Cambiato nome type template in accordo alla styleguide

This commit is contained in:
Paolo Cignoni 2004-02-15 23:35:47 +00:00
parent a5aa7d19f2
commit 456da92c39
1 changed files with 90 additions and 87 deletions

View File

@ -24,6 +24,9 @@
History
$Log: not supported by cvs2svn $
Revision 1.5 2004/02/10 01:07:15 cignoni
Edited Comments and GPL license
Revision 1.4 2004/02/09 13:48:02 cignoni
Edited doxygen comments
@ -45,17 +48,17 @@ First commit...
namespace vcg {
/** The templated class for representing a point in 3D space.
* The class is templated over the scalar value representing coordinates.
* The class is templated over the ScalarType value representing coordinates.
*/
template <class T> class Point3
template <class P3ScalarType> class Point3
{
protected:
/// The only data member. Hidden to user.
T _v[3];
P3ScalarType _v[3];
public:
typedef T scalar;
typedef P3ScalarType ScalarType;
@ -66,7 +69,7 @@ public:
**/
inline Point3 () { }
inline Point3 ( const T nx, const T ny, const T nz )
inline Point3 ( const P3ScalarType nx, const P3ScalarType ny, const P3ScalarType nz )
{
_v[0] = nx;
_v[1] = ny;
@ -78,7 +81,7 @@ public:
_v[1]= p._v[1];
_v[2]= p._v[2];
}
inline Point3 ( const T nv[3] )
inline Point3 ( const P3ScalarType nv[3] )
{
_v[0] = nv[0];
_v[1] = nv[1];
@ -98,7 +101,7 @@ public:
/// Questa funzione estende il vettore ad un qualsiasi numero di dimensioni
/// paddando gli elementi estesi con zeri
inline T Ext( const int i ) const
inline P3ScalarType Ext( const int i ) const
{
if(i>=0 && i<=2) return _v[i];
else return 0;
@ -107,15 +110,15 @@ public:
template <class Q>
inline void Import( const Point3<Q> & b )
{
_v[0] = T(b[0]);
_v[1] = T(b[1]);
_v[2] = T(b[2]);
_v[0] = P3ScalarType(b[0]);
_v[1] = P3ScalarType(b[1]);
_v[2] = P3ScalarType(b[2]);
}
template <class Q>
static inline Point3 Construct( const Point3<Q> & b )
{
return Point3(T(b[0]),T(b[1]),T(b[2]));
return Point3(P3ScalarType(b[0]),P3ScalarType(b[1]),P3ScalarType(b[2]));
}
//@}
@ -125,32 +128,32 @@ public:
/** @name Data Access.
access to data is done by overloading of [] or explicit naming of coords (x,y,z)**/
inline T & operator [] ( const int i )
inline P3ScalarType & operator [] ( const int i )
{
assert(i>=0 && i<3);
return _v[i];
}
inline const T & operator [] ( const int i ) const
inline const P3ScalarType & operator [] ( const int i ) const
{
assert(i>=0 && i<3);
return _v[i];
}
inline const T &X() const { return _v[0]; }
inline const T &Y() const { return _v[1]; }
inline const T &Z() const { return _v[2]; }
inline T &X() { return _v[0]; }
inline T &Y() { return _v[1]; }
inline T &Z() { return _v[2]; }
inline const T * V() const
inline const P3ScalarType &X() const { return _v[0]; }
inline const P3ScalarType &Y() const { return _v[1]; }
inline const P3ScalarType &Z() const { return _v[2]; }
inline P3ScalarType &X() { return _v[0]; }
inline P3ScalarType &Y() { return _v[1]; }
inline P3ScalarType &Z() { return _v[2]; }
inline const P3ScalarType * V() const
{
return _v;
}
inline T & V( const int i )
inline P3ScalarType & V( const int i )
{
assert(i>=0 && i<3);
return _v[i];
}
inline const T & V( const int i ) const
inline const P3ScalarType & V( const int i ) const
{
assert(i>=0 && i<3);
return _v[i];
@ -164,29 +167,29 @@ public:
inline Point3 operator + ( Point3 const & p) const
{
return Point3<T>( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2] );
return Point3<P3ScalarType>( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2] );
}
inline Point3 operator - ( Point3 const & p) const
{
return Point3<T>( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2] );
return Point3<P3ScalarType>( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2] );
}
inline Point3 operator * ( const T s ) const
inline Point3 operator * ( const P3ScalarType s ) const
{
return Point3<T>( _v[0]*s, _v[1]*s, _v[2]*s );
return Point3<P3ScalarType>( _v[0]*s, _v[1]*s, _v[2]*s );
}
inline Point3 operator / ( const T s ) const
inline Point3 operator / ( const P3ScalarType s ) const
{
return Point3<T>( _v[0]/s, _v[1]/s, _v[2]/s );
return Point3<P3ScalarType>( _v[0]/s, _v[1]/s, _v[2]/s );
}
/// Dot product
inline T operator * ( Point3 const & p ) const
inline P3ScalarType operator * ( Point3 const & p ) const
{
return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] );
}
/// Cross product
inline Point3 operator ^ ( Point3 const & p ) const
{
return Point3 <T>
return Point3 <P3ScalarType>
(
_v[1]*p._v[2] - _v[2]*p._v[1],
_v[2]*p._v[0] - _v[0]*p._v[2],
@ -208,14 +211,14 @@ public:
_v[2] -= p._v[2];
return *this;
}
inline Point3 & operator *= ( const T s )
inline Point3 & operator *= ( const P3ScalarType s )
{
_v[0] *= s;
_v[1] *= s;
_v[2] *= s;
return *this;
}
inline Point3 & operator /= ( const T s )
inline Point3 & operator /= ( const P3ScalarType s )
{
_v[0] /= s;
_v[1] /= s;
@ -223,16 +226,16 @@ public:
return *this;
}
// Norme
inline T Norm() const
inline P3ScalarType Norm() const
{
return Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
}
inline T SquaredNorm() const
inline P3ScalarType SquaredNorm() const
{
return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
}
// Scalatura differenziata
inline Point3 & Scale( const T sx, const T sy, const T sz )
inline Point3 & Scale( const P3ScalarType sx, const P3ScalarType sy, const P3ScalarType sz )
{
_v[0] *= sx;
_v[1] *= sy;
@ -250,16 +253,16 @@ public:
// Normalizzazione
inline Point3 & Normalize()
{
T n = Sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2]);
P3ScalarType n = Sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2]);
if(n>0.0) { _v[0] /= n; _v[1] /= n; _v[2] /= n; }
return *this;
}
// Polarizzazione
void Polar( T & ro, T & tetha, T & fi ) const
void Polar( P3ScalarType & ro, P3ScalarType & tetha, P3ScalarType & fi ) const
{
ro = Norm();
tetha = (T)atan2( _v[1], _v[0] );
fi = (T)acos( _v[2]/ro );
tetha = (P3ScalarType)atan2( _v[1], _v[0] );
fi = (P3ScalarType)acos( _v[2]/ro );
}
//@}
@ -305,7 +308,7 @@ inline bool operator == ( Point3 const & p ) const
inline Point3 operator - () const
{
return Point3<T> ( -_v[0], -_v[1], -_v[2] );
return Point3<P3ScalarType> ( -_v[0], -_v[1], -_v[2] );
}
//@}
// Casts
@ -320,57 +323,57 @@ inline operator Point3<short> (){ return Point3<short> (_v[0],_v[1],_v[2]); }
}; // end class definition
template <class T>
inline T Angle( Point3<T> const & p1, Point3<T> const & p2 )
template <class P3ScalarType>
inline P3ScalarType Angle( Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2 )
{
T w = p1.Norm()*p2.Norm();
P3ScalarType w = p1.Norm()*p2.Norm();
if(w==0) return -1;
T t = (p1*p2)/w;
P3ScalarType t = (p1*p2)/w;
if(t>1) t = 1;
else if(t<-1) t = -1;
return (T) acos(t);
return (P3ScalarType) acos(t);
}
// versione uguale alla precedente ma che assume che i due vettori sono unitari
template <class T>
inline T AngleN( Point3<T> const & p1, Point3<T> const & p2 )
template <class P3ScalarType>
inline P3ScalarType AngleN( Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2 )
{
T w = p1*p2;
P3ScalarType w = p1*p2;
if(w>1)
w = 1;
else if(w<-1)
w=-1;
return (T) acos(w);
return (P3ScalarType) acos(w);
}
template <class T>
inline T Norm( Point3<T> const & p )
template <class P3ScalarType>
inline P3ScalarType Norm( Point3<P3ScalarType> const & p )
{
return p.Norm();
}
template <class T>
inline T SquaredNorm( Point3<T> const & p )
template <class P3ScalarType>
inline P3ScalarType SquaredNorm( Point3<P3ScalarType> const & p )
{
return p.SquaredNorm();
}
template <class T>
inline Point3<T> & Normalize( Point3<T> & p )
template <class P3ScalarType>
inline Point3<P3ScalarType> & Normalize( Point3<P3ScalarType> & p )
{
p.Normalize();
return p;
}
template <class T>
inline T Distance( Point3<T> const & p1,Point3<T> const & p2 )
template <class P3ScalarType>
inline P3ScalarType Distance( Point3<P3ScalarType> const & p1,Point3<P3ScalarType> const & p2 )
{
return (p1-p2).Norm();
}
template <class T>
inline T SquaredDistance( Point3<T> const & p1,Point3<T> const & p2 )
template <class P3ScalarType>
inline P3ScalarType SquaredDistance( Point3<P3ScalarType> const & p1,Point3<P3ScalarType> const & p2 )
{
return (p1-p2).SquaredNorm();
}
@ -378,12 +381,12 @@ inline T SquaredDistance( Point3<T> const & p1,Point3<T> const & p2 )
// Dot product preciso numericamente (solo double!!)
// Implementazione: si sommano i prodotti per ordine di esponente
// (prima le piu' grandi)
template<class T>
double stable_dot ( Point3<T> const & p0, Point3<T> const & p1 )
template<class P3ScalarType>
double stable_dot ( Point3<P3ScalarType> const & p0, Point3<P3ScalarType> const & p1 )
{
T k0 = p0._v[0]*p1._v[0];
T k1 = p0._v[1]*p1._v[1];
T k2 = p0._v[2]*p1._v[2];
P3ScalarType k0 = p0._v[0]*p1._v[0];
P3ScalarType k1 = p0._v[1]*p1._v[1];
P3ScalarType k2 = p0._v[2]*p1._v[2];
int exp0,exp1,exp2;
@ -410,18 +413,18 @@ double stable_dot ( Point3<T> const & p0, Point3<T> const & p1 )
// Returns 2*AreaTri/(MaxEdge^2), range [0.0, 0.866]
// e.g. halfsquare: 1/2, Equitri sqrt(3)/2, ecc
// Modificata il 7/sep/00 per evitare l'allocazione temporanea di variabili
template<class T>
T Quality( Point3<T> const &p0, Point3<T> const & p1, Point3<T> const & p2)
template<class P3ScalarType>
P3ScalarType Quality( Point3<P3ScalarType> const &p0, Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2)
{
Point3<T> d10=p1-p0;
Point3<T> d20=p2-p0;
Point3<T> d12=p1-p2;
Point3<T> x = d10^d20;
Point3<P3ScalarType> d10=p1-p0;
Point3<P3ScalarType> d20=p2-p0;
Point3<P3ScalarType> d12=p1-p2;
Point3<P3ScalarType> x = d10^d20;
T a = Norm( x );
P3ScalarType a = Norm( x );
if(a==0) return 0; // Area zero triangles have surely quality==0;
T b = SquaredNorm( d10 );
T t = b;
P3ScalarType b = SquaredNorm( d10 );
P3ScalarType t = b;
t = SquaredNorm( d20 ); if ( b<t ) b = t;
t = SquaredNorm( d12 ); if ( b<t ) b = t;
assert(b!=0.0);
@ -429,23 +432,23 @@ T Quality( Point3<T> const &p0, Point3<T> const & p1, Point3<T> const & p2)
}
// Return the value of the face normal (internal use only)
template<class T>
Point3<T> Normal(const Point3<T> & p0, const Point3<T> & p1, const Point3<T> & p2)
template<class P3ScalarType>
Point3<P3ScalarType> Normal(const Point3<P3ScalarType> & p0, const Point3<P3ScalarType> & p1, const Point3<P3ScalarType> & p2)
{
return ((p1 - p0) ^ (p2 - p0));
}
// Return the value of the face normal (internal use only)
template<class T>
Point3<T> NormalizedNormal(const Point3<T> & p0, const Point3<T> & p1, const Point3<T> & p2)
template<class P3ScalarType>
Point3<P3ScalarType> NormalizedNormal(const Point3<P3ScalarType> & p0, const Point3<P3ScalarType> & p1, const Point3<P3ScalarType> & p2)
{
return ((p1 - p0) ^ (p2 - p0)).Normalize();
}
template<class T>
Point3<T> Jitter(Point3<T> &n, T RadAngle)
template<class P3ScalarType>
Point3<P3ScalarType> Jitter(Point3<P3ScalarType> &n, P3ScalarType RadAngle)
{
Point3<T> rnd(1.0 - 2.0*T(rand())/RAND_MAX, 1.0 - 2.0*T(rand())/RAND_MAX, 1.0 - 2.0*T(rand())/RAND_MAX);
Point3<P3ScalarType> rnd(1.0 - 2.0*P3ScalarType(rand())/RAND_MAX, 1.0 - 2.0*P3ScalarType(rand())/RAND_MAX, 1.0 - 2.0*P3ScalarType(rand())/RAND_MAX);
rnd*=Sin(RadAngle);
return (n+rnd).Normalize();
}
@ -453,14 +456,14 @@ Point3<T> Jitter(Point3<T> &n, T RadAngle)
// Point(p) Edge(v1-v2) dist, q is the point in v1-v2 with min dist
template<class T>
T PSDist( const Point3<T> & p,
const Point3<T> & v1,
const Point3<T> & v2,
Point3<T> & q )
template<class P3ScalarType>
P3ScalarType PSDist( const Point3<P3ScalarType> & p,
const Point3<P3ScalarType> & v1,
const Point3<P3ScalarType> & v2,
Point3<P3ScalarType> & q )
{
Point3<T> e = v2-v1;
T t = ((p-v1)*e)/e.SquaredNorm();
Point3<P3ScalarType> e = v2-v1;
P3ScalarType t = ((p-v1)*e)/e.SquaredNorm();
if(t<0) t = 0;
else if(t>1) t = 1;
q = v1+e*t;