Added algorithms for packing into a square rectangles and polygons

This commit is contained in:
Paolo Cignoni 2011-10-20 22:29:20 +00:00
parent e886684842
commit 3b7609a7e8
3 changed files with 519 additions and 0 deletions

60
vcg/math/similarity2.h Normal file
View File

@ -0,0 +1,60 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_SIMILARITY2_H
#define __VCG_SIMILARITY2_H
namespace vcg
{
/*
This class codify a similarity transformation in 2D
The applied transformation is exactly the same of the Similarity class
Tra(Sca(Rot(P)))
*/
template <class SCALAR_TYPE>
class Similarity2
{
public:
Similarity2():rotRad(0),tra(0,0),sca(1) {}
SCALAR_TYPE rotRad;
Point2<SCALAR_TYPE> tra;
SCALAR_TYPE sca;
};
template <class SCALAR_TYPE>
Point2<SCALAR_TYPE> operator*(const Similarity2<SCALAR_TYPE> &m, const Point2<SCALAR_TYPE> &p) {
Point2<SCALAR_TYPE> r = p;
// Apply Rotation to point
r.Rotate(m.rotRad);
r *= m.sca;
r += m.tra;
return r;
}
typedef Similarity2<float> Similarity2f;
typedef Similarity2<double> Similarity2d;
} // end namespace vcg
#endif // __VCG_SIMILARITY2_H

169
vcg/space/poly_packer.h Normal file
View File

@ -0,0 +1,169 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_POLY_PACKER_H__
#define __VCG_POLY_PACKER_H__
#include <limits>
#include <stdio.h>
#include <assert.h>
#include <algorithm>
#include <vector>
#include <vcg/space/box2.h>
#include <vcg/space/rect_packer.h>
#include <vcg/space/point2.h>
#include <vcg/math/similarity2.h>
namespace vcg
{
template <class SCALAR_TYPE>
class PolyPacker
{
typedef typename vcg::Box2<SCALAR_TYPE> Box2x;
typedef typename vcg::Point2<SCALAR_TYPE> Point2x;
typedef typename vcg::Similarity2<SCALAR_TYPE> Similarity2x;
public:
static Box2f getPolyBB(const std::vector<Point2x> &poly)
{
Box2f bb;
for(size_t i=0;i<poly.size();++i)
bb.Add(poly[i]);
return bb;
}
static Box2f getPolyOOBB(const std::vector<Point2x> &poly, float &rot)
{
const int stepNum=16;
float bestAngle;
float bestArea = std::numeric_limits<float>::max();
Box2f bestBB;
for(int i=0;i<stepNum;++i)
{
float angle = float(i)*(M_PI/2.0)/float(stepNum);
Box2f bb;
for(size_t i=0;i<poly.size();++i)
{
Point2f pp=poly[i];
pp.Rotate(angle);
bb.Add(pp);
}
if(bb.Area()<bestArea)
{
bestAngle=angle;
bestArea=bb.Area();
bestBB=bb;
}
}
rot=bestAngle;
return bestBB;
}
static bool PackAsEqualSquares(const std::vector< std::vector<Point2x> > &polyVec,
const Point2x containerSizeX,
std::vector<Similarity2x> &trVec,
Point2x &coveredContainer)
{
int minSide = int( std::min(containerSizeX[0],containerSizeX[1]));
const vcg::Point2i containerSize(minSide,minSide);
int polyPerLine = ceil(sqrt(polyVec.size()));
int pixelPerPoly = minSide / (polyPerLine);
if(pixelPerPoly < 1) return false;
trVec.clear();
trVec.resize(polyVec.size());
Box2f bbMax;
std::vector<Box2x> bbVec;
for(int i=0;i<polyVec.size();++i)
{
bbVec.push_back(getPolyBB(polyVec[i]));
bbMax.Add(bbVec.back());
}
float unitScale = 1.0/std::max(bbMax.DimX(),bbMax.DimY());
float polyScale = unitScale * pixelPerPoly;
int baseX =0;
int baseY=0;
for(size_t i=0;i<polyVec.size();++i)
{
trVec[i].sca = polyScale; // the same scaling for all the polygons;
trVec[i].tra = Point2f(baseX+(0.5*pixelPerPoly), baseY+(0.5*pixelPerPoly)) - bbVec[i].Center()*polyScale;
baseX +=pixelPerPoly;
if(baseX +pixelPerPoly>minSide)
{
baseY+=pixelPerPoly;
baseX=0;
}
}
return true;
}
static bool PackAsAxisAlignedRect(const std::vector< std::vector<Point2x> > &polyVec,
const Point2x containerSizeX,
std::vector<Similarity2x> &trVec,
Point2x &coveredContainer)
{
trVec.clear();
trVec.resize(polyVec.size());
std::vector<Box2x> bbVec;
for(int i=0;i<polyVec.size();++i)
{
assert(polyVec[i].size()>0);
bbVec.push_back(getPolyBB(polyVec[i]));
}
return RectPacker<float>::Pack(bbVec,containerSizeX,trVec,coveredContainer);
}
static bool PackAsObjectOrientedRect(const std::vector< std::vector<Point2x> > &polyVec,
const Point2x containerSizeX,
std::vector<Similarity2x> &trVec,
Point2x &coveredContainer)
{
trVec.clear();
trVec.resize(polyVec.size());
std::vector<Box2x> bbVec;
std::vector<float> rotVec;
for(int i=0;i<polyVec.size();++i)
{
float rot;
bbVec.push_back(getPolyOOBB(polyVec[i],rot));
rotVec.push_back(rot);
}
bool ret= RectPacker<float>::Pack(bbVec,containerSizeX,trVec,coveredContainer);
for(int i=0;i<polyVec.size();++i)
{
trVec[i].rotRad=rotVec[i];
}
return true;
}
}; // end class
} // end namespace vcg
#endif // POLY_PACKER_H

290
vcg/space/rect_packer.h Normal file
View File

@ -0,0 +1,290 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_RectPacker__
#define __VCG_RectPacker__
#include <stdio.h>
#include <assert.h>
#include <algorithm>
#include <vector>
#include <vcg/space/point2.h>
#include <vcg/math/similarity2.h>
namespace vcg
{
template <class SCALAR_TYPE>
class RectPacker
{
typedef typename vcg::Box2<SCALAR_TYPE> Box2x;
typedef typename vcg::Point2<SCALAR_TYPE> Point2x;
typedef typename vcg::Similarity2<SCALAR_TYPE> Similarity2x;
public:
static bool Pack(const std::vector<Box2x > & rectVec, /// the set of rectangles that have to be packed (generic floats, no req.)
const Point2x containerSizeX, /// the size of the container where they has to be fitted (usually in pixel size)
std::vector<Similarity2x> &trVec, /// the result, a set of similarity transformation that have to be applied to the rect to get their position
Point2x &coveredContainer) /// the sub portion of the container covered by the solution.
{
float bestOccupancy=0,currOccupancy=0.1f;
std::vector<Similarity2x> currTrVec;
Point2x currCovered;
bool ret=true;
while(ret)
{
ret=PackOccupancy(rectVec,containerSizeX,currOccupancy,currTrVec,currCovered);
if(ret)
{
assert(currOccupancy>bestOccupancy);
bestOccupancy = currOccupancy;
trVec=currTrVec;
coveredContainer=currCovered;
currOccupancy = (2.0*currOccupancy+1.0)/3.0;
}
}
if(bestOccupancy>0) return true;
return false;
}
static bool PackOccupancy(const std::vector<Box2x > & rectVec, /// the set of rectangles that have to be packed
const Point2x containerSizeX, /// the size of the container where they has to be fitted (usually in pixel size)
const SCALAR_TYPE occupancyRatio, /// the expected percentage of the container that has to be covered
std::vector<Similarity2x> &trVec, /// the result, a set of similarity transformation that have to be applied to the rect to get their position
Point2x &coveredContainer) /// the sub portion of the container covered by the solution.
{
Point2x maxSize(0,0);
const vcg::Point2i containerSize=Point2i::Construct(containerSizeX);
SCALAR_TYPE areaSum=0;
SCALAR_TYPE areaContainer = containerSize[0]*containerSize[1];
for (size_t i=0;i<rectVec.size();++i)
{
maxSize[0]=std::max(maxSize[0],rectVec[i].DimX());
maxSize[1]=std::max(maxSize[1],rectVec[i].DimY());
areaSum += rectVec[i].DimX() * rectVec[i].DimY();
}
Point2x scaleFactor2(containerSize[0]/maxSize[0],containerSize[1]/maxSize[1]);
SCALAR_TYPE unitScaleFactor = std::min(scaleFactor2[0],scaleFactor2[1]);
SCALAR_TYPE scaleFactor = (sqrt(areaContainer)/sqrt(areaSum))*sqrt(occupancyRatio);
printf("unitScaleFactor %6.3f\n",unitScaleFactor);
printf("scaleFactor %6.3f\n",scaleFactor);
printf("areaContainer %6.3f\n",areaContainer);
printf("areaSum %6.3f\n",areaSum);
std::vector<vcg::Point2i> sizes(rectVec.size());
for (size_t i=0;i<rectVec.size();++i)
{
sizes[i][0]=ceil(rectVec[i].DimX()*scaleFactor);
sizes[i][1]=ceil(rectVec[i].DimY()*scaleFactor);
}
std::vector<vcg::Point2i> posiz;
vcg::Point2i global_size;
bool res = PackInt(sizes,containerSize,posiz,global_size);
if(!res) return false;
trVec.resize(rectVec.size());
for (size_t i=0;i<rectVec.size();++i)
{
trVec[i].tra = Point2x::Construct(posiz[i]) - rectVec[i].min*scaleFactor;
trVec[i].sca = scaleFactor;
// qDebug("rectVec[ %5i ] (%6.2f %6.2f) - (%6.2f %6.2f) : SizeI (%6i %6i) Posiz (%6i %6i)",i,
// rectVec[i].min[0],rectVec[i].min[1], rectVec[i].max[0],rectVec[i].max[1],
// sizes[i][0],sizes[i][1], posiz[i][0],posiz[i][1]);
}
printf("globalSize (%6i %6i)\n",global_size[0],global_size[1]);
coveredContainer = Point2x::Construct(global_size);
return true;
}
private:
class ComparisonFunctor
{
public:
const std::vector<vcg::Point2i> & v;
inline ComparisonFunctor( const std::vector<vcg::Point2i> & nv ) : v(nv) { }
inline bool operator() ( int a, int b )
{
const Point2i &va=v[a];
const Point2i &vb=v[b];
return (va[1]!=vb[1])?(va[1]>vb[1]):
(va[0]>vb[0]);
}
};
/* This is the low level function that packs a set of int rects onto a grid.
Based on the criptic code written by Claudio Rocchini
Greedy algorithm.
Sort the rect according their height (larger first)
and then place them in the position that minimize the area of the bbox of all the placed rectangles
To efficiently skip occupied areas it fills the grid with the id of the already placed rectangles.
*/
static bool PackInt(const std::vector<vcg::Point2i> & sizes, // the sizes of the rect to be packed
const vcg::Point2i & max_size, // the size of the container
std::vector<vcg::Point2i> & posiz, // the found positionsof each rect
vcg::Point2i & global_size) // the size of smallest rect covering all the packed rect
{
int n = (int)(sizes.size());
assert(n>0 && max_size[0]>0 && max_size[1]>0);
int gridSize = max_size[0]*max_size[1]; // Size dell griglia
int i,j,x,y;
posiz.resize(n,Point2i(-1,-1));
std::vector<int> grid(gridSize,0); // Creazione griglia
#define Grid(q,w) (grid[(q)+(w)*max_size[0]])
// Build a permutation that keeps the reordiering of the sizes vector according to their width
std::vector<int> perm(n);
for(i=0;i<n;i++) perm[i] = i;
ComparisonFunctor cmp(sizes);
sort(perm.begin(),perm.end(),cmp);
if(sizes[perm[0]][0]>max_size[0] || sizes[perm[0]][1]>max_size[1] )
return false;
// Posiziono il primo
j = perm[0];
global_size = sizes[j];
posiz[j] = Point2i(0,0);
// Fill the grid with the id(+1) of the first
for(y=0;y<global_size[1];y++)
for(x=0;x<global_size[0];x++)
{
assert(x>=0 && x<max_size[0]);
assert(y>=0 && y<max_size[1]);
grid[x+y*max_size[0]] = j+1;
}
// Posiziono tutti gli altri
for(i=1;i<n;++i)
{
j = perm[i];
assert(j>=0 && j<n);
assert(posiz[j][0]==-1);
int bestx,besty,bestsx,bestsy,bestArea;
bestArea = -1;
int sx = sizes[j][0]; // Pe comodita' mi copio la dimensione
int sy = sizes[j][1];
assert(sx>0 && sy>0);
// Calcolo la posizione limite
int lx = std::min(global_size[0],max_size[0]-sx);
int ly = std::min(global_size[1],max_size[1]-sy);
assert(lx>0 && ly>0);
int finterior = 0;
for(y=0;y<=ly;y++)
{
for(x=0;x<=lx;)
{
int px;
int c = Grid(x,y+sy-1);
// Intersection check
if(!c) c = Grid(x+sx-1,y+sy-1);
if(!c)
{
for(px=x;px<x+sx;px++)
{
c = Grid(px,y);
if(c) break;
}
}
if(c) // Salto il rettangolo
{
--c; // we store id+1...
assert(c>=0 && c<n);
assert(posiz[c][0]!=-1);
x = posiz[c][0] + sizes[c][0];
}
else // x,y are an admissible position where we can put the rectangle
{
int nsx = std::max(global_size[0],x+sx);
int nsy = std::max(global_size[1],y+sy);
int area = nsx*nsy;
if(bestArea==-1 || bestArea>area)
{
bestx = x;
besty = y;
bestsx = nsx;
bestsy = nsy;
bestArea = area;
if( bestsx==global_size[0] && bestsy==global_size[1] )
finterior = 1;
}
break;
}
if(finterior) break;
}
if( finterior ) break;
}
if(bestArea==-1)
{
return false;
}
posiz[j][0] = bestx;
posiz[j][1] = besty;
global_size[0] = bestsx;
global_size[1] = bestsy;
for(y=posiz[j][1];y<posiz[j][1]+sy;y++)
for(x=posiz[j][0];x<posiz[j][0]+sx;x++)
{
assert(x>=0 && x<max_size[0]);
assert(y>=0 && y<max_size[1]);
grid[x+y*max_size[0]] = j+1;
}
}
#undef Grid
return true;
}
}; // end class
} // end namespace vcg
#endif