Heavily commented, restructured and debugged the basic hole filling code

This commit is contained in:
Paolo Cignoni 2016-12-12 15:33:34 +01:00
parent 428967ddac
commit 3742fcef2b
1 changed files with 397 additions and 358 deletions

View File

@ -36,6 +36,7 @@
namespace vcg {
namespace tri {
/*
An ear is identified by TWO pos.
The Three vertexes of an Ear are:
@ -46,22 +47,22 @@ namespace vcg {
e1 == e0.NextB();
e1.FlipV() == e0;
Situazioni ear non manifold, e degeneri (buco triangolare)
T XXXXXXXXXXXXX A /XXXXX B en/XXXXX
/XXXXXXXXXXXXXXX /XXXXXX /XXXXXX
XXXXXXep==en XXX ep\ /en XXXX /e1 XXXX
XXXXXX ----/| XX ------ ----/| XX ------ ----/|XXX
XXXXXX| /e1 XX XXXXXX| /e1 XX XXXXXX| o/e0 XX
XXXXXX| /XXXXXX XXXXXX| /XXXXXX XXXXXX| /XXXXXX
XXX e0|o/XXXXXXX XXX e0|o/XXXXXXX XXX ep| /XXXXXXX
XXX \|/XXXXXXXX XXX \|/XXXXXXXX XXX \|/XXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
*/
/**
* Basic class for representing an 'ear' in a hole.
*
* Require FF-adajcncy and edge-manifoldness around the mesh (at most two triangles per edge)
*
* An ear is represented by two consecutive Pos e0,e1.
* The vertex pointed by the first pos is the 'corner' of the ear
*
*
*/
template<class MESH> class TrivialEar
{
public:
typedef typename MESH::FaceType FaceType;
typedef typename MESH::VertexType VertexType;
typedef typename MESH::FacePointer FacePointer;
typedef typename MESH::VertexPointer VertexPointer;
typedef typename face::Pos<FaceType> PosType;
@ -71,6 +72,7 @@ public:
PosType e0;
PosType e1;
CoordType n; // the normal of the face defined by the ear
const char * Dump() {return 0;}
// The following members are useful to consider the Ear as a generic <triangle>
// with p0 the 'center' of the ear.
@ -116,14 +118,50 @@ public:
virtual void ComputeQuality() { quality = QualityFace(*this) ; }
bool IsUpToDate() {return ( e0.IsBorder() && e1.IsBorder());}
// An ear is degenerated if both of its two endpoints are non manifold.
bool IsDegen(const int nonManifoldBit)
bool IsDegen()
{
if(e0.VFlip()->IsUserBit(nonManifoldBit) && e1.V()->IsUserBit(nonManifoldBit))
if(e0.VFlip()->IsUserBit(NonManifoldBit()) && e1.V()->IsUserBit(NonManifoldBit()))
return true;
else return false;
}
bool IsConcave() const {return(angleRad > (float)M_PI);}
/** NonManifoldBit
* To handle non manifoldness situations we keep track
* of the vertices of the hole boundary that are traversed by more than a single boundary.
*
*/
static int &NonManifoldBit() { static int _NonManifoldBit=0; return _NonManifoldBit; }
static int InitNonManifoldBitOnHoleBoundary(const PosType &p)
{
if(NonManifoldBit()==0)
NonManifoldBit() = VertexType::NewBitFlag();
int holeSize=0;
//First loop around the hole to mark non manifold vertices.
PosType ip = p; // Pos iterator
do{
ip.V()->ClearUserBit(NonManifoldBit());
ip.V()->ClearV();
ip.NextB();
holeSize++;
} while(ip!=p);
ip = p; // Re init the pos iterator for another loop (useless if everithing is ok!!)
do{
if(!ip.V()->IsV())
ip.V()->SetV();
else // All the vertexes that are visited more than once are non manifold
ip.V()->SetUserBit(NonManifoldBit());
ip.NextB();
} while(ip!=p);
return holeSize;
}
// When you close an ear you have to check that the newly added triangle does not create non manifold situations
// This can happen if the new edge already exists in the mesh.
// We test that looping around one extreme of the ear we do not find the other vertex
@ -141,8 +179,38 @@ public:
while(!pp.IsBorder());
return true;
}
/**
* @brief Close the current ear by adding a triangle to the mesh
* and returning up to two new possible ears to be closed.
*
* @param np0 The first new pos to be inserted in the heap
* @param np1 The second new pos
* @param f the already allocated face to be used to close the ear
* @return true if it successfully add a triangle
*
* +\
* +++\ -------
* +++ep\ /| +++en/\
* +++---| /e1 ++++++++\
* ++++++| /++++++++++++++\
* +++ e0|o /+++++++++++++++++++
* +++ \|/+++++++++++++++++++++
* +++++++++++++++++++++++++++++
*
* There are three main peculiar cases:
virtual bool Close(PosType &np0, PosType &np1, FaceType * f)
* (T)+++++++++++++ (A) /+++++ (B) /en+++++++
* /+++++++++++++++ /++++++ /++++++++++
* ++++++ep==en +++ ep\ /en ++++ /e1 ++++++++
* ++++++ ----/| ++ ------ ----/| ++ ------------/|+++
* ++++++| /e1 ++ ++++++| /e1 ++ ++++++| o/e0|+++
* ++++++| /++++++ ++++++| /++++++ ++++++| /++++++++
* +++ e0|o/+++++++ +++ e0|o/+++++++ +++ ep| /++++++++++
* +++ \|/++++++++ +++ \|/++++++++ +++ \|/++++++++++++
* ++++++++++++++++ ++++++++++++++++ ++++++++++++++++++++
*/
virtual bool Close(PosType &np0, PosType &np1, FaceType *f)
{
// simple topological check
if(e0.f==e1.f) {
@ -150,9 +218,8 @@ public:
return false;
}
//usato per generare una delle due nuove orecchie.
PosType ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
PosType en=e1; en.NextB(); // he successivo a e1
PosType ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // ep previous
PosType en=e1; en.NextB(); // en next
if(ep!=en)
if(!CheckManifoldAfterEarClose()) return false;
@ -165,7 +232,7 @@ public:
face::FFAttachManifold(f,1,e1.f,e1.z);
face::FFSetBorder(f,2);
// caso ear degenere per buco triangolare
// First Special Case (T): Triangular hole
if(ep==en)
{
//printf("Closing the last triangle");
@ -173,30 +240,38 @@ public:
np0.SetNull();
np1.SetNull();
}
// Caso ear non manifold a
// Second Special Case (A): Non Manifold on ep
else if(ep.v==en.v)
{
//printf("Ear Non manif A\n");
assert(ep.v->IsUserBit(NonManifoldBit()));
ep.v->ClearUserBit(NonManifoldBit());
PosType enold=en;
en.NextB();
face::FFAttachManifold(f,2,enold.f,enold.z);
np0=ep;
np1=en;
assert(!np0.v->IsUserBit(NonManifoldBit()));
np1.SetNull();
}
// Caso ear non manifold b
// Third Special Case (B): Non Manifold on e1
else if(ep.VFlip()==e1.v)
{
assert(e1.v->IsUserBit(NonManifoldBit()));
e1.v->ClearUserBit(NonManifoldBit());
//printf("Ear Non manif B\n");
PosType epold=ep;
ep.FlipV(); ep.NextB(); ep.FlipV();
face::FFAttachManifold(f,2,epold.f,epold.z);
np0=ep; // assign the two new
np1=en; // pos that denote the ears
assert(!np0.v->IsUserBit(NonManifoldBit()));
np1.SetNull(); // pos that denote the ears
}
else // caso standard // Now compute the new ears;
else // Standard Case.
{
np0=ep;
if(np0.v->IsUserBit(NonManifoldBit())) np0.SetNull();
np1=PosType(f,2,e1.v);
if(np1.v->IsUserBit(NonManifoldBit())) np1.SetNull();
}
return true;
@ -315,12 +390,12 @@ public:
}
}; // end class SelfIntersectionEar
// Funzione principale per chiudier un buco in maniera topologicamente corretta.
// Gestisce situazioni non manifold ragionevoli
// (tutte eccetto quelle piu' di 2 facce per 1 edge).
// Controlla che non si generino nuove situazioni non manifold chiudendo orecchie
// che sottendono un edge che gia'esiste.
/** Hole
* Main hole filling templated class.
*
*/
template <class MESH>
class Hole
{
@ -386,103 +461,67 @@ public:
};
class EdgeToBeAvoided
{
VertexPointer v0,v1;
EdgeToBeAvoided(VertexPointer _v0, VertexPointer _v1):v0(_v0),v1(_v1)
{
if(v0>v1) swap(v0,v1);
}
bool operator < (const EdgeToBeAvoided &e)
{
if(this->v0!=e.v0) return this->v0<e.v0;
return this->v1<e.v1;
}
};
/// Main Single Hole Filling Function
/// Given a specific hole (identified by the Info h) it fills it
/// It also update a vector of face pointers
/// It uses an heap to choose the best ear to be closed
/** FillHoleEar
* Main Single Hole Filling Function
* Given a specific hole (identified by the Info h) it fills it
* It also update a vector of face pointers
* It uses a priority queue to choose the best ear to be closed
*/
template<class EAR>
static void FillHoleEar(MESH &m, // The mesh to be filled
Info &h, // the particular hole to be filled
const PosType &p, // the particular hole to be filled
std::vector<FacePointer *> &facePointersToBeUpdated)
{
//Aggiungo le facce e aggiorno il puntatore alla faccia!
FaceIterator f = tri::Allocator<MESH>::AddFaces(m, h.size-2, facePointersToBeUpdated);
assert(h.p.f >= &*m.face.begin());
assert(h.p.f <= &m.face.back());
assert(h.p.IsBorder());
assert(tri::IsValidPointer(m,p.f));
assert(p.IsBorder());
int holeSize = EAR::InitNonManifoldBitOnHoleBoundary(p);
FaceIterator f = tri::Allocator<MESH>::AddFaces(m, holeSize-2, facePointersToBeUpdated);
std::vector< EAR > EarHeap;
EarHeap.reserve(h.size);
int nmBit= VertexType::NewBitFlag(); // non manifoldness bit
//First loops around the hole to mark non manifold vertices.
PosType ip = h.p; // Pos iterator
do{
ip.V()->ClearUserBit(nmBit);
ip.V()->ClearV();
ip.NextB();
} while(ip!=h.p);
ip = h.p; // Re init the pos iterator for another loop (useless if everithing is ok!!)
do{
if(!ip.V()->IsV())
ip.V()->SetV(); // All the vertexes that are visited more than once are non manifold
else ip.V()->SetUserBit(nmBit);
ip.NextB();
} while(ip!=h.p);
PosType fp = h.p;
std::priority_queue< EAR > EarHeap;
PosType fp = p;
do{
EAR appEar = EAR(fp);
EarHeap.push_back( appEar );
if(!fp.v->IsUserBit(EAR::NonManifoldBit()))
EarHeap.push( appEar );
//printf("Adding ear %s ",app.Dump());
fp.NextB();
assert(fp.IsBorder());
}while(fp!=h.p);
}while(fp!=p);
int cnt=h.size;
make_heap(EarHeap.begin(), EarHeap.end());
//finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare.
while( cnt > 2 && !EarHeap.empty() )
// Main Ear closing Loop
while( holeSize > 2 && !EarHeap.empty() )
{
//printf("Front of the heap is %s", H.front().Dump());
pop_heap(EarHeap.begin(), EarHeap.end()); // retrieve the MAXIMUM value and put in the back;
EAR BestEar=EarHeap.back();
EarHeap.pop_back();
EAR BestEar=EarHeap.top();
EarHeap.pop();
if(BestEar.IsUpToDate() && !BestEar.IsDegen(nmBit))
if(BestEar.IsUpToDate() && !BestEar.IsDegen())
{
if((*f).HasPolyInfo()) (*f).Alloc(3);
PosType ep0,ep1;
if(BestEar.Close(ep0,ep1,&*f))
{
if(!ep0.IsNull()){
EarHeap.push_back(EAR(ep0));
push_heap( EarHeap.begin(), EarHeap.end());
assert(!ep0.v->IsUserBit(EAR::NonManifoldBit()));
EarHeap.push(EAR(ep0));
}
if(!ep1.IsNull()){
EarHeap.push_back(EAR(ep1));
push_heap( EarHeap.begin(), EarHeap.end());
assert(!ep1.v->IsUserBit(EAR::NonManifoldBit()));
EarHeap.push(EAR(ep1));
}
--cnt;
--holeSize;
++f;
}
}//is update()
}//fine del while principale.
}
// If the hole had k non manifold vertexes it requires less than n-2 face ( it should be n - 2*(k+1) ),
// so we delete the remaining ones.
while(f!=m.face.end()){
tri::Allocator<MESH>::DeleteFace(m,*f);
f++;
}
VertexType::DeleteBitFlag(nmBit); // non manifoldness bit
}
template<class EAR>
@ -504,7 +543,7 @@ template<class EAR>
if(cb) (*cb)(indCb*10/vinfo.size(),"Closing Holes");
if((*ith).size < sizeHole){
holeCnt++;
FillHoleEar< EAR >(m, *ith,facePtrToBeUpdated);
FillHoleEar< EAR >(m, (*ith).p,facePtrToBeUpdated);
}
}
return holeCnt;
@ -555,7 +594,7 @@ template<class EAR>
for(fpi=EAR::AdjacencyRing().begin();fpi!=EAR::AdjacencyRing().end();++fpi)
facePtrToBeUpdated.push_back( &*fpi );
FillHoleEar<EAR >(m, *ith,facePtrToBeUpdated);
FillHoleEar<EAR >(m, ith->p,facePtrToBeUpdated);
EAR::AdjacencyRing().clear();
}
}
@ -871,7 +910,7 @@ template<class EAR>
}while(sp != fp);
}
};//close class Hole
};// class Hole
} // end namespace tri
} // end namespace vcg