].v;
|
||||
f->V(1) = vv[k].v;
|
||||
f->V(2) = vv[j].v;
|
||||
|
||||
f++;
|
||||
triangulate(m,f,i,k,vi,vv);
|
||||
triangulate(m,f,k,j,vi,vv);
|
||||
}
|
||||
|
||||
static void MinimumWeightFill(MESH &m, int holeSize, bool Selected)
|
||||
{
|
||||
std::vector<PosType > vvi;
|
||||
std::vector<FacePointer * > vfp;
|
||||
|
||||
std::vector<Info > vinfo;
|
||||
typename std::vector<Info >::iterator VIT;
|
||||
GetInfo(m, Selected,vinfo);
|
||||
|
||||
for(VIT = vinfo.begin(); VIT != vinfo.end();++VIT)
|
||||
{
|
||||
vvi.push_back(VIT->p);
|
||||
}
|
||||
|
||||
typename std::vector<PosType >::iterator ith;
|
||||
typename std::vector<PosType >::iterator ithn;
|
||||
typename std::vector<VertexPointer >::iterator itf;
|
||||
|
||||
std::vector<PosType > app;
|
||||
PosType ps;
|
||||
std::vector<FaceType > tr;
|
||||
std::vector<VertexPointer > vf;
|
||||
|
||||
for(ith = vvi.begin(); ith!= vvi.end(); ++ith)
|
||||
{
|
||||
tr.clear();
|
||||
vf.clear();
|
||||
app.clear();
|
||||
vfp.clear();
|
||||
|
||||
ps = *ith;
|
||||
getBoundHole(ps,app);
|
||||
|
||||
if(app.size() <= size_t(holeSize) )
|
||||
{
|
||||
typename std::vector<PosType >::iterator itP;
|
||||
std::vector<FacePointer *> vfp;
|
||||
|
||||
for(ithn = vvi.begin(); ithn!= vvi.end(); ++ithn)
|
||||
vfp.push_back(&(ithn->f));
|
||||
|
||||
for(itP = app.begin (); itP != app.end ();++itP)
|
||||
vfp.push_back( &(*itP).f );
|
||||
|
||||
//aggiungo le facce
|
||||
FaceIterator f = tri::Allocator<MESH>::AddFaces(m, (app.size()-2) , vfp);
|
||||
|
||||
calculateMinimumWeightTriangulation(m,f, app);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static void getBoundHole (PosType sp,std::vector<PosType >&ret)
|
||||
{
|
||||
PosType fp = sp;
|
||||
//take vertex around the hole
|
||||
do
|
||||
{
|
||||
assert(fp.IsBorder());
|
||||
ret.push_back(fp);
|
||||
fp.NextB();
|
||||
}while(sp != fp);
|
||||
}
|
||||
|
||||
};//close class Hole
|
||||
{
|
||||
std::vector<PosType > vvi;
|
||||
std::vector<FacePointer * > vfp;
|
||||
|
||||
std::vector<Info > vinfo;
|
||||
typename std::vector<Info >::iterator VIT;
|
||||
GetInfo(m, Selected,vinfo);
|
||||
|
||||
for(VIT = vinfo.begin(); VIT != vinfo.end();++VIT)
|
||||
{
|
||||
vvi.push_back(VIT->p);
|
||||
}
|
||||
|
||||
typename std::vector<PosType >::iterator ith;
|
||||
typename std::vector<PosType >::iterator ithn;
|
||||
typename std::vector<VertexPointer >::iterator itf;
|
||||
|
||||
std::vector<PosType > app;
|
||||
PosType ps;
|
||||
std::vector<FaceType > tr;
|
||||
std::vector<VertexPointer > vf;
|
||||
|
||||
for(ith = vvi.begin(); ith!= vvi.end(); ++ith)
|
||||
{
|
||||
tr.clear();
|
||||
vf.clear();
|
||||
app.clear();
|
||||
vfp.clear();
|
||||
|
||||
ps = *ith;
|
||||
getBoundHole(ps,app);
|
||||
|
||||
if(app.size() <= size_t(holeSize) )
|
||||
{
|
||||
typename std::vector<PosType >::iterator itP;
|
||||
std::vector<FacePointer *> vfp;
|
||||
|
||||
for(ithn = vvi.begin(); ithn!= vvi.end(); ++ithn)
|
||||
vfp.push_back(&(ithn->f));
|
||||
|
||||
for(itP = app.begin (); itP != app.end ();++itP)
|
||||
vfp.push_back( &(*itP).f );
|
||||
|
||||
//aggiungo le facce
|
||||
FaceIterator f = tri::Allocator<MESH>::AddFaces(m, (app.size()-2) , vfp);
|
||||
|
||||
calculateMinimumWeightTriangulation(m,f, app);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static void getBoundHole (PosType sp,std::vector<PosType >&ret)
|
||||
{
|
||||
PosType fp = sp;
|
||||
//take vertex around the hole
|
||||
do
|
||||
{
|
||||
assert(fp.IsBorder());
|
||||
ret.push_back(fp);
|
||||
fp.NextB();
|
||||
}while(sp != fp);
|
||||
}
|
||||
|
||||
};// class Hole
|
||||
|
||||
} // end namespace tri
|
||||
} // end namespace vcg
|
||||
|
|
Loading…
Reference in New Issue