removed a useless template specialization to a few std::make_pair

This commit is contained in:
Paolo Cignoni 2013-03-22 16:53:42 +00:00
parent 246345bf19
commit 3a9a72c098
1 changed files with 384 additions and 383 deletions

View File

@ -27,6 +27,7 @@
// Standard headers
#include <map>
#include <algorithm>
#include <utility>
#include <stack>
// VCG headers
@ -49,7 +50,7 @@ namespace vcg {
template <class ConnectedMeshType>
class ConnectedIterator
{
public:
public:
typedef ConnectedMeshType MeshType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
@ -65,18 +66,18 @@ class ConnectedIterator
public:
void operator ++()
{
FacePointer fpt=sf.top();
FacePointer fpt=sf.top();
sf.pop();
for(int j=0;j<3;++j)
if( !face::IsBorder(*fpt,j) )
{
FacePointer l=fpt->FFp(j);
for(int j=0;j<3;++j)
if( !face::IsBorder(*fpt,j) )
{
FacePointer l=fpt->FFp(j);
if( !tri::IsMarked(*mp,l) )
{
{
tri::Mark(*mp,l);
sf.push(l);
}
}
sf.push(l);
}
}
}
void start(MeshType &m, FacePointer p)
@ -87,7 +88,7 @@ public:
assert(p);
assert(!p->IsD());
tri::Mark(m,p);
sf.push(p);
sf.push(p);
}
bool completed() {
return sf.empty();
@ -106,7 +107,7 @@ private:
///
/** \addtogroup trimesh */
/*@{*/
/// Class of static functions to clean//restore meshs.
/// Class of static functions to clean//restore meshs.
template <class CleanMeshType>
class Clean
{
@ -125,7 +126,7 @@ private:
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
typedef typename vcg::Box3<ScalarType> Box3Type;
typedef typename vcg::Box3<ScalarType> Box3Type;
typedef GridStaticPtr<FaceType, ScalarType > TriMeshGrid;
typedef Point3<ScalarType> Point3x;
@ -191,7 +192,7 @@ private:
}
}
for(FaceIterator fi = m.face.begin(); fi!=m.face.end(); ++fi)
for(FaceIterator fi = m.face.begin(); fi!=m.face.end(); ++fi)
if( !(*fi).IsD() )
for(k = 0; k < 3; ++k)
if( mp.find( (typename MeshType::VertexPointer)(*fi).V(k) ) != mp.end() )
@ -212,7 +213,7 @@ private:
RemoveDegenerateEdge(m);
RemoveDuplicateEdge(m);
}
return deleted;
return deleted;
}
class SortedPair
@ -239,7 +240,7 @@ private:
unsigned int v[2];
EdgePointer fp;
};
class SortedTriple
class SortedTriple
{
public:
SortedTriple() {}
@ -253,7 +254,7 @@ private:
{
return (v[2]!=p.v[2])?(v[2]<p.v[2]):
(v[1]!=p.v[1])?(v[1]<p.v[1]):
(v[0]<p.v[0]); }
(v[0]<p.v[0]); }
bool operator == (const SortedTriple &s) const
{
@ -375,15 +376,15 @@ private:
/**
Degenerate vertices are vertices that have coords with invalid floating point values,
All the faces incident on deleted vertices are also deleted
*/
*/
static int RemoveDegenerateVertex(MeshType& m)
{
VertexIterator vi;
int count_vd = 0;
VertexIterator vi;
int count_vd = 0;
for(vi=m.vert.begin(); vi!=m.vert.end();++vi)
if(math::IsNAN( (*vi).P()[0]) ||
math::IsNAN( (*vi).P()[1]) ||
math::IsNAN( (*vi).P()[1]) ||
math::IsNAN( (*vi).P()[2]) )
{
count_vd++;
@ -415,9 +416,9 @@ private:
*/
static int RemoveDegenerateFace(MeshType& m)
{
int count_fd = 0;
int count_fd = 0;
for(FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi)
for(FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
if((*fi).V(0) == (*fi).V(1) ||
@ -449,10 +450,10 @@ private:
static int RemoveNonManifoldVertex(MeshType& m)
{
/*int count_vd = */
CountNonManifoldVertexFF(m,true);
/*int count_fd = */
tri::UpdateSelection<MeshType>::FaceFromVertexLoose(m);
/*int count_vd = */
CountNonManifoldVertexFF(m,true);
/*int count_fd = */
tri::UpdateSelection<MeshType>::FaceFromVertexLoose(m);
int count_removed = 0;
FaceIterator fi;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
@ -546,9 +547,9 @@ private:
/// Removal of faces that were incident on a non manifold edge.
static int RemoveNonManifoldFace(MeshType& m)
{
FaceIterator fi;
int count_fd = 0;
std::vector<FacePointer> ToDelVec;
FaceIterator fi;
int count_fd = 0;
std::vector<FacePointer> ToDelVec;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if (!fi->IsD())
@ -556,10 +557,10 @@ private:
if ((!IsManifold(*fi,0))||
(!IsManifold(*fi,1))||
(!IsManifold(*fi,2)))
ToDelVec.push_back(&*fi);
ToDelVec.push_back(&*fi);
}
std::sort(ToDelVec.begin(),ToDelVec.end(),CompareAreaFP());
std::sort(ToDelVec.begin(),ToDelVec.end(),CompareAreaFP());
for(size_t i=0;i<ToDelVec.size();++i)
{
@ -567,8 +568,8 @@ private:
{
FaceType &ff= *ToDelVec[i];
if ((!IsManifold(ff,0))||
(!IsManifold(ff,1))||
(!IsManifold(ff,2)))
(!IsManifold(ff,1))||
(!IsManifold(ff,2)))
{
for(int j=0;j<3;++j)
if(!face::IsBorder<FaceType>(ff,j))
@ -579,8 +580,8 @@ private:
}
}
}
return count_fd;
}
return count_fd;
}
/*
The following functions remove faces that are geometrically "bad" according to edges and area criteria.
@ -589,27 +590,27 @@ private:
These functions can optionally take into account only the selected faces.
*/
template<bool Selected>
static int RemoveFaceOutOfRangeAreaSel(MeshType& m, ScalarType MinAreaThr=0, ScalarType MaxAreaThr=(std::numeric_limits<ScalarType>::max)())
{
FaceIterator fi;
int count_fd = 0;
static int RemoveFaceOutOfRangeAreaSel(MeshType& m, ScalarType MinAreaThr=0, ScalarType MaxAreaThr=(std::numeric_limits<ScalarType>::max)())
{
FaceIterator fi;
int count_fd = 0;
MinAreaThr*=2;
MaxAreaThr*=2;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if(!(*fi).IsD())
if(!(*fi).IsD())
if(!Selected || (*fi).IsS())
{
const ScalarType doubleArea=DoubleArea<FaceType>(*fi);
if((doubleArea<=MinAreaThr) || (doubleArea>=MaxAreaThr) )
{
Allocator<MeshType>::DeleteFace(m,*fi);
count_fd++;
}
if((doubleArea<=MinAreaThr) || (doubleArea>=MaxAreaThr) )
{
Allocator<MeshType>::DeleteFace(m,*fi);
count_fd++;
}
}
return count_fd;
}
return count_fd;
}
// alias for the old style. Kept for backward compatibility
// alias for the old style. Kept for backward compatibility
static int RemoveZeroAreaFace(MeshType& m) { return RemoveFaceOutOfRangeArea(m);}
// Aliases for the functions that do not look at selection
@ -622,76 +623,76 @@ private:
* Is the mesh only composed by quadrilaterals?
*/
static bool IsBitQuadOnly(const MeshType &m)
{
typedef typename MeshType::FaceType F;
if (!HasPerFaceFlags(m)) return false;
{
typedef typename MeshType::FaceType F;
if (!HasPerFaceFlags(m)) return false;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
if ( tmp != F::FAUX0 && tmp != F::FAUX1 && tmp != F::FAUX2) return false;
}
return true;
}
unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
if ( tmp != F::FAUX0 && tmp != F::FAUX1 && tmp != F::FAUX2) return false;
}
return true;
}
/**
/**
* Is the mesh only composed by triangles? (non polygonal faces)
*/
static bool IsBitTriOnly(const MeshType &m)
static bool IsBitTriOnly(const MeshType &m)
{
if (!HasPerFaceFlags(m)) return true;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) {
if (
!fi->IsD() && fi->IsAnyF()
) return false;
}
return true;
}
if (
!fi->IsD() && fi->IsAnyF()
) return false;
}
return true;
}
static bool IsBitPolygonal(const MeshType &m){
return !IsBitTriOnly(m);
}
/**
/**
* Is the mesh only composed by quadrilaterals and triangles? (no pentas, etc)
*/
static bool IsBitTriQuadOnly(const MeshType &m)
{
typedef typename MeshType::FaceType F;
if (!HasPerFaceFlags(m)) return false;
{
typedef typename MeshType::FaceType F;
if (!HasPerFaceFlags(m)) return false;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
unsigned int tmp = fi->cFlags()&(F::FAUX0|F::FAUX1|F::FAUX2);
if ( tmp!=F::FAUX0 && tmp!=F::FAUX1 && tmp!=F::FAUX2 && tmp!=0 ) return false;
}
return true;
}
if ( tmp!=F::FAUX0 && tmp!=F::FAUX1 && tmp!=F::FAUX2 && tmp!=0 ) return false;
}
return true;
}
/**
* How many quadrilaterals?
*/
static int CountBitQuads(const MeshType &m)
{
if (!HasPerFaceFlags(m)) return 0;
typedef typename MeshType::FaceType F;
int count=0;
{
if (!HasPerFaceFlags(m)) return 0;
typedef typename MeshType::FaceType F;
int count=0;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
unsigned int tmp = fi->cFlags()&(F::FAUX0|F::FAUX1|F::FAUX2);
if ( tmp==F::FAUX0 || tmp==F::FAUX1 || tmp==F::FAUX2) count++;
}
return count / 2;
}
if ( tmp==F::FAUX0 || tmp==F::FAUX1 || tmp==F::FAUX2) count++;
}
return count / 2;
}
/**
* How many triangles? (non polygonal faces)
*/
static int CountBitTris(const MeshType &m)
{
if (!HasPerFaceFlags(m)) return m.fn;
int count=0;
{
if (!HasPerFaceFlags(m)) return m.fn;
int count=0;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
if (!(fi->IsAnyF())) count++;
}
return count;
}
if (!(fi->IsAnyF())) count++;
}
return count;
}
/**
* How many polygons of any kind? (including triangles)
@ -699,15 +700,15 @@ private:
static int CountBitPolygons(const MeshType &m)
{
if (!HasPerFaceFlags(m)) return m.fn;
typedef typename MeshType::FaceType F;
int count = 0;
typedef typename MeshType::FaceType F;
int count = 0;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
if (fi->IsF(0)) count++;
if (fi->IsF(1)) count++;
if (fi->IsF(2)) count++;
}
return m.fn - count/2;
}
if (fi->IsF(0)) count++;
if (fi->IsF(1)) count++;
if (fi->IsF(2)) count++;
}
return m.fn - count/2;
}
/**
* The number of polygonal faces is
@ -717,7 +718,7 @@ private:
* where:
* EN_f is the number of faux edges.
* VN_f is the number of faux vertices (e.g vertices completely surrounded by faux edges)
* as a intuitive proof think to a internal vertex that is collapsed onto a border of a polygon:
* as a intuitive proof think to a internal vertex that is collapsed onto a border of a polygon:
* it deletes 2 faces, 1 faux edges and 1 vertex so to keep the balance you have to add back the removed vertex.
*/
static int CountBitLargePolygons(MeshType &m)
@ -734,22 +735,22 @@ private:
if (!HasPerFaceFlags(m)) return m.fn;
typedef typename MeshType::FaceType F;
int countE = 0;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if (!fi->IsD()) {
for(int i=0;i<3;++i)
{
if (fi->IsF(i))
countE++;
else
{
fi->V0(i)->SetV();
fi->V1(i)->SetV();
}
}
}
// Third Loop, count the number of referenced vertexes that are completely surrounded by faux edges.
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if (!fi->IsD()) {
for(int i=0;i<3;++i)
{
if (fi->IsF(i))
countE++;
else
{
fi->V0(i)->SetV();
fi->V1(i)->SetV();
}
}
}
// Third Loop, count the number of referenced vertexes that are completely surrounded by faux edges.
int countV = 0;
int countV = 0;
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if (!vi->IsD() && !vi->IsV()) countV++;
@ -757,22 +758,22 @@ private:
}
/**
/**
* Checks that the mesh has consistent per-face faux edges
* (the ones that merges triangles into larger polygons).
* A border edge should never be faux, and faux edges should always be
* reciprocated by another faux edges.
* It requires FF adjacency.
*/
static bool HasConsistentPerFaceFauxFlag(const MeshType &m)
{
RequireFFAdjacency(m);
RequirePerFaceFlags(m);
static bool HasConsistentPerFaceFauxFlag(const MeshType &m)
{
RequireFFAdjacency(m);
RequirePerFaceFlags(m);
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
for (int k=0; k<3; k++)
if( fi->IsF(k) != fi->cFFp(k)->IsF(fi->cFFi(k)) ) {
if( fi->IsF(k) != fi->cFFp(k)->IsF(fi->cFFi(k)) ) {
return false;
}
// non-reciprocal faux edge!
@ -788,12 +789,12 @@ private:
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
for (int k=0; k<3; k++)
{
VertexType *v0=(*fi).V(0);
VertexType *v1=(*fi).V(1);
VertexType *v2=(*fi).V(2);
if ((v0==v1)||(v0==v2)||(v1==v2))
return false;
{
VertexType *v0=(*fi).V(0);
VertexType *v1=(*fi).V(1);
VertexType *v2=(*fi).V(2);
if ((v0==v1)||(v0==v2)||(v1==v2))
return false;
}
return true;
@ -894,14 +895,14 @@ private:
* typical situation two cones connected by one vertex.
*/
static int CountNonManifoldVertexFF( MeshType & m, bool selectVert = true )
{
RequireFFAdjacency(m);
{
RequireFFAdjacency(m);
if(selectVert) UpdateSelection<MeshType>::VertexClear(m);
int nonManifoldCnt=0;
SimpleTempData<typename MeshType::VertContainer, int > TD(m.vert,0);
// First Loop, just count how many faces are incident on a vertex and store it in the TemporaryData Counter.
// First Loop, just count how many faces are incident on a vertex and store it in the TemporaryData Counter.
FaceIterator fi;
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
{
@ -910,7 +911,7 @@ private:
TD[(*fi).V(2)]++;
}
tri::UpdateFlags<MeshType>::VertexClearV(m);
tri::UpdateFlags<MeshType>::VertexClearV(m);
// Second Loop.
// mark out of the game the vertexes that are incident on non manifold edges.
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
@ -923,17 +924,17 @@ private:
}
// Third Loop, for safe vertexes, check that the number of faces that you can reach starting
// from it and using FF is the same of the previously counted.
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
{
for(int i=0;i<3;i++) if(!(*fi).V(i)->IsV()){
(*fi).V(i)->SetV();
face::Pos<FaceType> pos(&(*fi),i);
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
{
for(int i=0;i<3;i++) if(!(*fi).V(i)->IsV()){
(*fi).V(i)->SetV();
face::Pos<FaceType> pos(&(*fi),i);
int starSizeFF = pos.NumberOfIncidentFaces();
int starSizeFF = pos.NumberOfIncidentFaces();
if (starSizeFF != TD[(*fi).V(i)])
{
if(selectVert) (*fi).V(i)->SetS();
if(selectVert) (*fi).V(i)->SetS();
nonManifoldCnt++;
}
}
@ -945,8 +946,8 @@ private:
{
count_e=0;
boundary_e=0;
UpdateFlags<MeshType>::FaceClearV(m);
FaceIterator fi;
UpdateFlags<MeshType>::FaceClearV(m);
FaceIterator fi;
vcg::face::Pos<FaceType> he;
vcg::face::Pos<FaceType> hei;
bool counted =false;
@ -954,15 +955,15 @@ private:
{
if(!((*fi).IsD()))
{
(*fi).SetV();
(*fi).SetV();
count_e +=3; //assume that we have to increase the number of edges with three
for(int j=0; j<3; j++)
{
if (face::IsBorder(*fi,j)) //If this edge is a border edge
if (face::IsBorder(*fi,j)) //If this edge is a border edge
boundary_e++; // then increase the number of boundary edges
else if (IsManifold(*fi,j))//If this edge is manifold
{
if((*fi).FFp(j)->IsV()) //If the face on the other side of the edge is already selected
if((*fi).FFp(j)->IsV()) //If the face on the other side of the edge is already selected
count_e--; // we counted one edge twice
}
else//We have a non-manifold edge
@ -972,7 +973,7 @@ private:
he.NextF();
while (he.f!=hei.f)// so we have to iterate all faces that are connected to this edge
{
if (he.f->IsV())// if one of the other faces was already visited than this edge was counted already.
if (he.f->IsV())// if one of the other faces was already visited than this edge was counted already.
{
counted=true;
break;
@ -996,14 +997,14 @@ private:
static int CountHoles( MeshType & m)
{
int numholev=0;
FaceIterator fi;
int numholev=0;
FaceIterator fi;
FaceIterator gi;
vcg::face::Pos<FaceType> he;
vcg::face::Pos<FaceType> hei;
std::vector< std::vector<Point3x> > holes; //indices of vertices
std::vector< std::vector<Point3x> > holes; //indices of vertices
vcg::tri::UpdateFlags<MeshType>::VertexClearS(m);
@ -1015,10 +1016,10 @@ private:
{
if(fi->V(j)->IsS()) continue;
if(face::IsBorder(*fi,j))//found an unvisited border edge
if(face::IsBorder(*fi,j))//found an unvisited border edge
{
he.Set(&(*fi),j,fi->V(j)); //set the face-face iterator to the current face, edge and vertex
std::vector<Point3x> hole; //start of a new hole
std::vector<Point3x> hole; //start of a new hole
hole.push_back(fi->P(j)); // including the first vertex
numholev++;
he.v->SetS(); //set the current vertex as selected
@ -1031,7 +1032,7 @@ private:
if(he.v->IsS())//check if this vertex was selected already, because then we have an additional hole.
{
//cut and paste the additional hole.
std::vector<Point3x> hole2;
std::vector<Point3x> hole2;
int index = static_cast<int>(find(hole.begin(),hole.end(),newpoint)
- hole.begin());
for(unsigned int i=index; i<hole.size(); i++)
@ -1063,11 +1064,11 @@ private:
return ConnectedComponents(m,CCV);
}
static int ConnectedComponents(MeshType &m, std::vector< std::pair<int,FacePointer> > &CCV)
static int ConnectedComponents(MeshType &m, std::vector< std::pair<int,FacePointer> > &CCV)
{
FaceIterator fi;
FacePointer l;
CCV.clear();
CCV.clear();
for(fi=m.face.begin();fi!=m.face.end();++fi)
(*fi).ClearS();
@ -1075,37 +1076,37 @@ private:
int Compindex=0;
std::stack<FacePointer> sf;
FacePointer fpt=&*(m.face.begin());
for(fi=m.face.begin();fi!=m.face.end();++fi)
{
if(!((*fi).IsD()) && !(*fi).IsS())
{
(*fi).SetS();
CCV.push_back(std::make_pair(0,&*fi));
sf.push(&*fi);
while (!sf.empty())
{
fpt=sf.top();
for(fi=m.face.begin();fi!=m.face.end();++fi)
{
if(!((*fi).IsD()) && !(*fi).IsS())
{
(*fi).SetS();
CCV.push_back(std::make_pair(0,&*fi));
sf.push(&*fi);
while (!sf.empty())
{
fpt=sf.top();
++CCV.back().first;
sf.pop();
for(int j=0;j<3;++j)
{
if( !face::IsBorder(*fpt,j) )
{
l=fpt->FFp(j);
if( !(*l).IsS() )
{
(*l).SetS();
sf.push(l);
}
}
}
}
Compindex++;
}
}
sf.pop();
for(int j=0;j<3;++j)
{
if( !face::IsBorder(*fpt,j) )
{
l=fpt->FFp(j);
if( !(*l).IsS() )
{
(*l).SetS();
sf.push(l);
}
}
}
}
Compindex++;
}
}
assert(int(CCV.size())==Compindex);
return Compindex;
}
return Compindex;
}
/**
@ -1115,7 +1116,7 @@ private:
the largest number of non-intersecting simple closed curves that can be
drawn on the surface without separating it.
Roughly speaking, it is the number of holes in a surface.
Roughly speaking, it is the number of holes in a surface.
The genus g of a closed surface, also called the geometric genus, is related to the
Euler characteristic by the relation $chi$ by $chi==2-2g$.
@ -1217,10 +1218,10 @@ private:
}
}
// static void IsOrientedMesh(MeshType &m, bool &Oriented, bool &Orientable)
static void OrientCoherentlyMesh(MeshType &m, bool &Oriented, bool &Orientable)
static void OrientCoherentlyMesh(MeshType &m, bool &Oriented, bool &Orientable)
{
RequireFFAdjacency(m);
assert(&Oriented != &Orientable);
assert(&Oriented != &Orientable);
// This algorithms require FF topology initialized
assert(m.face.back().FFp(0));
@ -1234,7 +1235,7 @@ private:
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
fi->ClearS();
// initialize stack
// initialize stack
std::stack<FacePointer> faces;
// for each face of the mesh
@ -1265,7 +1266,7 @@ private:
{
if (!CheckOrientation(*fpaux, iaux))
{
Oriented = false;
Oriented = false;
if (!fpaux->IsS())
{
@ -1273,10 +1274,10 @@ private:
assert(CheckOrientation(*fpaux, iaux));
}
else
{
{
Orientable = false;
break;
}
break;
}
}
// put the oriented face into the stack
@ -1294,25 +1295,25 @@ private:
if (!Orientable) break;
}
}
/// Flip the orientation of the whole mesh flipping all the faces (by swapping the first two vertices)
/// Flip the orientation of the whole mesh flipping all the faces (by swapping the first two vertices)
static void FlipMesh(MeshType &m, bool selected=false)
{
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD())
if(!selected || (*fi).IsS())
{
face::SwapEdge<FaceType,false>((*fi), 0);
if (HasPerWedgeTexCoord(m))
std::swap((*fi).WT(0),(*fi).WT(1));
}
}
/// Flip a mesh so that its normals are orented outside.
/// Just for safety it uses a voting scheme.
/// It assumes that
/// mesh has already has coherent normals.
/// mesh is watertight and signle component.
static bool FlipNormalOutside(MeshType &m)
{
if(m.vert.empty()) return false;
{
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD())
if(!selected || (*fi).IsS())
{
face::SwapEdge<FaceType,false>((*fi), 0);
if (HasPerWedgeTexCoord(m))
std::swap((*fi).WT(0),(*fi).WT(1));
}
}
/// Flip a mesh so that its normals are orented outside.
/// Just for safety it uses a voting scheme.
/// It assumes that
/// mesh has already has coherent normals.
/// mesh is watertight and signle component.
static bool FlipNormalOutside(MeshType &m)
{
if(m.vert.empty()) return false;
tri::UpdateNormal<MeshType>::PerVertexAngleWeighted(m);
tri::UpdateNormal<MeshType>::NormalizePerVertex(m);
@ -1417,7 +1418,7 @@ private:
RequireFFAdjacency(m);
RequirePerVertexMark(m);
//Counters for logging and convergence
int count, total = 0;
int count, total = 0;
do {
tri::UpdateTopology<MeshType>::FaceFace(m);
@ -1464,7 +1465,7 @@ private:
{
RequirePerVertexMark(m);
//Counters for logging and convergence
int count, total = 0;
int count, total = 0;
do {
tri::UnMarkAll(m);
@ -1498,41 +1499,41 @@ private:
return total;
}
static bool SelfIntersections(MeshType &m, std::vector<FaceType*> &ret)
static bool SelfIntersections(MeshType &m, std::vector<FaceType*> &ret)
{
RequirePerFaceMark(m);
Box3< ScalarType> bbox;
TriMeshGrid gM;
ret.clear();
ret.clear();
FaceIterator fi;
int referredBit = FaceType::NewBitFlag();
tri::UpdateFlags<MeshType>::FaceClear(m,referredBit);
int referredBit = FaceType::NewBitFlag();
tri::UpdateFlags<MeshType>::FaceClear(m,referredBit);
std::vector<FaceType*> inBox;
gM.Set(m.face.begin(),m.face.end());
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
{
(*fi).SetUserBit(referredBit);
(*fi).SetUserBit(referredBit);
(*fi).GetBBox(bbox);
vcg::tri::GetInBoxFace(m, gM, bbox,inBox);
bool Intersected=false;
typename std::vector<FaceType*>::iterator fib;
for(fib=inBox.begin();fib!=inBox.end();++fib)
{
if(!(*fib)->IsUserBit(referredBit) && (*fib != &*fi) )
if(TestFaceFaceIntersection(&*fi,*fib)){
ret.push_back(*fib);
if(!Intersected) {
ret.push_back(&*fi);
Intersected=true;
}
}
}
typename std::vector<FaceType*>::iterator fib;
for(fib=inBox.begin();fib!=inBox.end();++fib)
{
if(!(*fib)->IsUserBit(referredBit) && (*fib != &*fi) )
if(TestFaceFaceIntersection(&*fi,*fib)){
ret.push_back(*fib);
if(!Intersected) {
ret.push_back(&*fi);
Intersected=true;
}
}
}
inBox.clear();
}
FaceType::DeleteBitFlag(referredBit);
FaceType::DeleteBitFlag(referredBit);
return (ret.size()>0);
}
@ -1582,10 +1583,10 @@ private:
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{ FaceType &f=(*fi);
if( ! ( (f.WT(0).N() == f.WT(1).N()) && (f.WT(0).N() == (*fi).WT(2).N()) ) )
return false; // all the vertices must have the same index.
if( ! ( (f.WT(0).N() == f.WT(1).N()) && (f.WT(0).N() == (*fi).WT(2).N()) ) )
return false; // all the vertices must have the same index.
if((*fi).WT(0).N() <0) return false; // no undefined texture should be allowed
if((*fi).WT(0).N() <0) return false; // no undefined texture should be allowed
}
return true;
}
@ -1614,7 +1615,7 @@ private:
if the faces share only a vertex, the opposite edge is tested against the face
*/
static bool TestFaceFaceIntersection(FaceType *f0,FaceType *f1)
{
{
assert(f0!=f1);
int sv = face::CountSharedVertex(f0,f1);
if(sv==3) return true;
@ -1630,48 +1631,48 @@ private:
if(vcg::IntersectionSegmentTriangle(Segment3<ScalarType>((*f0).V1(i0)->P()*0.5+shP,(*f0).V2(i0)->P()*0.5+shP), *f1, a, b) ) return true;
if(vcg::IntersectionSegmentTriangle(Segment3<ScalarType>((*f1).V1(i1)->P()*0.5+shP,(*f1).V2(i1)->P()*0.5+shP), *f0, a, b) ) return true;
}
return false;
}
return false;
}
/**
This function merge all the vertices that are closer than the given radius
This function merge all the vertices that are closer than the given radius
*/
static int MergeCloseVertex(MeshType &m, const ScalarType radius)
{
int mergedCnt=0;
mergedCnt = ClusterVertex(m,radius);
mergedCnt = ClusterVertex(m,radius);
RemoveDuplicateVertex(m,true);
return mergedCnt;
}
static int ClusterVertex(MeshType &m, const ScalarType radius)
{
{
if(m.vn==0) return 0;
// some spatial indexing structure does not work well with deleted vertices...
tri::Allocator<MeshType>::CompactVertexVector(m);
typedef vcg::SpatialHashTable<VertexType, ScalarType> SampleSHT;
SampleSHT sht;
tri::VertTmark<MeshType> markerFunctor;
typedef vcg::vertex::PointDistanceFunctor<ScalarType> VDistFunct;
std::vector<VertexType*> closests;
int mergedCnt=0;
SampleSHT sht;
tri::VertTmark<MeshType> markerFunctor;
typedef vcg::vertex::PointDistanceFunctor<ScalarType> VDistFunct;
std::vector<VertexType*> closests;
int mergedCnt=0;
sht.Set(m.vert.begin(), m.vert.end());
UpdateFlags<MeshType>::VertexClearV(m);
for(VertexIterator viv = m.vert.begin(); viv!= m.vert.end(); ++viv)
if(!(*viv).IsD() && !(*viv).IsV())
{
(*viv).SetV();
Point3<ScalarType> p = viv->cP();
Box3<ScalarType> bb(p-Point3<ScalarType>(radius,radius,radius),p+Point3<ScalarType>(radius,radius,radius));
GridGetInBox(sht, markerFunctor, bb, closests);
// qDebug("Vertex %i has %i closest", &*viv - &*m.vert.begin(),closests.size());
UpdateFlags<MeshType>::VertexClearV(m);
for(VertexIterator viv = m.vert.begin(); viv!= m.vert.end(); ++viv)
if(!(*viv).IsD() && !(*viv).IsV())
{
(*viv).SetV();
Point3<ScalarType> p = viv->cP();
Box3<ScalarType> bb(p-Point3<ScalarType>(radius,radius,radius),p+Point3<ScalarType>(radius,radius,radius));
GridGetInBox(sht, markerFunctor, bb, closests);
// qDebug("Vertex %i has %i closest", &*viv - &*m.vert.begin(),closests.size());
for(size_t i=0; i<closests.size(); ++i)
{
ScalarType dist = Distance(p,closests[i]->cP());
if(dist < radius && !closests[i]->IsV())
{
{
ScalarType dist = Distance(p,closests[i]->cP());
if(dist < radius && !closests[i]->IsV())
{
// printf("%f %f \n",dist,radius);
mergedCnt++;
closests[i]->SetV();
@ -1687,7 +1688,7 @@ static std::pair<int,int> RemoveSmallConnectedComponentsSize(MeshType &m, int m
{
std::vector< std::pair<int, typename MeshType::FacePointer> > CCV;
int TotalCC=ConnectedComponents(m, CCV);
int DeletedCC=0;
int DeletedCC=0;
ConnectedIterator<MeshType> ci;
for(unsigned int i=0;i<CCV.size();++i)
@ -1695,16 +1696,16 @@ static std::pair<int,int> RemoveSmallConnectedComponentsSize(MeshType &m, int m
std::vector<typename MeshType::FacePointer> FPV;
if(CCV[i].first<maxCCSize)
{
DeletedCC++;
DeletedCC++;
for(ci.start(m,CCV[i].second);!ci.completed();++ci)
FPV.push_back(*ci);
typename std::vector<typename MeshType::FacePointer>::iterator fpvi;
for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi)
Allocator<MeshType>::DeleteFace(m,(**fpvi));
Allocator<MeshType>::DeleteFace(m,(**fpvi));
}
}
return std::make_pair<int,int>(TotalCC,DeletedCC);
return std::make_pair(TotalCC,DeletedCC);
}
@ -1729,13 +1730,13 @@ static std::pair<int,int> RemoveSmallConnectedComponentsDiameter(MeshType &m, Sc
}
if(bb.Diag()<maxDiameter)
{
DeletedCC++;
DeletedCC++;
typename std::vector<typename MeshType::FacePointer>::iterator fpvi;
for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi)
tri::Allocator<MeshType>::DeleteFace(m,(**fpvi));
tri::Allocator<MeshType>::DeleteFace(m,(**fpvi));
}
}
return std::make_pair<int,int>(TotalCC,DeletedCC);
return std::make_pair(TotalCC,DeletedCC);
}
/// Remove the connected components greater than a given diameter
@ -1759,13 +1760,13 @@ static std::pair<int,int> RemoveHugeConnectedComponentsDiameter(MeshType &m, Sca
}
if(bb.Diag()>minDiameter)
{
DeletedCC++;
DeletedCC++;
typename std::vector<typename MeshType::FacePointer>::iterator fpvi;
for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi)
tri::Allocator<MeshType>::DeleteFace(m,(**fpvi));
tri::Allocator<MeshType>::DeleteFace(m,(**fpvi));
}
}
return std::make_pair<int,int>(TotalCC,DeletedCC);
return std::make_pair(TotalCC,DeletedCC);
}
}; // end class