some clean up PrincipalDirections (not working well)

added PrincipalDirectionsPCA 
added VertexCurvature that takes a mesh (the name has to be changed)
This commit is contained in:
ganovelli 2008-08-19 10:15:32 +00:00
parent 4e81e65145
commit 3c69c98cd8
1 changed files with 580 additions and 475 deletions

View File

@ -55,6 +55,7 @@ the vertex
#ifndef VCGLIB_UPDATE_CURVATURE_
#define VCGLIB_UPDATE_CURVATURE_
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/math/base.h>
#include <vcg/math/matrix.h>
#include <vcg/simplex/face/topology.h>
@ -62,6 +63,12 @@ the vertex
#include <vcg/simplex/face/jumping_pos.h>
#include <vcg/container/simple_temporary_data.h>
#include <vcg/complex/trimesh/update/normal.h>
#include <vcg/complex/trimesh/point_sampling.h>
#include <vcg/complex/trimesh/append.h>
#include <vcg/complex/intersection.h>
#include <vcg/complex/trimesh/inertia.h>
#include <wrap/io_trimesh/export_PLY.h>
namespace vcg {
namespace tri {
@ -80,6 +87,7 @@ class UpdateCurvature
{
public:
typedef typename MeshType MeshType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
@ -96,8 +104,10 @@ private:
typedef struct AdjVertex {
VertexType * vert;
float doubleArea;
bool isBorder;
bool isBorder;
};
public:
/// \brief Compute principal direction and magniuto of curvature.
@ -109,6 +119,7 @@ public:
assert(m.HasVFTopology());
vcg::tri::UpdateNormals<MeshType>::PerVertexNormalized(m);
vcg::tri::UpdateFlags<MeshType>::VertexBorderFromFace(m);
VertexIterator vi;
for (vi =m.vert.begin(); vi !=m.vert.end(); ++vi) {
@ -117,51 +128,56 @@ public:
VertexType * central_vertex = &(*vi);
std::vector<float> weights;
std::vector<AdjVertex> vertices;
std::vector<AdjVertex> vertices_dup,vertices;
assert((*vi).VFp() != NULL);
vcg::face::JumpingPos<FaceType> pos((*vi).VFp(), central_vertex);
VertexType* firstV = pos.VFlip();
VertexType* tempV;
float totalDoubleAreaSize = 0.0f;
if (((firstV->cP()-central_vertex->cP())^(pos.VFlip()->cP()-central_vertex->cP()))*central_vertex->cN()<=0.0f)
{
pos.Set(central_vertex->VFp(), central_vertex);
pos.FlipE();
firstV = pos.VFlip();
}
else pos.Set(central_vertex->VFp(), central_vertex);
FaceType * startf = pos.F();
FaceType* tempF;
int hh = 0;
do
{
pos.NextE();
tempV = pos.VFlip();
{ hh++;
AdjVertex v;
v.isBorder = pos.IsBorder();
v.vert = tempV;
v.doubleArea = ((pos.F()->V(1)->cP() - pos.F()->V(0)->cP()) ^ (pos.F()->V(2)->cP()- pos.F()->V(0)->cP())).Norm();;
totalDoubleAreaSize += v.doubleArea;
pos.FlipE();
v.vert = pos.VFlip();
v.doubleArea = vcg::DoubleArea(*pos.F());
vertices_dup.push_back(v);
pos.FlipE();
v.vert = pos.VFlip();
v.doubleArea = vcg::DoubleArea(*pos.F());
vertices_dup.push_back(v);
pos.NextFE();
tempF = pos.F();
}
while(tempF != startf);
AdjVertex v;
for(int i = 1 ; i <= vertices_dup.size(); )
{
v.vert = vertices_dup[(i)%vertices_dup.size()].vert;
v.doubleArea = vertices_dup[i%vertices_dup.size()].doubleArea ;
if( vertices_dup[(i)%vertices_dup.size()].vert == vertices_dup[(i+1)%vertices_dup.size()].vert){
v.doubleArea += vertices_dup[(i+1)%vertices_dup.size()].doubleArea;
i+=2;
}else
++i;
totalDoubleAreaSize+=v.doubleArea;
vertices.push_back(v);
}
while(tempV != firstV);
for (int i = 0; i < vertices.size(); ++i) {
if (vertices[i].isBorder) {
for (int i = 0; i < vertices.size(); ++i)
weights.push_back(vertices[i].doubleArea / totalDoubleAreaSize);
} else {
weights.push_back(0.5f * (vertices[i].doubleArea + vertices[(i-1)%vertices.size()].doubleArea) / totalDoubleAreaSize);
}
assert(weights.back() < 1.0f);
}
Matrix33<ScalarType> Tp;
for (int i = 0; i < 3; ++i)
Tp[i][i] = 1.0f - powf(central_vertex->cN()[i],2);
Tp[0][1] = Tp[1][0] = -1.0f * (central_vertex->N()[0] * central_vertex->cN()[1]);
Tp[0][1] = Tp[1][0] = -1.0f * (central_vertex->cN()[0] * central_vertex->cN()[1]);
Tp[1][2] = Tp[2][1] = -1.0f * (central_vertex->cN()[1] * central_vertex->cN()[2]);
Tp[0][2] = Tp[2][0] = -1.0f * (central_vertex->cN()[0] * central_vertex->cN()[2]);
@ -171,7 +187,7 @@ public:
for (int i = 0; i < vertices.size(); ++i) {
CoordType edge = (central_vertex->cP() - vertices[i].vert->cP());
float curvature = (2.0f * (central_vertex->cN() * edge) ) / edge.SquaredNorm();
CoordType T = (Tp*edge).Normalize();
CoordType T = (Tp*edge).Normalize()*(-1.0); // -1.0 useless, just to conform the paper
tempMatrix.ExternalProduct(T,T);
M += tempMatrix * weights[i] * curvature ;
}
@ -191,7 +207,6 @@ public:
Matrix33<ScalarType> Qt(Q);
Qt.Transpose();
Matrix33<ScalarType> QtMQ = (Qt * M * Q);
CoordType bl = Q.GetColumn(0);
@ -202,6 +217,8 @@ public:
// Gabriel Taubin hint and Valentino Fiorin impementation
float qt21 = QtMQ[2][1];
float qt12 = QtMQ[1][2];
float alpha = QtMQ[1][1]-QtMQ[2][2];
float beta = QtMQ[2][1];
@ -240,35 +257,32 @@ public:
c = best_c;
s = best_s;
vcg::ndim::MatrixMNf minor2x2 (2,2);
vcg::ndim::MatrixMNf S (2,2);
vcg::Matrix33<ScalarType> minor22(QtMQ);
// clean up
minor22[0][0] = minor22[0][1] = minor22[0][2] = 0.0;
minor22[0][0] = minor22[1][0] = minor22[2][0] = 0.0;
vcg::Matrix33<ScalarType> S; S.SetIdentity();
S[1][1] = S[2][2] = c;
S[1][2] = s;
S[2][1] = -1.0f * s;
minor2x2[0][0] = QtMQ[1][1];
minor2x2[0][1] = QtMQ[1][2];
minor2x2[1][0] = QtMQ[2][1];
minor2x2[1][1] = QtMQ[2][2];
S[0][0] = S[1][1] = c;
S[0][1] = s;
S[1][0] = -1.0f * s;
vcg::ndim::MatrixMNf St (S);
vcg::Matrix33<ScalarType> St (S);
St.Transpose();
vcg::ndim::MatrixMNf StMS(St * minor2x2 * S);
vcg::Matrix33<ScalarType> StMS(St * minor22 * S);
float Principal_Curvature1 = (3.0f * StMS[0][0]) - StMS[1][1];
float Principal_Curvature2 = (3.0f * StMS[1][1]) - StMS[0][0];
float Principal_Curvature1 = (3.0f * StMS[1][1]) - StMS[2][2];
float Principal_Curvature2 = (3.0f * StMS[2][2]) - StMS[1][1];
CoordType Principal_Direction1 = T1 * c - T2 * s;
CoordType Principal_Direction2 = T1 * s + T2 * c;
(*vi).PD1() = Principal_Direction1;
(*vi).PD2() = Principal_Direction2;
(*vi).K1() = Principal_Curvature1;
(*vi).K2() = Principal_Curvature2;
}
(*vi).K1() = Principal_Curvature1;
(*vi).K2() = Principal_Curvature2;
}
}
}
@ -280,7 +294,96 @@ public:
float A;
};
/** Curvature meseaure as described in the paper:
Robust principal curvatures on Multiple Scales, Yong-Liang Yang, Yu-Kun Lai, Shi-Min Hu Helmut Pottmann
SGP 2004
If pointVSfaceInt==true the covariance is computed by montecarlo sampling on the mesh (faster)
If pointVSfaceInt==false the covariance is computed by (analytic)integration over the surface (slower)
*/
typedef vcg::GridStaticPtr <typename MeshType::FaceType, typename MeshType::ScalarType > MeshGridType;
typedef vcg::GridStaticPtr <typename MeshType::VertexType, typename MeshType::ScalarType > PointsGridType;
static void PrincipalDirectionsPCA(MeshType &m, ScalarType r, bool pointVSfaceInt = true) {
std::vector<MeshType:: VertexType*> closests;
std::vector<MeshType::ScalarType> distances;
std::vector<MeshType::CoordType> points;
VertexIterator vi;
ScalarType area;
MeshType tmpM;
std::vector<typename MeshType::CoordType>::iterator ii;
vcg::tri::TrivialSampler<MeshType> vs;
MeshGridType mGrid;
PointsGridType pGrid;
// Fill the grid used
if(pointVSfaceInt){
area = Stat<MeshType>::ComputeMeshArea(m);
vcg::tri::SurfaceSampling<MeshType,vcg::tri::TrivialSampler<MeshType> >::Montecarlo(m,vs,1000 * area / (2*M_PI*r*r ));
vi = vcg::tri::Allocator<MeshType>::AddVertices(tmpM,m.vert.size());
for(int y = 0; y < m.vert.size(); ++y,++vi) (*vi).P() = m.vert[y].P();
pGrid.Set(tmpM.vert.begin(),tmpM.vert.end());
} else{ mGrid.Set(m.face.begin(),m.face.end()); }
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi){
vcg::Matrix33<ScalarType> A,eigenvectors;
vcg::Point3<ScalarType> bp,eigenvalues;
int nrot;
// sample the neighborhood
if(pointVSfaceInt)
{
vcg::trimesh::GetInSphereVertex<
MeshType,
PointsGridType,std::vector<MeshType::VertexType*>,
std::vector<MeshType::ScalarType>,
std::vector<MeshType::CoordType> >(tmpM,pGrid, (*vi).cP(),r ,closests,distances,points);
A.Covariance(points,bp);
A*=area*area/1000;
}
else{
IntersectionBallMesh<MeshType,ScalarType>( m ,vcg::Sphere3<ScalarType>((*vi).cP(),r),tmpM );
vcg::Point3<ScalarType> _bary;
vcg::tri::Inertia<MeshType>::Covariance(tmpM,_bary,A);
}
Jacobi(A, eigenvalues , eigenvectors, nrot);
// get the estimate of curvatures from eigenvalues and eigenvectors
// find the 2 most tangent eigenvectors (by finding the one closest to the normal)
int best = 0; ScalarType bestv = fabs( (*vi).cN() * eigenvectors.GetColumn(0).Normalize());
for(int i = 1 ; i < 3; ++i){
ScalarType prod = fabs((*vi).cN() * eigenvectors.GetColumn(i).Normalize());
if( prod > bestv){bestv = prod; best = i;}
}
(*vi).PD1() = eigenvectors.GetColumn( (best+1)%3).Normalize();
(*vi).PD2() = eigenvectors.GetColumn( (best+2)%3).Normalize();
// project them to the plane identified by the normal
vcg::Matrix33<ScalarType> rot;
ScalarType angle = acos((*vi).PD1()*(*vi).N());
rot.SetRotateRad( - (M_PI*0.5 - angle),(*vi).PD1()^(*vi).N());
(*vi).PD1() = rot*(*vi).PD1();
angle = acos((*vi).PD2()*(*vi).N());
rot.SetRotateRad( - (M_PI*0.5 - angle),(*vi).PD2()^(*vi).N());
(*vi).PD2() = rot*(*vi).PD2();
// copmutes the curvature values
const ScalarType r5 = r*r*r*r*r;
const ScalarType r6 = r*r5;
(*vi).K1() = (2.0/5.0) * (4.0*M_PI*r5 + 15*eigenvalues[(best+2)%3]-45.0*eigenvalues[(best+1)%3])/(M_PI*r6);
(*vi).K2() = (2.0/5.0) * (4.0*M_PI*r5 + 15*eigenvalues[(best+1)%3]-45.0*eigenvalues[(best+2)%3])/(M_PI*r6);
if((*vi).K1() < (*vi).K2()) { std::swap((*vi).K1(),(*vi).K2());
std::swap((*vi).PD1(),(*vi).PD2());
}
}
}
/// \brief Computes the discrete gaussian curvature.
/** For further details, please, refer to: \n
@ -295,8 +398,8 @@ public:
VertexIterator vi;
typename MeshType::CoordType e01v ,e12v ,e20v;
SimpleTempData<VertContainer, AreaData> TDAreaPtr(m.vert); //TDAreaPtr.Start();
SimpleTempData<VertContainer, typename MeshType::CoordType> TDContr(m.vert); //TDContr.Start();
SimpleTempData<VertContainer, AreaData> TDAreaPtr(m.vert);
SimpleTempData<VertContainer, typename MeshType::CoordType> TDContr(m.vert);
vcg::tri::UpdateNormals<MeshType>::PerVertexNormalized(m);
//Compute AreaMix in H (vale anche per K)
@ -388,10 +491,6 @@ public:
(*vi).Kg() /= (TDAreaPtr)[*vi].A;
}
}
// TDAreaPtr.Stop();
// TDContr.Stop();
}
@ -467,6 +566,12 @@ public:
return A;
}
static void VertexCurvature(MeshType & m){
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
VertexCurvature(&*vi,false);
}
};