Spherical Harmonics are templatized on the number of coefficients
This commit is contained in:
parent
2da37bd5f7
commit
39e2cf2b3e
|
@ -35,12 +35,12 @@ namespace vcg{
|
||||||
namespace math{
|
namespace math{
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Although the Real Spherical Harmonic Function is correctly defined over any
|
* Although the Real Spherical Harmonic Function is correctly defined over any
|
||||||
* positive l and any -l <= m <= l, the two internal functions computing the
|
* positive l and any -l <= m <= l, the two internal functions computing the
|
||||||
* imaginary and real parts of the Complex Spherical Harmonic Functions are defined
|
* imaginary and real parts of the Complex Spherical Harmonic Functions are defined
|
||||||
* for positive m only.
|
* for positive m only.
|
||||||
*/
|
*/
|
||||||
template <typename ScalarType>
|
template <typename ScalarType, int MAX_BAND>
|
||||||
class SphericalHarmonics{
|
class SphericalHarmonics{
|
||||||
|
|
||||||
private :
|
private :
|
||||||
|
@ -48,25 +48,25 @@ private :
|
||||||
{
|
{
|
||||||
return Sqrt( ( (2.0*l + 1.0) * Factorial<ScalarType>(l-m) ) / (4.0 * M_PI * Factorial<ScalarType>(l + m)) );;
|
return Sqrt( ( (2.0*l + 1.0) * Factorial<ScalarType>(l-m) ) / (4.0 * M_PI * Factorial<ScalarType>(l + m)) );;
|
||||||
}
|
}
|
||||||
|
|
||||||
inline static ScalarType complex_spherical_harmonic_re(unsigned l, unsigned m, ScalarType theta, ScalarType phi)
|
inline static ScalarType complex_spherical_harmonic_re(unsigned l, unsigned m, ScalarType theta, ScalarType phi)
|
||||||
{
|
{
|
||||||
return scaling_factor(l, m) * Legendre<ScalarType>::AssociatedPolynomial(l, m, Cos(theta), Sin(theta)) * Cos(m * phi);
|
return scaling_factor(l, m) * Legendre<ScalarType>::AssociatedPolynomial(l, m, Cos(theta), Sin(theta)) * Cos(m * phi);
|
||||||
}
|
}
|
||||||
|
|
||||||
inline static ScalarType complex_spherical_harmonic_im(unsigned l, unsigned m, ScalarType theta, ScalarType phi)
|
inline static ScalarType complex_spherical_harmonic_im(unsigned l, unsigned m, ScalarType theta, ScalarType phi)
|
||||||
{
|
{
|
||||||
return scaling_factor(l, m) * Legendre<ScalarType>::AssociatedPolynomial(l, m, Cos(theta), Sin(theta)) * Sin(m * phi);
|
return scaling_factor(l, m) * Legendre<ScalarType>::AssociatedPolynomial(l, m, Cos(theta), Sin(theta)) * Sin(m * phi);
|
||||||
}
|
}
|
||||||
|
|
||||||
ScalarType * coefficients;
|
ScalarType coefficients[MAX_BAND * MAX_BAND];
|
||||||
int max_band;
|
static const int max_band = MAX_BAND;
|
||||||
|
|
||||||
public :
|
public :
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the Real Spherical Harmonic Function
|
* Returns the Real Spherical Harmonic Function
|
||||||
*
|
*
|
||||||
* l is any positive integer,
|
* l is any positive integer,
|
||||||
* m is such that -l <= m <= l
|
* m is such that -l <= m <= l
|
||||||
* theta is inside [0, PI]
|
* theta is inside [0, PI]
|
||||||
|
@ -75,46 +75,43 @@ public :
|
||||||
static ScalarType Real(unsigned l, int m, ScalarType theta, ScalarType phi)
|
static ScalarType Real(unsigned l, int m, ScalarType theta, ScalarType phi)
|
||||||
{
|
{
|
||||||
assert((int)-l <= m && m <= (int)l && theta >= 0 && theta <= M_PI && phi >= 0 && phi <= 2 * M_PI);
|
assert((int)-l <= m && m <= (int)l && theta >= 0 && theta <= M_PI && phi >= 0 && phi <= 2 * M_PI);
|
||||||
|
|
||||||
if (m > 0) return SQRT_TWO * complex_spherical_harmonic_re(l, m, theta, phi);
|
if (m > 0) return SQRT_TWO * complex_spherical_harmonic_re(l, m, theta, phi);
|
||||||
|
|
||||||
else if (m == 0) return scaling_factor(l, 0) * Legendre<ScalarType>::Polynomial(l, Cos(theta));
|
else if (m == 0) return scaling_factor(l, 0) * Legendre<ScalarType>::Polynomial(l, Cos(theta));
|
||||||
|
|
||||||
else return SQRT_TWO * complex_spherical_harmonic_im(l, -m, theta, phi);
|
else return SQRT_TWO * complex_spherical_harmonic_im(l, -m, theta, phi);
|
||||||
}
|
}
|
||||||
|
|
||||||
typedef ScalarType (*PolarFunction) (ScalarType theta, ScalarType phi);
|
typedef ScalarType (*PolarFunction) (ScalarType theta, ScalarType phi);
|
||||||
|
|
||||||
static SphericalHarmonics Project(PolarFunction fun, unsigned max_band, unsigned n_samples)
|
static SphericalHarmonics Project(PolarFunction fun, unsigned n_samples)
|
||||||
{
|
{
|
||||||
const ScalarType weight = 4 * M_PI;
|
const ScalarType weight = 4 * M_PI;
|
||||||
|
|
||||||
unsigned sqrt_n_samples = (unsigned int) Sqrt((int)n_samples);
|
unsigned sqrt_n_samples = (unsigned int) Sqrt((int)n_samples);
|
||||||
unsigned actual_n_samples = sqrt_n_samples * sqrt_n_samples;
|
unsigned actual_n_samples = sqrt_n_samples * sqrt_n_samples;
|
||||||
unsigned n_coeff = max_band * max_band;
|
unsigned n_coeff = MAX_BAND * MAX_BAND;
|
||||||
|
|
||||||
ScalarType one_over_n = 1.0/(ScalarType)sqrt_n_samples;
|
ScalarType one_over_n = 1.0/(ScalarType)sqrt_n_samples;
|
||||||
|
|
||||||
RandomGenerator rand;
|
RandomGenerator rand;
|
||||||
SphericalHarmonics sph;
|
SphericalHarmonics sph;
|
||||||
|
|
||||||
sph.coefficients = new ScalarType[n_coeff];
|
|
||||||
sph.max_band = max_band;
|
|
||||||
|
|
||||||
int i = 0;
|
int i = 0;
|
||||||
|
|
||||||
for (unsigned k = 0; k < n_coeff; k++ ) sph.coefficients[k] = 0;
|
for (unsigned k = 0; k < n_coeff; k++ ) sph.coefficients[k] = 0;
|
||||||
|
|
||||||
for (unsigned a = 0; a < sqrt_n_samples; ++a )
|
for (unsigned a = 0; a < sqrt_n_samples; ++a )
|
||||||
{
|
{
|
||||||
for (unsigned b = 0; b < sqrt_n_samples; ++b)
|
for (unsigned b = 0; b < sqrt_n_samples; ++b)
|
||||||
{
|
{
|
||||||
ScalarType x = (a + rand(INT_MAX)/(ScalarType)INT_MAX) * one_over_n;
|
ScalarType x = (a + rand(INT_MAX)/(ScalarType)INT_MAX) * one_over_n;
|
||||||
ScalarType y = (b + rand(INT_MAX)/(ScalarType)INT_MAX) * one_over_n;
|
ScalarType y = (b + rand(INT_MAX)/(ScalarType)INT_MAX) * one_over_n;
|
||||||
|
|
||||||
ScalarType theta = 2.0 * Acos(Sqrt(1.0 - x));
|
ScalarType theta = 2.0 * Acos(Sqrt(1.0 - x));
|
||||||
ScalarType phi = 2.0 * M_PI * y;
|
ScalarType phi = 2.0 * M_PI * y;
|
||||||
|
|
||||||
for (int l = 0; l < (int)max_band; ++l)
|
for (int l = 0; l < (int)max_band; ++l)
|
||||||
{
|
{
|
||||||
for (int m = -l; m <= l; ++m)
|
for (int m = -l; m <= l; ++m)
|
||||||
|
@ -126,20 +123,20 @@ public :
|
||||||
i++;
|
i++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
ScalarType factor = weight / actual_n_samples;
|
ScalarType factor = weight / actual_n_samples;
|
||||||
for(i = 0; i < (int)n_coeff; ++i)
|
for(i = 0; i < (int)n_coeff; ++i)
|
||||||
{
|
{
|
||||||
sph.coefficients[i] *= factor;
|
sph.coefficients[i] *= factor;
|
||||||
}
|
}
|
||||||
|
|
||||||
return sph;
|
return sph;
|
||||||
}
|
}
|
||||||
|
|
||||||
ScalarType operator()(ScalarType theta, ScalarType phi)
|
ScalarType operator()(ScalarType theta, ScalarType phi)
|
||||||
{
|
{
|
||||||
ScalarType f = 0;
|
ScalarType f = 0;
|
||||||
|
|
||||||
for (int l = 0; l < max_band; ++l)
|
for (int l = 0; l < max_band; ++l)
|
||||||
{
|
{
|
||||||
for (int m = -l; m <= l; ++m)
|
for (int m = -l; m <= l; ++m)
|
||||||
|
@ -148,7 +145,7 @@ public :
|
||||||
f += (coefficients[index] * Real(l, m, theta, phi));
|
f += (coefficients[index] * Real(l, m, theta, phi));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return f;
|
return f;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
Loading…
Reference in New Issue