Merge pull request #93 from alemuntoni/const_correctness_copy_mesh
const-correctness for copy from a const right Mesh
This commit is contained in:
commit
41351b9e72
|
@ -183,6 +183,7 @@ typedef typename MeshType::VertexType VertexType;
|
|||
typedef typename MeshType::VertexPointer VertexPointer;
|
||||
typedef typename MeshType::VertexIterator VertexIterator;
|
||||
typedef typename MeshType::EdgeIterator EdgeIterator;
|
||||
typedef typename MeshType::EdgeType EdgeType;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::FacePointer FacePointer;
|
||||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
|
@ -269,39 +270,41 @@ static void Clear(MeshType &m)
|
|||
}
|
||||
|
||||
/// \brief This function returns the number of selected faces.
|
||||
static size_t FaceCount(MeshType &m)
|
||||
static size_t FaceCount(const MeshType &m)
|
||||
{
|
||||
size_t selCnt=0;
|
||||
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
if(!(*fi).IsD() && (*fi).IsS()) ++selCnt;
|
||||
ForEachFace(m, [&](const FaceType& f){
|
||||
if(f.IsS()) ++selCnt;
|
||||
});
|
||||
return selCnt;
|
||||
}
|
||||
|
||||
/// \brief This function returns the number of selected edges.
|
||||
static size_t EdgeCount(MeshType &m)
|
||||
static size_t EdgeCount(const MeshType &m)
|
||||
{
|
||||
size_t selCnt=0;
|
||||
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
|
||||
if(!(*ei).IsD() && (*ei).IsS()) ++selCnt;
|
||||
ForEachEdge(m, [&](const EdgeType& e){
|
||||
if(e.IsS()) ++selCnt;
|
||||
});
|
||||
return selCnt;
|
||||
}
|
||||
|
||||
/// \brief This function returns the number of selected vertices.
|
||||
static size_t VertexCount(MeshType &m)
|
||||
static size_t VertexCount(const MeshType &m)
|
||||
{
|
||||
size_t selCnt=0;
|
||||
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||||
if(!(*vi).IsD() && (*vi).IsS()) ++selCnt;
|
||||
ForEachVertex(m, [&](const VertexType& v){
|
||||
if(v.IsS()) ++selCnt;
|
||||
});
|
||||
return selCnt;
|
||||
}
|
||||
|
||||
/// \brief This function returns the number of selected tetras.
|
||||
static size_t TetraCount (MeshType & m)
|
||||
static size_t TetraCount (const MeshType & m)
|
||||
{
|
||||
size_t selCnt = 0;
|
||||
ForEachTetra(m, [&selCnt] (TetraType & t) {
|
||||
if (t.IsS())
|
||||
++selCnt;
|
||||
ForEachTetra(m, [&] (const TetraType & t) {
|
||||
if (t.IsS()) ++selCnt;
|
||||
});
|
||||
|
||||
return selCnt;
|
||||
|
|
|
@ -76,7 +76,7 @@ public:
|
|||
std::vector<size_t> vert, face, edge, hedge, tetra;
|
||||
};
|
||||
|
||||
static void ImportVertexAdj(MeshLeft &ml, ConstMeshRight &mr, VertexLeft &vl, VertexRight &vr, Remap &remap ){
|
||||
static void ImportVertexAdj(MeshLeft &ml, const ConstMeshRight &mr, VertexLeft &vl, const VertexRight &vr, Remap &remap ){
|
||||
// Vertex to Edge Adj
|
||||
if(HasVEAdjacency(ml) && HasVEAdjacency(mr) && vr.cVEp() != 0){
|
||||
size_t i = Index(mr,vr.cVEp());
|
||||
|
@ -105,7 +105,7 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
static void ImportEdgeAdj(MeshLeft &ml, ConstMeshRight &mr, EdgeLeft &el, const EdgeRight &er, Remap &remap)
|
||||
static void ImportEdgeAdj(MeshLeft &ml, const ConstMeshRight &mr, EdgeLeft &el, const EdgeRight &er, Remap &remap)
|
||||
{
|
||||
// Edge to Edge Adj
|
||||
if(HasEEAdjacency(ml) && HasEEAdjacency(mr))
|
||||
|
@ -129,7 +129,7 @@ public:
|
|||
}
|
||||
|
||||
|
||||
static void ImportFaceAdj(MeshLeft &ml, ConstMeshRight &mr, FaceLeft &fl, const FaceRight &fr, Remap &remap )
|
||||
static void ImportFaceAdj(MeshLeft &ml, const ConstMeshRight &mr, FaceLeft &fl, const FaceRight &fr, Remap &remap )
|
||||
{
|
||||
// Face to Edge Adj
|
||||
if(HasFEAdjacency(ml) && HasFEAdjacency(mr)){
|
||||
|
@ -183,7 +183,7 @@ public:
|
|||
fl.FHp() = &ml.hedge[remap.hedge[Index(mr,fr.cFHp())]];
|
||||
}
|
||||
|
||||
static void ImportHEdgeAdj(MeshLeft &ml, ConstMeshRight &mr, HEdgeLeft &hl, const HEdgeRight &hr, Remap &remap, bool /*sel*/ ){
|
||||
static void ImportHEdgeAdj(MeshLeft &ml, const ConstMeshRight &mr, HEdgeLeft &hl, const HEdgeRight &hr, Remap &remap, bool /*sel*/ ){
|
||||
// HEdge to Vertex Adj
|
||||
if(HasHVAdjacency(ml) && HasHVAdjacency(mr))
|
||||
hl.HVp() = &ml.vert[remap.vert[Index(mr,hr.cHVp())]];
|
||||
|
@ -214,7 +214,7 @@ public:
|
|||
hl.HPp() = &ml.hedge[remap.hedge[Index(mr,hr.cHPp())]];
|
||||
}
|
||||
|
||||
static void ImportTetraAdj(MeshLeft &ml, ConstMeshRight &mr, TetraLeft &tl, const TetraRight &tr, Remap &remap )
|
||||
static void ImportTetraAdj(MeshLeft &ml, const ConstMeshRight &mr, TetraLeft &tl, const TetraRight &tr, Remap &remap )
|
||||
{
|
||||
// Tetra to Tetra Adj
|
||||
if(HasTTAdjacency(ml) && HasTTAdjacency(mr)){
|
||||
|
@ -476,6 +476,270 @@ static void Mesh(MeshLeft& ml, ConstMeshRight& mr, const bool selected = false,
|
|||
// }
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief MeshAppendConst
|
||||
* @param ml
|
||||
* @param mr
|
||||
*
|
||||
* This is function is similar with the Mesh function, but does not
|
||||
* never update selections. In some cases, after the append,
|
||||
* selection of vertices may be inconsistent with face selection,
|
||||
* as explained above.
|
||||
* To avoid this, before using this function, call the following functions:
|
||||
*
|
||||
* \code{.cpp}
|
||||
* vcg::tri::UpdateSelection<MyMesh>::VertexFromEdgeLoose(mr,true);
|
||||
* vcg::tri::UpdateSelection<MyMesh>::VertexFromFaceLoose(mr,true);
|
||||
* \endcode
|
||||
*
|
||||
* or, use the Mesh function that takes a non-const Right Mesh argument.
|
||||
*/
|
||||
static void MeshAppendConst(
|
||||
MeshLeft& ml,
|
||||
const ConstMeshRight& mr,
|
||||
const bool selected = false,
|
||||
const bool adjFlag = false)
|
||||
{
|
||||
// phase 1. allocate on ml vert,edge,face, hedge to accomodat those of mr
|
||||
// and build the remapping for all
|
||||
|
||||
Remap remap;
|
||||
|
||||
// vertex
|
||||
remap.vert.resize(mr.vert.size(), Remap::InvalidIndex());
|
||||
VertexIteratorLeft vp;
|
||||
size_t svn = UpdateSelection<ConstMeshRight>::VertexCount(mr);
|
||||
if(selected)
|
||||
vp=Allocator<MeshLeft>::AddVertices(ml,int(svn));
|
||||
else
|
||||
vp=Allocator<MeshLeft>::AddVertices(ml,mr.vn);
|
||||
|
||||
ForEachVertex(mr, [&](const VertexRight& v)
|
||||
{
|
||||
if(!selected || v.IsS())
|
||||
{
|
||||
size_t ind=Index(mr,v);
|
||||
remap.vert[ind]=int(Index(ml,*vp));
|
||||
++vp;
|
||||
}
|
||||
});
|
||||
// edge
|
||||
remap.edge.resize(mr.edge.size(), Remap::InvalidIndex());
|
||||
EdgeIteratorLeft ep;
|
||||
size_t sen = UpdateSelection<ConstMeshRight>::EdgeCount(mr);
|
||||
if(selected) ep=Allocator<MeshLeft>::AddEdges(ml,sen);
|
||||
else ep=Allocator<MeshLeft>::AddEdges(ml,mr.en);
|
||||
|
||||
ForEachEdge(mr, [&](const EdgeRight& e)
|
||||
{
|
||||
if(!selected || e.IsS()){
|
||||
size_t ind=Index(mr,e);
|
||||
remap.edge[ind]=int(Index(ml,*ep));
|
||||
++ep;
|
||||
}
|
||||
});
|
||||
|
||||
// face
|
||||
remap.face.resize(mr.face.size(), Remap::InvalidIndex());
|
||||
FaceIteratorLeft fp;
|
||||
size_t sfn = UpdateSelection<ConstMeshRight>::FaceCount(mr);
|
||||
if(selected) fp=Allocator<MeshLeft>::AddFaces(ml,sfn);
|
||||
else fp=Allocator<MeshLeft>::AddFaces(ml,mr.fn);
|
||||
|
||||
ForEachFace(mr, [&](const FaceRight& f)
|
||||
{
|
||||
if(!selected || f.IsS()){
|
||||
size_t ind=Index(mr,f);
|
||||
remap.face[ind]=int(Index(ml,*fp));
|
||||
++fp;
|
||||
}
|
||||
});
|
||||
|
||||
// hedge
|
||||
remap.hedge.resize(mr.hedge.size(),Remap::InvalidIndex());
|
||||
|
||||
ForEachHEdge(mr, [&](const HEdgeRight& he)
|
||||
{
|
||||
if(!selected || he.IsS()){
|
||||
size_t ind=Index(mr,he);
|
||||
assert(remap.hedge[ind]==Remap::InvalidIndex());
|
||||
HEdgeIteratorLeft hp = Allocator<MeshLeft>::AddHEdges(ml,1);
|
||||
(*hp).ImportData(he);
|
||||
remap.hedge[ind]=Index(ml,*hp);
|
||||
}
|
||||
});
|
||||
|
||||
remap.tetra.resize(mr.tetra.size(), Remap::InvalidIndex());
|
||||
|
||||
ForEachTetra(mr, [&](const TetraRight& t)
|
||||
{
|
||||
if (!selected || t.IsS()) {
|
||||
size_t idx = Index(mr, t);
|
||||
assert (remap.tetra[idx] == Remap::InvalidIndex());
|
||||
TetraIteratorLeft tp = Allocator<MeshLeft>::AddTetras(ml, 1);
|
||||
(*tp).ImportData(t);
|
||||
remap.tetra[idx] = Index(ml, *tp);
|
||||
}
|
||||
});
|
||||
|
||||
// phase 2.
|
||||
// copy data from mr to its corresponding elements in ml and adjacencies
|
||||
|
||||
// vertex
|
||||
ForEachVertex(mr, [&](const VertexRight& v)
|
||||
{
|
||||
if(!selected || v.IsS()){
|
||||
ml.vert[remap.vert[Index(mr,v)]].ImportData(v);
|
||||
if(adjFlag) ImportVertexAdj(ml,mr,ml.vert[remap.vert[Index(mr,v)]],v,remap);
|
||||
}
|
||||
});
|
||||
|
||||
// edge
|
||||
ForEachEdge(mr, [&](const EdgeRight& e)
|
||||
{
|
||||
if(!selected || e.IsS()){
|
||||
ml.edge[remap.edge[Index(mr,e)]].ImportData(e);
|
||||
// Edge to Vertex Adj
|
||||
EdgeLeft &el = ml.edge[remap.edge[Index(mr,e)]];
|
||||
if(HasEVAdjacency(ml) && HasEVAdjacency(mr)){
|
||||
el.V(0) = &ml.vert[remap.vert[Index(mr,e.cV(0))]];
|
||||
el.V(1) = &ml.vert[remap.vert[Index(mr,e.cV(1))]];
|
||||
}
|
||||
if(adjFlag) ImportEdgeAdj(ml,mr,el,e,remap);
|
||||
}
|
||||
});
|
||||
|
||||
// face
|
||||
const size_t textureOffset = ml.textures.size();
|
||||
bool WTFlag = HasPerWedgeTexCoord(mr) && (textureOffset>0);
|
||||
ForEachFace(mr, [&](const FaceRight& f)
|
||||
{
|
||||
if(!selected || f.IsS())
|
||||
{
|
||||
FaceLeft &fl = ml.face[remap.face[Index(mr,f)]];
|
||||
fl.Alloc(f.VN());
|
||||
if(HasFVAdjacency(ml) && HasFVAdjacency(mr)){
|
||||
for(int i = 0; i < fl.VN(); ++i)
|
||||
fl.V(i) = &ml.vert[remap.vert[Index(mr,f.cV(i))]];
|
||||
}
|
||||
fl.ImportData(f);
|
||||
if(WTFlag)
|
||||
for(int i = 0; i < fl.VN(); ++i)
|
||||
fl.WT(i).n() += short(textureOffset);
|
||||
if(adjFlag) ImportFaceAdj(ml,mr,ml.face[remap.face[Index(mr,f)]],f,remap);
|
||||
|
||||
}
|
||||
});
|
||||
|
||||
// hedge
|
||||
ForEachHEdge(mr, [&](const HEdgeRight& he)
|
||||
{
|
||||
if(!selected || he.IsS()){
|
||||
ml.hedge[remap.hedge[Index(mr,he)]].ImportData(he);
|
||||
ImportHEdgeAdj(ml,mr,ml.hedge[remap.hedge[Index(mr,he)]],he,remap,selected);
|
||||
}
|
||||
});
|
||||
|
||||
//tetra
|
||||
ForEachTetra(mr, [&](const TetraRight& t)
|
||||
{
|
||||
if(!selected || t.IsS())
|
||||
{
|
||||
TetraLeft &tl = ml.tetra[remap.tetra[Index(mr,t)]];
|
||||
|
||||
if(HasFVAdjacency(ml) && HasFVAdjacency(mr)){
|
||||
for(int i = 0; i < 4; ++i)
|
||||
tl.V(i) = &ml.vert[remap.vert[Index(mr,t.cV(i))]];
|
||||
}
|
||||
tl.ImportData(t);
|
||||
if(adjFlag) ImportTetraAdj(ml, mr, ml.tetra[remap.tetra[Index(mr,t)]], t, remap);
|
||||
|
||||
}
|
||||
});
|
||||
|
||||
// phase 3.
|
||||
// take care of other per mesh data: textures, attributes
|
||||
|
||||
// At the end concatenate the vector with texture names.
|
||||
ml.textures.insert(ml.textures.end(),mr.textures.begin(),mr.textures.end());
|
||||
|
||||
// Attributes. Copy only those attributes that are present in both meshes
|
||||
// Two attributes in different meshes are considered the same if they have the same
|
||||
// name and the same type. This may be deceiving because they could in fact have
|
||||
// different semantic, but this is up to the developer.
|
||||
// If the left mesh has attributes that are not in the right mesh, their values for the elements
|
||||
// of the right mesh will be uninitialized
|
||||
|
||||
unsigned int id_r;
|
||||
typename std::set< PointerToAttribute >::iterator al, ar;
|
||||
|
||||
// per vertex attributes
|
||||
for(al = ml.vert_attr.begin(); al != ml.vert_attr.end(); ++al)
|
||||
if(!(*al)._name.empty()){
|
||||
ar = mr.vert_attr.find(*al);
|
||||
if(ar!= mr.vert_attr.end()){
|
||||
id_r = 0;
|
||||
for (auto v: mr.vert){
|
||||
if( !v.IsD() && (!selected || v.IsS()))
|
||||
(*al)._handle->CopyValue(remap.vert[Index(mr,v)], id_r, (*ar)._handle);
|
||||
++id_r;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// per edge attributes
|
||||
for(al = ml.edge_attr.begin(); al != ml.edge_attr.end(); ++al)
|
||||
if(!(*al)._name.empty()){
|
||||
ar = mr.edge_attr.find(*al);
|
||||
if(ar!= mr.edge_attr.end()){
|
||||
id_r = 0;
|
||||
for (auto e: mr.edge){
|
||||
if( !e.IsD() && (!selected || e.IsS()))
|
||||
(*al)._handle->CopyValue(remap.edge[Index(mr,e)], id_r, (*ar)._handle);
|
||||
++id_r;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// per face attributes
|
||||
for(al = ml.face_attr.begin(); al != ml.face_attr.end(); ++al)
|
||||
if(!(*al)._name.empty()){
|
||||
ar = mr.face_attr.find(*al);
|
||||
if(ar!= mr.face_attr.end()){
|
||||
id_r = 0;
|
||||
for (auto f: mr.face) {
|
||||
if( !f.IsD() && (!selected || f.IsS()))
|
||||
(*al)._handle->CopyValue(remap.face[Index(mr,f)], id_r, (*ar)._handle);
|
||||
++id_r;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// per tetra attributes
|
||||
for(al = ml.tetra_attr.begin(); al != ml.tetra_attr.end(); ++al)
|
||||
if(!(*al)._name.empty()){
|
||||
ar = mr.tetra_attr.find(*al);
|
||||
if(ar!= mr.tetra_attr.end()){
|
||||
id_r = 0;
|
||||
for (auto t: mr.tetra) {
|
||||
if( !t.IsD() && (!selected || t.IsS()))
|
||||
(*al)._handle->CopyValue(remap.tetra[Index(mr, t)], id_r, (*ar)._handle);
|
||||
++id_r;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// per mesh attributes
|
||||
// if both ml and mr have an attribute with the same name, no action is done
|
||||
// if mr has an attribute that is NOT present in ml, the attribute is added to ml
|
||||
//for(ar = mr.mesh_attr.begin(); ar != mr.mesh_attr.end(); ++ar)
|
||||
// if(!(*ar)._name.empty()){
|
||||
// al = ml.mesh_attr.find(*ar);
|
||||
// if(al== ml.mesh_attr.end())
|
||||
// //...
|
||||
// }
|
||||
}
|
||||
|
||||
/*! \brief Copy the second mesh over the first one.
|
||||
The first mesh is destroyed. If requested only the selected elements are copied.
|
||||
*/
|
||||
|
@ -485,6 +749,13 @@ static void MeshCopy(MeshLeft& ml, ConstMeshRight& mr, bool selected=false, cons
|
|||
Mesh(ml,mr,selected,adjFlag);
|
||||
ml.bbox.Import(mr.bbox);
|
||||
}
|
||||
|
||||
static void MeshCopyConst(MeshLeft& ml, const ConstMeshRight& mr, bool selected=false, const bool adjFlag = false)
|
||||
{
|
||||
ml.Clear();
|
||||
MeshAppendConst(ml,mr,selected,adjFlag);
|
||||
ml.bbox.Import(mr.bbox);
|
||||
}
|
||||
/*! \brief %Append only the selected elements of second mesh to the first one.
|
||||
|
||||
It is just a wrap of the main Append::Mesh()
|
||||
|
|
|
@ -34,8 +34,24 @@ namespace tri {
|
|||
@{
|
||||
*/
|
||||
|
||||
template <class MeshType>
|
||||
inline void ForEachFacePos(MeshType &m, std::function<void (typename face::Pos<typename MeshType::FaceType> &)> action)
|
||||
template <class MeshType, typename Callable>
|
||||
inline void ForEachFacePos(const MeshType &m, Callable action)
|
||||
{
|
||||
typedef typename face::Pos<typename MeshType::FaceType> PosType;
|
||||
|
||||
for(auto fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
for(int i=0;i<3;++i)
|
||||
{
|
||||
PosType pi(&*fi,i);
|
||||
action(pi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class MeshType, typename Callable>
|
||||
inline void ForEachFacePos(MeshType &m, Callable action)
|
||||
{
|
||||
typedef typename face::Pos<typename MeshType::FaceType> PosType;
|
||||
|
||||
|
@ -60,8 +76,8 @@ inline void ForEachFacePos(MeshType &m, std::function<void (typename face::Pos<t
|
|||
*
|
||||
*/
|
||||
|
||||
template <class MeshType>
|
||||
inline void ForEachFace(const MeshType &m, std::function<void (const typename MeshType::FaceType &)> action)
|
||||
template <class MeshType, typename Callable>
|
||||
inline void ForEachFace(const MeshType &m, Callable action)
|
||||
{
|
||||
if(m.fn == (int) m.face.size())
|
||||
{
|
||||
|
@ -79,8 +95,8 @@ inline void ForEachFace(const MeshType &m, std::function<void (const typename Me
|
|||
}
|
||||
}
|
||||
|
||||
template <class MeshType>
|
||||
inline void ForEachFace(MeshType &m, std::function<void (typename MeshType::FaceType &)> action)
|
||||
template <class MeshType, typename Callable>
|
||||
inline void ForEachFace(MeshType &m, Callable action)
|
||||
{
|
||||
if(m.fn == (int) m.face.size())
|
||||
{
|
||||
|
@ -108,8 +124,27 @@ inline void ForEachFace(MeshType &m, std::function<void (typename MeshType::Face
|
|||
*
|
||||
*/
|
||||
|
||||
template <class MeshType>
|
||||
inline void ForEachVertex(MeshType &m, std::function<void (typename MeshType::VertexType &)> action)
|
||||
template <class MeshType, typename Callable>
|
||||
inline void ForEachVertex(const MeshType &m, Callable action)
|
||||
{
|
||||
if(m.vn == (int) m.vert.size())
|
||||
{
|
||||
for(auto vi=m.vert.begin();vi!=m.vert.end();++vi) {
|
||||
action(*vi);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(auto vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||||
if(!(*vi).IsD())
|
||||
{
|
||||
action(*vi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class MeshType, typename Callable>
|
||||
inline void ForEachVertex(MeshType &m, Callable action)
|
||||
{
|
||||
if(m.vn == (int) m.vert.size())
|
||||
{
|
||||
|
@ -127,6 +162,54 @@ inline void ForEachVertex(MeshType &m, std::function<void (typename MeshType::Ve
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* ForEachHEdge Helper
|
||||
* to traverse all the half edges of a mesh you can simply write something like:
|
||||
*
|
||||
* ForEachHEdge(m, [&](const HEdgeType &he){
|
||||
* MakeSomethingWithHEdge(he);
|
||||
* });
|
||||
*
|
||||
*/
|
||||
|
||||
template <class MeshType, typename Callable>
|
||||
inline void ForEachHEdge(const MeshType &m, Callable action)
|
||||
{
|
||||
if(m.hn == (int) m.hedge.size())
|
||||
{
|
||||
for(auto hei=m.hedge.begin();hei!=m.hedge.end();++hei) {
|
||||
action(*hei);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(auto hei=m.hedge.begin();hei!=m.hedge.end();++hei)
|
||||
if(!(*hei).IsD())
|
||||
{
|
||||
action(*hei);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class MeshType, typename Callable>
|
||||
inline void ForEachHEdge(MeshType &m, Callable action)
|
||||
{
|
||||
if(m.hn == (int) m.hedge.size())
|
||||
{
|
||||
for(auto hei=m.hedge.begin();hei!=m.hedge.end();++hei) {
|
||||
action(*hei);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(auto hei=m.hedge.begin();hei!=m.hedge.end();++hei)
|
||||
if(!(*hei).IsD())
|
||||
{
|
||||
action(*hei);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* ForEachEdge Helper
|
||||
* to traverse all the vertexes of a mesh you can simply write something like:
|
||||
|
@ -137,8 +220,27 @@ inline void ForEachVertex(MeshType &m, std::function<void (typename MeshType::Ve
|
|||
*
|
||||
*/
|
||||
|
||||
template <class MeshType>
|
||||
inline void ForEachEdge(MeshType &m, std::function<void (typename MeshType::EdgeType &)> action)
|
||||
template <class MeshType, typename Callable>
|
||||
inline void ForEachEdge(const MeshType &m, Callable action)
|
||||
{
|
||||
if(m.en == (int) m.edge.size())
|
||||
{
|
||||
for(auto ei=m.edge.begin();ei!=m.edge.end();++ei) {
|
||||
action(*ei);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(auto ei=m.edge.begin();ei!=m.edge.end();++ei)
|
||||
if(!(*ei).IsD())
|
||||
{
|
||||
action(*ei);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class MeshType, typename Callable>
|
||||
inline void ForEachEdge(MeshType &m, Callable action)
|
||||
{
|
||||
if(m.en == (int) m.edge.size())
|
||||
{
|
||||
|
@ -166,8 +268,8 @@ inline void ForEachEdge(MeshType &m, std::function<void (typename MeshType::Edge
|
|||
*
|
||||
*/
|
||||
|
||||
template <class MeshType>
|
||||
inline void ForEachTetra(const MeshType &m, std::function<void (const typename MeshType::TetraType &)> action)
|
||||
template <class MeshType, typename Callable>
|
||||
inline void ForEachTetra(const MeshType &m, Callable action)
|
||||
{
|
||||
if(m.tn == (int) m.tetra.size())
|
||||
{
|
||||
|
@ -185,8 +287,8 @@ inline void ForEachTetra(const MeshType &m, std::function<void (const typename M
|
|||
}
|
||||
}
|
||||
|
||||
template <class MeshType>
|
||||
inline void ForEachTetra(MeshType &m, std::function<void (typename MeshType::TetraType &)> action)
|
||||
template <class MeshType, typename Callable>
|
||||
inline void ForEachTetra(MeshType &m, Callable action)
|
||||
{
|
||||
if(m.tn == (int) m.tetra.size())
|
||||
{
|
||||
|
|
|
@ -78,6 +78,7 @@ public:
|
|||
typename T::EdgePointer &VEp(const int & ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
|
||||
typename T::EdgePointer cVEp(const int & ) const { static typename T::EdgePointer ep=0; assert(0); return ep; }
|
||||
int &VEi(const int &){static int z=0; assert(0); return z;}
|
||||
int VEi(const int &) const {static int z=0; assert(0); return z;}
|
||||
int cVEi(const int &) const {static int z=0; assert(0); return z;}
|
||||
static bool HasVEAdjacency() { return false; }
|
||||
|
||||
|
@ -278,6 +279,7 @@ public:
|
|||
typename T::EdgePointer &VEp(const int & i) {return _ep[i]; }
|
||||
typename T::EdgePointer cVEp(const int & i) const {return _ep[i]; }
|
||||
int &VEi(const int & i){ return _zp[i];}
|
||||
int VEi(const int & i)const {return _zp[i];}
|
||||
int cVEi(const int &i )const {return _zp[i];}
|
||||
|
||||
template < class LeftV>
|
||||
|
|
|
@ -114,6 +114,7 @@ public:
|
|||
typename T::HEdgePointer &FHp() { static typename T::HEdgePointer fp=0; assert(0); return fp; }
|
||||
typename T::HEdgePointer cFHp() const { static typename T::HEdgePointer fp=0; assert(0); return fp; }
|
||||
char &VFi(int) { static char z=0; assert(0); return z;}
|
||||
char VFi(int) const { static char z=0; assert(0); return z;}
|
||||
char &FFi(int) { static char z=0; assert(0); return z;}
|
||||
char cVFi(int) const { static char z=0; assert(0); return z;}
|
||||
char cFFi(int) const { static char z=0; assert(0); return z;}
|
||||
|
|
|
@ -408,6 +408,11 @@ public:
|
|||
return (*this).Base().AV[(*this).Index()]._zp[j];
|
||||
}
|
||||
|
||||
char VFi(const int j) const {
|
||||
assert((*this).Base().VFAdjacencyEnabled);
|
||||
return (*this).Base().AV[(*this).Index()]._zp[j];
|
||||
}
|
||||
|
||||
char cVFi(const int j) const {
|
||||
assert((*this).Base().VFAdjacencyEnabled);
|
||||
return (*this).Base().AV[(*this).Index()]._zp[j];
|
||||
|
|
|
@ -136,6 +136,7 @@ public:
|
|||
typename T::FacePointer const VFp(const int j) const { assert(j>=0 && j<this->VN()); return _vfpP[j]; }
|
||||
typename T::FacePointer const cVFp(const int j) const { assert(j>=0 && j<this->VN()); return _vfpP[j]; }
|
||||
char &VFi(const int j) {return _vfiP[j]; }
|
||||
char VFi(const int j) const {return _vfiP[j]; }
|
||||
template <class LeftF>
|
||||
void ImportData(const LeftF & leftF){T::ImportData(leftF);}
|
||||
inline void Alloc(const int & ns) {
|
||||
|
|
|
@ -47,7 +47,7 @@ public:
|
|||
//Empty vertexref
|
||||
inline typename T::VertexType * & V( const int ) { assert(0); static typename T::VertexType *vp=0; return vp; }
|
||||
inline typename T::VertexType * const & V( const int ) const { assert(0); static typename T::VertexType *vp=0; return vp; }
|
||||
inline const typename T::VertexType * cV( const int ) { assert(0); static typename T::VertexType *vp=0; return vp; }
|
||||
inline const typename T::VertexType * cV( const int ) const { assert(0); static typename T::VertexType *vp=0; return vp; }
|
||||
inline typename T::CoordType & P( const int ) { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
|
||||
inline const typename T::CoordType & P( const int ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
|
||||
inline const typename T::CoordType &cP( const int ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
|
||||
|
@ -112,6 +112,7 @@ public:
|
|||
typename T::TetraPointer const cTTp( const int ) const { static typename T::TetraPointer const tp=0; assert(0); return tp; }
|
||||
|
||||
char & VTi( const int ) { static char z=0; assert(0); return z; }
|
||||
char VTi( const int ) const { static char z=0; assert(0); return z; }
|
||||
char cVTi( const int ) const { static char z=0; assert(0); return z; }
|
||||
char & TTi( const int ) { static char z=0; assert(0); return z; }
|
||||
char cTTi( const int ) const { static char z=0; assert(0); return z; }
|
||||
|
|
|
@ -99,6 +99,7 @@ public:
|
|||
typename TT::TetraPointer &VTp() { static typename TT::TetraPointer tp = 0; assert(0); return tp; }
|
||||
typename TT::TetraPointer cVTp() const { static typename TT::TetraPointer tp = 0; assert(0); return tp; }
|
||||
int &VTi() { static int z = 0; assert(0); return z; }
|
||||
int VTi() const { static int z = 0; assert(0); return z; }
|
||||
int cVTi() const { static int z = 0; assert(0); return z; }
|
||||
static bool HasVTAdjacency() { return false; }
|
||||
bool IsVTInitialized() const {return static_cast<const typename TT::VertexType *>(this)->cVTi()!=-1;}
|
||||
|
@ -112,6 +113,7 @@ public:
|
|||
typename TT::FacePointer &VFp() { static typename TT::FacePointer fp=0; assert(0); return fp; }
|
||||
typename TT::FacePointer cVFp() const { static typename TT::FacePointer fp=0; assert(0); return fp; }
|
||||
int &VFi() { static int z=-1; assert(0); return z;}
|
||||
int VFi() const { static int z=-1; assert(0); return z;}
|
||||
int cVFi() const { static int z=-1; assert(0); return z;}
|
||||
bool IsNull() const { return true; }
|
||||
static bool HasVFAdjacency() { return false; }
|
||||
|
@ -126,6 +128,7 @@ public:
|
|||
typename TT::EdgePointer &VEp() { static typename TT::EdgePointer ep=0; assert(0); return ep; }
|
||||
typename TT::EdgePointer cVEp() const { static typename TT::EdgePointer ep=0; assert(0); return ep; }
|
||||
int &VEi() { static int z=-1; return z;}
|
||||
int VEi() const { static int z=-1; return z;}
|
||||
int cVEi() const { static int z=-1; return z;}
|
||||
static bool HasVEAdjacency() { return false; }
|
||||
bool IsVEInitialized() const {return static_cast<const typename TT::VertexType *>(this)->cVEi()!=-1;}
|
||||
|
@ -138,6 +141,7 @@ public:
|
|||
typename TT::HEdgePointer &VHp() { static typename TT::HEdgePointer ep=0; assert(0); return ep; }
|
||||
typename TT::HEdgePointer cVHp() const { static typename TT::HEdgePointer ep=0; assert(0); return ep; }
|
||||
int &VHi() { static int z=0; return z;}
|
||||
int VHi() const { static int z=0; return z;}
|
||||
int cVHi() const { static int z=0; return z;}
|
||||
static bool HasVHAdjacency() { return false; }
|
||||
|
||||
|
@ -531,6 +535,7 @@ public:
|
|||
typename T::EdgePointer &VEp() {return _ep; }
|
||||
typename T::EdgePointer cVEp() const {return _ep; }
|
||||
int &VEi() {return _zp; }
|
||||
int VEi() const {return _zp; }
|
||||
int cVEi() const {return _zp; }
|
||||
template < class RightValueType>
|
||||
void ImportData(const RightValueType & rVert ) { T::ImportData( rVert); }
|
||||
|
@ -559,6 +564,7 @@ Note that if you use this component it is expected that on the Face you use also
|
|||
typename T::FacePointer &VFp() { return _fp; }
|
||||
typename T::FacePointer cVFp() const { return _fp; }
|
||||
int &VFi() { return _zp; }
|
||||
int VFi() const { return _zp; }
|
||||
int cVFi() const { return _zp; }
|
||||
bool IsNull() const { return _zp==-1;}
|
||||
template < class RightValueType>
|
||||
|
|
|
@ -285,6 +285,10 @@ public:
|
|||
assert((*this).Base().VFAdjacencyEnabled);
|
||||
return (*this).Base().AV[(*this).Index()]._zp;
|
||||
}
|
||||
int VFi() const {
|
||||
assert((*this).Base().VFAdjacencyEnabled);
|
||||
return (*this).Base().AV[(*this).Index()]._zp;
|
||||
}
|
||||
int cVFi() const {
|
||||
if(! (*this).Base().VFAdjacencyEnabled ) return -1;
|
||||
return (*this).Base().AV[(*this).Index()]._zp;
|
||||
|
|
Loading…
Reference in New Issue