some clean up PrincipalDirections (not working well)
added PrincipalDirectionsPCA added VertexCurvature that takes a mesh (the name has to be changed)
This commit is contained in:
parent
4e81e65145
commit
3c69c98cd8
|
@ -55,6 +55,7 @@ the vertex
|
|||
#ifndef VCGLIB_UPDATE_CURVATURE_
|
||||
#define VCGLIB_UPDATE_CURVATURE_
|
||||
|
||||
#include <vcg/space/index/grid_static_ptr.h>
|
||||
#include <vcg/math/base.h>
|
||||
#include <vcg/math/matrix.h>
|
||||
#include <vcg/simplex/face/topology.h>
|
||||
|
@ -62,6 +63,12 @@ the vertex
|
|||
#include <vcg/simplex/face/jumping_pos.h>
|
||||
#include <vcg/container/simple_temporary_data.h>
|
||||
#include <vcg/complex/trimesh/update/normal.h>
|
||||
#include <vcg/complex/trimesh/point_sampling.h>
|
||||
#include <vcg/complex/trimesh/append.h>
|
||||
#include <vcg/complex/intersection.h>
|
||||
#include <vcg/complex/trimesh/inertia.h>
|
||||
|
||||
#include <wrap/io_trimesh/export_PLY.h>
|
||||
|
||||
namespace vcg {
|
||||
namespace tri {
|
||||
|
@ -80,6 +87,7 @@ class UpdateCurvature
|
|||
{
|
||||
|
||||
public:
|
||||
typedef typename MeshType MeshType;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::FacePointer FacePointer;
|
||||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
|
@ -96,8 +104,10 @@ private:
|
|||
typedef struct AdjVertex {
|
||||
VertexType * vert;
|
||||
float doubleArea;
|
||||
bool isBorder;
|
||||
bool isBorder;
|
||||
};
|
||||
|
||||
|
||||
public:
|
||||
/// \brief Compute principal direction and magniuto of curvature.
|
||||
|
||||
|
@ -109,6 +119,7 @@ public:
|
|||
assert(m.HasVFTopology());
|
||||
|
||||
vcg::tri::UpdateNormals<MeshType>::PerVertexNormalized(m);
|
||||
vcg::tri::UpdateFlags<MeshType>::VertexBorderFromFace(m);
|
||||
|
||||
VertexIterator vi;
|
||||
for (vi =m.vert.begin(); vi !=m.vert.end(); ++vi) {
|
||||
|
@ -117,51 +128,56 @@ public:
|
|||
VertexType * central_vertex = &(*vi);
|
||||
|
||||
std::vector<float> weights;
|
||||
std::vector<AdjVertex> vertices;
|
||||
std::vector<AdjVertex> vertices_dup,vertices;
|
||||
|
||||
assert((*vi).VFp() != NULL);
|
||||
vcg::face::JumpingPos<FaceType> pos((*vi).VFp(), central_vertex);
|
||||
|
||||
VertexType* firstV = pos.VFlip();
|
||||
VertexType* tempV;
|
||||
float totalDoubleAreaSize = 0.0f;
|
||||
|
||||
if (((firstV->cP()-central_vertex->cP())^(pos.VFlip()->cP()-central_vertex->cP()))*central_vertex->cN()<=0.0f)
|
||||
{
|
||||
pos.Set(central_vertex->VFp(), central_vertex);
|
||||
pos.FlipE();
|
||||
firstV = pos.VFlip();
|
||||
}
|
||||
else pos.Set(central_vertex->VFp(), central_vertex);
|
||||
|
||||
FaceType * startf = pos.F();
|
||||
FaceType* tempF;
|
||||
int hh = 0;
|
||||
do
|
||||
{
|
||||
pos.NextE();
|
||||
tempV = pos.VFlip();
|
||||
|
||||
{ hh++;
|
||||
AdjVertex v;
|
||||
|
||||
v.isBorder = pos.IsBorder();
|
||||
v.vert = tempV;
|
||||
v.doubleArea = ((pos.F()->V(1)->cP() - pos.F()->V(0)->cP()) ^ (pos.F()->V(2)->cP()- pos.F()->V(0)->cP())).Norm();;
|
||||
totalDoubleAreaSize += v.doubleArea;
|
||||
pos.FlipE();
|
||||
v.vert = pos.VFlip();
|
||||
v.doubleArea = vcg::DoubleArea(*pos.F());
|
||||
vertices_dup.push_back(v);
|
||||
|
||||
pos.FlipE();
|
||||
v.vert = pos.VFlip();
|
||||
v.doubleArea = vcg::DoubleArea(*pos.F());
|
||||
vertices_dup.push_back(v);
|
||||
|
||||
pos.NextFE();
|
||||
tempF = pos.F();
|
||||
}
|
||||
while(tempF != startf);
|
||||
|
||||
AdjVertex v;
|
||||
for(int i = 1 ; i <= vertices_dup.size(); )
|
||||
{
|
||||
v.vert = vertices_dup[(i)%vertices_dup.size()].vert;
|
||||
v.doubleArea = vertices_dup[i%vertices_dup.size()].doubleArea ;
|
||||
if( vertices_dup[(i)%vertices_dup.size()].vert == vertices_dup[(i+1)%vertices_dup.size()].vert){
|
||||
v.doubleArea += vertices_dup[(i+1)%vertices_dup.size()].doubleArea;
|
||||
i+=2;
|
||||
}else
|
||||
++i;
|
||||
|
||||
totalDoubleAreaSize+=v.doubleArea;
|
||||
vertices.push_back(v);
|
||||
}
|
||||
while(tempV != firstV);
|
||||
|
||||
for (int i = 0; i < vertices.size(); ++i) {
|
||||
if (vertices[i].isBorder) {
|
||||
for (int i = 0; i < vertices.size(); ++i)
|
||||
weights.push_back(vertices[i].doubleArea / totalDoubleAreaSize);
|
||||
} else {
|
||||
weights.push_back(0.5f * (vertices[i].doubleArea + vertices[(i-1)%vertices.size()].doubleArea) / totalDoubleAreaSize);
|
||||
}
|
||||
assert(weights.back() < 1.0f);
|
||||
}
|
||||
|
||||
Matrix33<ScalarType> Tp;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
Tp[i][i] = 1.0f - powf(central_vertex->cN()[i],2);
|
||||
Tp[0][1] = Tp[1][0] = -1.0f * (central_vertex->N()[0] * central_vertex->cN()[1]);
|
||||
Tp[0][1] = Tp[1][0] = -1.0f * (central_vertex->cN()[0] * central_vertex->cN()[1]);
|
||||
Tp[1][2] = Tp[2][1] = -1.0f * (central_vertex->cN()[1] * central_vertex->cN()[2]);
|
||||
Tp[0][2] = Tp[2][0] = -1.0f * (central_vertex->cN()[0] * central_vertex->cN()[2]);
|
||||
|
||||
|
@ -171,7 +187,7 @@ public:
|
|||
for (int i = 0; i < vertices.size(); ++i) {
|
||||
CoordType edge = (central_vertex->cP() - vertices[i].vert->cP());
|
||||
float curvature = (2.0f * (central_vertex->cN() * edge) ) / edge.SquaredNorm();
|
||||
CoordType T = (Tp*edge).Normalize();
|
||||
CoordType T = (Tp*edge).Normalize()*(-1.0); // -1.0 useless, just to conform the paper
|
||||
tempMatrix.ExternalProduct(T,T);
|
||||
M += tempMatrix * weights[i] * curvature ;
|
||||
}
|
||||
|
@ -191,7 +207,6 @@ public:
|
|||
|
||||
Matrix33<ScalarType> Qt(Q);
|
||||
Qt.Transpose();
|
||||
|
||||
Matrix33<ScalarType> QtMQ = (Qt * M * Q);
|
||||
|
||||
CoordType bl = Q.GetColumn(0);
|
||||
|
@ -202,6 +217,8 @@ public:
|
|||
// Gabriel Taubin hint and Valentino Fiorin impementation
|
||||
float qt21 = QtMQ[2][1];
|
||||
float qt12 = QtMQ[1][2];
|
||||
|
||||
|
||||
float alpha = QtMQ[1][1]-QtMQ[2][2];
|
||||
float beta = QtMQ[2][1];
|
||||
|
||||
|
@ -240,35 +257,32 @@ public:
|
|||
c = best_c;
|
||||
s = best_s;
|
||||
|
||||
vcg::ndim::MatrixMNf minor2x2 (2,2);
|
||||
vcg::ndim::MatrixMNf S (2,2);
|
||||
vcg::Matrix33<ScalarType> minor22(QtMQ);
|
||||
// clean up
|
||||
minor22[0][0] = minor22[0][1] = minor22[0][2] = 0.0;
|
||||
minor22[0][0] = minor22[1][0] = minor22[2][0] = 0.0;
|
||||
|
||||
vcg::Matrix33<ScalarType> S; S.SetIdentity();
|
||||
S[1][1] = S[2][2] = c;
|
||||
S[1][2] = s;
|
||||
S[2][1] = -1.0f * s;
|
||||
|
||||
minor2x2[0][0] = QtMQ[1][1];
|
||||
minor2x2[0][1] = QtMQ[1][2];
|
||||
minor2x2[1][0] = QtMQ[2][1];
|
||||
minor2x2[1][1] = QtMQ[2][2];
|
||||
|
||||
S[0][0] = S[1][1] = c;
|
||||
S[0][1] = s;
|
||||
S[1][0] = -1.0f * s;
|
||||
|
||||
vcg::ndim::MatrixMNf St (S);
|
||||
vcg::Matrix33<ScalarType> St (S);
|
||||
St.Transpose();
|
||||
|
||||
vcg::ndim::MatrixMNf StMS(St * minor2x2 * S);
|
||||
vcg::Matrix33<ScalarType> StMS(St * minor22 * S);
|
||||
|
||||
float Principal_Curvature1 = (3.0f * StMS[0][0]) - StMS[1][1];
|
||||
float Principal_Curvature2 = (3.0f * StMS[1][1]) - StMS[0][0];
|
||||
float Principal_Curvature1 = (3.0f * StMS[1][1]) - StMS[2][2];
|
||||
float Principal_Curvature2 = (3.0f * StMS[2][2]) - StMS[1][1];
|
||||
|
||||
CoordType Principal_Direction1 = T1 * c - T2 * s;
|
||||
CoordType Principal_Direction2 = T1 * s + T2 * c;
|
||||
|
||||
(*vi).PD1() = Principal_Direction1;
|
||||
(*vi).PD2() = Principal_Direction2;
|
||||
(*vi).K1() = Principal_Curvature1;
|
||||
(*vi).K2() = Principal_Curvature2;
|
||||
}
|
||||
(*vi).K1() = Principal_Curvature1;
|
||||
(*vi).K2() = Principal_Curvature2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -280,7 +294,96 @@ public:
|
|||
float A;
|
||||
};
|
||||
|
||||
/** Curvature meseaure as described in the paper:
|
||||
Robust principal curvatures on Multiple Scales, Yong-Liang Yang, Yu-Kun Lai, Shi-Min Hu Helmut Pottmann
|
||||
SGP 2004
|
||||
If pointVSfaceInt==true the covariance is computed by montecarlo sampling on the mesh (faster)
|
||||
If pointVSfaceInt==false the covariance is computed by (analytic)integration over the surface (slower)
|
||||
*/
|
||||
|
||||
typedef vcg::GridStaticPtr <typename MeshType::FaceType, typename MeshType::ScalarType > MeshGridType;
|
||||
typedef vcg::GridStaticPtr <typename MeshType::VertexType, typename MeshType::ScalarType > PointsGridType;
|
||||
|
||||
static void PrincipalDirectionsPCA(MeshType &m, ScalarType r, bool pointVSfaceInt = true) {
|
||||
std::vector<MeshType:: VertexType*> closests;
|
||||
std::vector<MeshType::ScalarType> distances;
|
||||
std::vector<MeshType::CoordType> points;
|
||||
VertexIterator vi;
|
||||
ScalarType area;
|
||||
MeshType tmpM;
|
||||
std::vector<typename MeshType::CoordType>::iterator ii;
|
||||
vcg::tri::TrivialSampler<MeshType> vs;
|
||||
|
||||
MeshGridType mGrid;
|
||||
PointsGridType pGrid;
|
||||
|
||||
// Fill the grid used
|
||||
if(pointVSfaceInt){
|
||||
area = Stat<MeshType>::ComputeMeshArea(m);
|
||||
vcg::tri::SurfaceSampling<MeshType,vcg::tri::TrivialSampler<MeshType> >::Montecarlo(m,vs,1000 * area / (2*M_PI*r*r ));
|
||||
vi = vcg::tri::Allocator<MeshType>::AddVertices(tmpM,m.vert.size());
|
||||
for(int y = 0; y < m.vert.size(); ++y,++vi) (*vi).P() = m.vert[y].P();
|
||||
pGrid.Set(tmpM.vert.begin(),tmpM.vert.end());
|
||||
} else{ mGrid.Set(m.face.begin(),m.face.end()); }
|
||||
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi){
|
||||
vcg::Matrix33<ScalarType> A,eigenvectors;
|
||||
vcg::Point3<ScalarType> bp,eigenvalues;
|
||||
int nrot;
|
||||
|
||||
// sample the neighborhood
|
||||
if(pointVSfaceInt)
|
||||
{
|
||||
vcg::trimesh::GetInSphereVertex<
|
||||
MeshType,
|
||||
PointsGridType,std::vector<MeshType::VertexType*>,
|
||||
std::vector<MeshType::ScalarType>,
|
||||
std::vector<MeshType::CoordType> >(tmpM,pGrid, (*vi).cP(),r ,closests,distances,points);
|
||||
|
||||
A.Covariance(points,bp);
|
||||
A*=area*area/1000;
|
||||
}
|
||||
else{
|
||||
IntersectionBallMesh<MeshType,ScalarType>( m ,vcg::Sphere3<ScalarType>((*vi).cP(),r),tmpM );
|
||||
vcg::Point3<ScalarType> _bary;
|
||||
vcg::tri::Inertia<MeshType>::Covariance(tmpM,_bary,A);
|
||||
}
|
||||
|
||||
Jacobi(A, eigenvalues , eigenvectors, nrot);
|
||||
|
||||
// get the estimate of curvatures from eigenvalues and eigenvectors
|
||||
// find the 2 most tangent eigenvectors (by finding the one closest to the normal)
|
||||
int best = 0; ScalarType bestv = fabs( (*vi).cN() * eigenvectors.GetColumn(0).Normalize());
|
||||
for(int i = 1 ; i < 3; ++i){
|
||||
ScalarType prod = fabs((*vi).cN() * eigenvectors.GetColumn(i).Normalize());
|
||||
if( prod > bestv){bestv = prod; best = i;}
|
||||
}
|
||||
|
||||
(*vi).PD1() = eigenvectors.GetColumn( (best+1)%3).Normalize();
|
||||
(*vi).PD2() = eigenvectors.GetColumn( (best+2)%3).Normalize();
|
||||
|
||||
// project them to the plane identified by the normal
|
||||
vcg::Matrix33<ScalarType> rot;
|
||||
ScalarType angle = acos((*vi).PD1()*(*vi).N());
|
||||
rot.SetRotateRad( - (M_PI*0.5 - angle),(*vi).PD1()^(*vi).N());
|
||||
(*vi).PD1() = rot*(*vi).PD1();
|
||||
angle = acos((*vi).PD2()*(*vi).N());
|
||||
rot.SetRotateRad( - (M_PI*0.5 - angle),(*vi).PD2()^(*vi).N());
|
||||
(*vi).PD2() = rot*(*vi).PD2();
|
||||
|
||||
|
||||
// copmutes the curvature values
|
||||
const ScalarType r5 = r*r*r*r*r;
|
||||
const ScalarType r6 = r*r5;
|
||||
(*vi).K1() = (2.0/5.0) * (4.0*M_PI*r5 + 15*eigenvalues[(best+2)%3]-45.0*eigenvalues[(best+1)%3])/(M_PI*r6);
|
||||
(*vi).K2() = (2.0/5.0) * (4.0*M_PI*r5 + 15*eigenvalues[(best+1)%3]-45.0*eigenvalues[(best+2)%3])/(M_PI*r6);
|
||||
if((*vi).K1() < (*vi).K2()) { std::swap((*vi).K1(),(*vi).K2());
|
||||
std::swap((*vi).PD1(),(*vi).PD2());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
/// \brief Computes the discrete gaussian curvature.
|
||||
|
||||
/** For further details, please, refer to: \n
|
||||
|
@ -295,8 +398,8 @@ public:
|
|||
VertexIterator vi;
|
||||
typename MeshType::CoordType e01v ,e12v ,e20v;
|
||||
|
||||
SimpleTempData<VertContainer, AreaData> TDAreaPtr(m.vert); //TDAreaPtr.Start();
|
||||
SimpleTempData<VertContainer, typename MeshType::CoordType> TDContr(m.vert); //TDContr.Start();
|
||||
SimpleTempData<VertContainer, AreaData> TDAreaPtr(m.vert);
|
||||
SimpleTempData<VertContainer, typename MeshType::CoordType> TDContr(m.vert);
|
||||
|
||||
vcg::tri::UpdateNormals<MeshType>::PerVertexNormalized(m);
|
||||
//Compute AreaMix in H (vale anche per K)
|
||||
|
@ -388,10 +491,6 @@ public:
|
|||
(*vi).Kg() /= (TDAreaPtr)[*vi].A;
|
||||
}
|
||||
}
|
||||
|
||||
// TDAreaPtr.Stop();
|
||||
// TDContr.Stop();
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -467,6 +566,12 @@ public:
|
|||
return A;
|
||||
}
|
||||
|
||||
static void VertexCurvature(MeshType & m){
|
||||
|
||||
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
VertexCurvature(&*vi,false);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue