[SIMPLEXplus promotion]

This modification removes the old way to define simplexes (already deprecated and unsupported).
In the following SIMPLEX = [vertex|edge|face|tetrahedron]

All the stuff that was in vcg/simplex/SIMPLEXplus/ has now been promoted to vcg/simplex/

Details:
- the folder vcg/simplex/SIMPLEX/with has been removed
- the file vcg/simplex/SIMPLEX/base.h has been renamed into  vcg/simplex/SIMPLEX/base_old.h 
- the content of vcg/simplex/SIMPLEXplus/ has been moved into vcg/simplex/SIMPLEX/
- the folder vcg/simplex/SIMPLEXplus/ has been removed

Actions the update the  code using vcglib:
replace <vcg/simplex/SIMPLEXplus/*> with  <vcg/simplex/SIMPLEX/*> in every include
for MESHLAB users: already done along with this commit
This commit is contained in:
ganovelli 2008-12-19 10:32:32 +00:00
parent c9b6f8f7c8
commit 49b4970452
7 changed files with 1554 additions and 895 deletions

File diff suppressed because it is too large Load Diff

874
vcg/simplex/edge/base_old.h Normal file
View File

@ -0,0 +1,874 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.11 2006/10/07 10:02:16 cignoni
Added missing typename for interp.parameters
Revision 1.10 2005/11/30 14:05:04 ponchio
Fixed some UberZ fuynctions and non defined _flags
Revision 1.9 2005/10/14 12:34:55 cignoni
Added ordered constructor that build a edge with unique ordering
among vertices (useful for edge-collapse simplification)
Revision 1.8 2005/10/01 09:22:51 cignoni
Major rewriting of the whole class edge. Removed default flags and nonsense attibutes. Given consistent naming to defines.
Revision 1.7 2005/07/15 15:45:51 ganovelli
template parametere Scalar removed
Revision 1.6 2005/04/14 11:35:09 ponchio
*** empty log message ***
Revision 1.5 2004/10/25 16:25:12 ponchio
inline Set(...) -> inline void Set(...)
Revision 1.4 2004/10/25 08:21:17 ganovelli
added: constructor,Set and some minor changes.
Revision 1.3 2004/05/10 14:40:28 ganovelli
name of adhacency function updated
Revision 1.2 2004/05/10 14:02:29 ganovelli
created
Revision 1.1 2004/04/26 19:04:23 ganovelli
created
****************************************************************************/
#ifndef __VCGLIB__EDGE_TYPE_BASE
#define __VCGLIB__EDGE_TYPE_BASE
#pragma message("[VCGLIB Warning] this way to define the simplex edge is DEPRECATED and no more SUPPORTED")
#pragma message("[VCGLIB Warning] use vcg/simplex/edgeplus instead ")
#include <vcg/space/box3.h>
#include <vcg/space/texcoord2.h>
namespace vcg {
/**
\ingroup segment
@name segment
Class Edge.
This is the base class for definition of a face of the mesh.
@param SVTYPE (Templete Parameter) Specifies the vertex class type.
*/
template <class EDGENAME, class SVTYPE, class TCTYPE = TexCoord2<float,1> > class EDGE_TYPE
{
public:
/// The base type of the segment
typedef EDGE_TYPE BaseEdgeType;
/// The scalar type derived from the vertex
typedef typename SVTYPE::ScalarType ScalarType;
/// The vertex type
typedef SVTYPE VertexType;
/// The type of the the vertex coordinate
typedef Point3< ScalarType > CoordType;
/// The bounding box type
typedef Box3<ScalarType> BoxType;
/// Default Empty Costructor
inline EDGE_TYPE(){}
inline EDGE_TYPE(VertexType* v0,VertexType* v1){v[0]=v0;v[1]=v1;}
static inline EDGE_TYPE OrderedEdge(VertexType* v0,VertexType* v1){
if(v0<v1) return EDGE_TYPE(v0,v1);
else return EDGE_TYPE(v1,v0);
}
/// Costructor
inline void Set(VertexType* v0,VertexType* v1){v[0]=v0;v[1]=v1;}
/***********************************************/
/** @name Vertex Pointer
blah
blah
**/
//@{
protected:
/// Vector of vertex pointer incident in the face
VertexType *v[2];
public:
/** Return the pointer to the j-th vertex of the face.
@param j Index of the face vertex.
*/
inline SVTYPE * & V( const int j )
{
assert( !IsD() );
assert(j >= 0 && j < 2);
return v[j];
}
inline const SVTYPE * const & V( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
return v[j];
}
inline const SVTYPE * const & cV( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
return v[j];
}
// Shortcut per accedere ai punti delle facce
inline CoordType & P( const int j )
{
assert( !IsD() );
assert(j>=0 && j<2);
return v[j]->P();
}
inline const CoordType & P( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
return v[j]->cP();
}
inline const CoordType & cP( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
return v[j]->cP();
}
/** Return the pointer to the ((j+1)%3)-th vertex of the face.
@param j Index of the face vertex.
*/
inline SVTYPE * & V0( const int j ) { return V(j);}
inline SVTYPE * & V1( const int j ) { return V((j+1)%2);}
inline const SVTYPE * const & V0( const int j ) const { return V(j);}
inline const SVTYPE * const & V1( const int j ) const { return V((j+1)%2);}
inline const SVTYPE * const & cV0( const int j ) const { return cV(j);}
inline const SVTYPE * const & cV1( const int j ) const { return cV((j+1)%2);}
/// Shortcut per accedere ai punti delle facce
inline CoordType & P0( const int j ) { return V(j)->P();}
inline CoordType & P1( const int j ) { return V((j+1)%2)->P();}
inline const CoordType & P0( const int j ) const { return V(j)->P();}
inline const CoordType & P1( const int j ) const { return V((j+1)%2)->P();}
inline const CoordType & cP0( const int j ) const { return cV(j)->P();}
inline const CoordType & cP1( const int j ) const { return cV((j+1)%2)->P();}
inline SVTYPE * & UberV( const int j )
{
assert(j>=0 && j<2);
return v[j];
}
inline const SVTYPE * const & UberV( const int j ) const
{
assert(j>=0 && j<2);
return v[j];
}
//@}
/***********************************************/
/** @name Normal
blah
blah
**/
//@{
#ifdef __VCGLIB_EDGE_EN
/// This vector indicates the normal of the face (defines if FACE_N is defined)
protected:
CoordType _n;
public:
#endif
/// Return the reference of the normal to the face (if __VCGLIB_EDGE_FN is defined).
inline CoordType & N()
{
#ifdef __VCGLIB_EDGE_EN
return _n;
#else
assert(0);
return *(CoordType *)0;
#endif
}
/// Return the reference of the normal to the face (if __VCGLIB_EDGE_FN is defined).
inline const CoordType & N() const
{
#ifdef __VCGLIB_EDGE_EN
return _n;
#else
return *(CoordType *)0;
#endif
}
/// Return the reference of the normal to the face (if __VCGLIB_EDGE_FN is defined).
inline const CoordType cN() const
{
#ifdef __VCGLIB_EDGE_EN
return _n;
#else
return *(CoordType *)0;
#endif
}
//@}
/***********************************************/
/** @name Quality
blah
blah
**/
//@{
#ifdef __VCGLIB_EDGE_EQ
protected:
float _q;
#endif
public:
float & Q()
{
#ifdef __VCGLIB_EDGE_EQ
return _q;
#else
assert(0);
return *(float*)(0);
#endif
}
const float & Q() const
{
#ifdef __VCGLIB_EDGE_EQ
return _q;
#else
assert(0);
return *(float*)(0);
#endif
}
//@}
/***********************************************/
/** @name Colors
blah
blah
**/
//@{
protected:
#ifdef __VCGLIB_EDGE_EC
Color4b _c;
#endif
public:
Color4b & C()
{
#ifdef __VCGLIB_EDGE_EC
return _c;
#else
assert(0);
return *(Color4b*)(0);
#endif
}
const Color4b C() const
{
#ifdef __VCGLIB_EDGE_EC
return _c;
#else
return Color4b(Color4b::White);
#endif
}
//@}
/***********************************************/
/** @name Adjacency
blah
blah
**/
//@{
protected:
#if defined(__VCGLIB_EDGE_AE)
/// Vector of face pointer, it's used to indicate the adjacency relations (defines if FACE_A is defined)
EDGENAME *ee[2]; // edge adiacenti
/// Index of the face in the arrival face
char zs[2];
#endif
#ifdef __VCGLIB_EDGE_AV
///Vettore di puntatori a edge, utilizzato per indicare le adiacenze vertice faccia
EDGENAME *ev[2];
char zv[2];
#endif
public:
/** Return the pointer to the j-th adjacent edge.
@param j Index of the edge.
*/
inline EDGENAME * & EEp( const int j )
{
assert( !IsD() );
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return ee[j];
#else
assert(0);
return *(EDGENAME **)(0);;
#endif
}
inline const EDGENAME * const & EEp( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return ee[j];
#else
assert(0);
return (EDGENAME *)0;
#endif
}
inline EDGENAME * & EEp1( const int j ) { return EEp((j+1)%2);}
inline const EDGENAME * const& EEp1( const int j ) const { return EEp((j+1)%2);}
/** Return the pointer to the j-th adjacent face.
@param j Index of the edge.
*/
inline EDGENAME * & UberEEp( const int j )
{
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return ee[j];
#else
assert(0); // if you stop here you are probably trying to use FF topology in a face without it
return *(EDGENAME **)(0);
#endif
}
inline const EDGENAME * const & UberEEp( const int j ) const
{
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return ee[j];
#else
assert(0); // if you stop here you are probably trying to use FF topology in a face without it
return *(EDGENAME **)(0);
#endif
}
inline EDGENAME * & VEp( const int j )
{
assert( !IsD() );
assert(j>=0 && j<2);
#ifdef __VCGLIB_EDGE_AV
return ev[j];
#else
assert(0); // you are probably trying to use VF topology in a vertex without it
return *(EDGENAME **)(0);
#endif
}
inline const EDGENAME * const & VEp( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
#ifdef __VCGLIB_EDGE_AV
return ev[j];
#else
assert(0);
return *(EDGENAME **)(0);
#endif
}
/** Return the index that the face have in the j-th adjacent face.
@param j Index of the edge.
*/
inline char & EEi( const int j )
{
assert( !IsD() );
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return zs[j];
#else
assert(0);
return *(char *)0; // tanto per farlo compilare...
#endif
}
inline const char & EEi( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return zs[j];
#else
assert(0);
return *(char *)0;
#endif
}
/** Return the index that the face have in the j-th adjacent face.
@param j Index of the edge.
*/
inline char & UberZ( const int j )
{
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return zs[j];
#elif defined(__VCGLIB_EDGE_SA)
return zs[j];
#else
assert(0);
static char dummy = 0;
return dummy;
#endif
}
inline const char & UberZ( const int j ) const
{
assert(j>=0 & j<2);
#if defined(__VCGLIB_EDGE_AE)
return zs[j];
#elif defined(__VCGLIB_EDGE_SA)
return zs[j];
#else
assert(0);
static int dummy = 0;
return dummy;
#endif
}
inline char & VEi( const int j )
{
assert( !IsD() );
assert(j>=0 & j<2);
#ifdef __VCGLIB_EDGE_VA
return zv[j];
#elif defined(__VCGLIB_EDGE_SA)
return zs[j];
#else
assert(0);
static char dummy = 0;
return dummy;
#endif
}
inline const char & VEi( const int j ) const
{
assert( !IsD() );
assert(j>=0 & j<2);
#ifdef __VCGLIB_EDGE_VA
return zv[j];
#elif defined(__VCGLIB_EDGE_SA)
return zs[j];
#else
assert(0);
static char dummy = 0;
return dummy;
#endif
}
//@}
/***********************************************/
/** @name Mark
blah
blah
**/
//@{
#ifdef __VCGLIB_EDGE_EM
/// Incremental mark (defines if FACE_I is defined)
int imark;
#endif // Mark
inline int & IMark()
{
#ifdef __VCGLIB_EDGE_EM
assert( !IsD() );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
return imark;
#else
return 0;
#endif // Mark
}
inline const int & IMark() const
{
assert( !IsD() );
#ifdef __VCGLIB_EDGE_EM
assert( (_flags & NOTREAD) == 0 );
return imark;
#else
static int dummy = 0;
return dummy;
#endif
}
/// Initialize the imark system of the face
inline void InitIMark()
{
#ifdef __VCGLIB_EDGE_EM
imark = 0;
#endif
}
//@}
/***********************************************/
/** @name Flags
blah
blah
**/
//@{
/// This are the _flags of face, the default value is 0
#ifdef __VCGLIB_EDGE_EF
int _flags;
#endif
enum {
// This bit indicate that the face is deleted from the mesh
DELETED = 0x00000001, // cancellato
// This bit indicate that the face of the mesh is not readable
NOTREAD = 0x00000002, // non leggibile (ma forse modificabile)
// This bit indicate that the face is not modifiable
NOTWRITE = 0x00000004, // non modificabile (ma forse leggibile)
// This bit indicate that the face is modified
SELECTED = 0x00000020, // Selection _flags
// Border _flags, it is assumed that BORDERi = BORDER0<<i
BORDER0 = 0x00000040,
BORDER1 = 0x00000080,
// First user bit
USER0 = 0x00040000
};
public:
static int &LastBitFlag()
{
static int b =USER0;
return b;
}
static inline int NewBitFlag()
{
LastBitFlag()=LastBitFlag()<<1;
return LastBitFlag();
}
static inline bool DeleteBitFlag(int bitval)
{
if(LastBitFlag()==bitval) {
LastBitFlag()= LastBitFlag()>>1;
return true;
}
assert(0);
return false;
}
void ClearFlags() {
#ifdef __VCGLIB_EDGE_EF
_flags=0;
#endif
}
/// Return the _flags.
inline int & Flags ()
{
#ifdef __VCGLIB_EDGE_EF
assert( !IsD() );
return _flags;
#else
return *(int *)0;
#endif
}
inline const int & Flags () const
{
#ifdef __VCGLIB_EDGE_EF
assert( !IsD() );
return _flags;
#else
return 0;
#endif
}
/// Ritorna il _flags senza effettuare alcun controllo sui relativi bit
inline int & UberFlags()
{
#ifdef __VCGLIB_EDGE_EF
return _flags;
#else
assert(0);
return *(int *)0;
#endif
}
inline const int UberFlags() const
{
#ifdef __VCGLIB_EDGE_EF
return _flags;
#else
return 0;
#endif
}
/// This function checks if the face is deleted
bool IsD() const {
#ifdef __VCGLIB_EDGE_EF
return (_flags & DELETED) != 0;
#else
return false;
#endif
}
/// This function mark the face as deleted
void SetD() {
#ifdef __VCGLIB_EDGE_EF
_flags |=DELETED;
#endif
}
/// This function mark the face as not deleted
void ClearD() {
#ifdef __VCGLIB_EDGE_EF
_flags &= (~DELETED);
#endif
}
/// This function checks if the face is selected
bool IsS() const {
#ifdef __VCGLIB_EDGE_EF
return (_flags & SELECTED) != 0;
#else
return false;
#endif
}
/// This function select the face
void SetS() {
#ifdef __VCGLIB_EDGE_EF
_flags |=SELECTED;
#endif
}
/// This funcion execute the inverse operation of SetS()
void ClearS() {
#ifdef __VCGLIB_EDGE_EF
_flags &= (~SELECTED);
#endif
}
/// This function checks if the edge is Border on a given side
bool IsB(int i) const {
#ifdef __VCGLIB_EDGE_EF
return (_flags & (BORDER0<<i)) != 0;
#else
return false;
#endif
}
/// This function set edge as Border on a given side
void SetB(int i) {
#ifdef __VCGLIB_EDGE_EF
_flags |=(BORDER0<<i);
#endif
}
/// This function clear edge as Border on a given side
void ClearB(int i) {
#ifdef __VCGLIB_EDGE_EF
_flags &= (~(BORDER0<<i));
#endif
}
/// This function checks if the given user bit is true
bool IsUserBit(int userBit){
#ifdef __VCGLIB_EDGE_EF
return (_flags & userBit) != 0;
#else
return false;
#endif
}
/// This function set the given user bit
void SetUserBit(int userBit){
#ifdef __VCGLIB_EDGE_EF
_flags |=userBit;
#endif
}
/// This function clear the given user bit
void ClearUserBit(int userBit){
#ifdef __VCGLIB_EDGE_EF
_flags &= (~userBit);
#endif
}
//@}
/*#*******************
* Bounding box *
**********************/
void GetBBox( BoxType & bb )
{
bb.Set( v[0]->P() );
bb.Add( v[1]->P() );
}
/***********************************************/
/** @name Reflection Functions
Static functions that give information about the current vertex type.
Reflection is a mechanism making it possible to investigate yourself. Reflection is used to investigate format of objects at runtime, invoke methods and access fields of these objects. Here we provide static const functions that are resolved at compile time and they give information about the data (normal, color etc.) supported by the current vertex type.
**/
//@{
static bool HasEdgeNormal() {
#ifdef __VCGLIB_EDGE_FN
return true;
#else
return false;
#endif
}
static bool HasEdgeQuality() {
#ifdef __VCGLIB_EDGE_FQ
return true;
#else
return false;
#endif
}
static bool HasEdgeColor() {
#ifdef __VCGLIB_EDGE_FC
return true;
#else
return false;
#endif
}
static bool HasEEAdjacency() {
#if (defined(__VCGLIB_EDGE_AE) )
return true;
#else
return false;
#endif
}
static bool HasVEAdjacency() {
#if (defined(__VCGLIB_EDGE_AV) )
return true;
#else
return false;
#endif
}
static bool HasEdgeMark() {
#ifdef __VCGLIB_EDGE_FC
return true;
#else
return false;
#endif
}
//@}
/// operator to compare two edges
inline bool operator == ( const EDGENAME & f ) const {
if( (V(0) != f.V(0)) && (V(0) != f.V(1)) ) return false;
if( (V(1) != f.V(0)) && (V(1) != f.V(1)) ) return false;
return true;
}
/** Calcola i coefficienti della combinazione convessa.
@param bq Punto appartenente alla faccia
@param a Valore di ritorno per il vertice V(0)
@param b Valore di ritorno per il vertice V(1)
@param _c Valore di ritorno per il vertice V(2)
@return true se bq appartiene alla faccia, false altrimenti
*/
bool InterpolationParameters(const CoordType & bq, typename VertexType::ScalarType &a, ScalarType &_b) const
{
typedef typename VertexType::ScalarType ScalarType;
const ScalarType EPSILON = ScalarType(0.000001);
ScalarType l;
#define x1 (cV(0)->P().x())
#define y1 (cV(0)->P().y())
#define z1 (cV(0)->P().z())
#define x2 (cV(1)->P().x())
#define y2 (cV(1)->P().y())
#define z2 (cV(1)->P().z())
#define px (bq.x())
#define py (bq.y())
#define pz (bq.z())
a = (px-x1)/(x2-x1);
l = (py-y1)/(y2-y1);
if( ( l < a -EPSILON) || ( l > a +EPSILON))
return false;
l = (pz-z1)/(z2-z1);
if( ( l < a -EPSILON) || ( l > a +EPSILON))
return false;
_b = 1-a;
return true;
#undef x1
#undef y1
#undef z1
#undef x2
#undef y2
#undef z2
#undef px
#undef py
#undef pz
}
/// Return the DOUBLE of the area of the face
ScalarType Length() const
{
return Norm( (V(1)->P() - V(0)->P()).Norm());
}
CoordType Barycenter() const
{
return (V(0)->P()+V(1)->P())/ScalarType(2.0);
}
}; //end Class
} // end namespace
#endif

View File

@ -0,0 +1,489 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_EDGE_PLUS_COMPONENT
#define __VCG_EDGE_PLUS_COMPONENT
//#include <vector>
//#include <string>
//#include <vcg/space/point3.h>
//#include <vcg/space/texcoord2.h>
#include <vcg/space/color4.h>
namespace vcg {
namespace edge {
/*
Some naming Rules
All the Components that can be added to a vertex should be defined in the namespace edge:
*/
/*-------------------------- VERTEX ----------------------------------------*/
template <class T> class EmptyVertexRef: public T {
public:
// typedef typename T::VertexType VertexType;
// typedef typename T::CoordType CoordType;
inline typename T::VertexType * & V( const int j ) { assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::VertexType * const & V( const int j ) const { assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::VertexType * const cV( const int j ) const { assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::CoordType & P( const int j ) { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
inline const typename T::CoordType & P( const int j ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
inline const typename T::CoordType &cP( const int j ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
template <class LeftF>
void ImportLocal(const LeftF & leftF) {T::ImportLocal(leftF);}
static bool HasVertexRef() { return false; }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
template <class T> class VertexRef: public T {
public:
VertexRef(){
v[0]=0;
v[1]=0;
}
inline typename T::VertexType * & V( const int j ) { assert(j>=0 && j<2); return v[j]; }
inline typename T::VertexType * const & V( const int j ) const { assert(j>=0 && j<2); return v[j]; }
inline typename T::VertexType * const cV( const int j ) const { assert(j>=0 && j<2); return v[j]; }
// Shortcut per accedere ai punti delle facce
inline typename T::CoordType & P( const int j ) { assert(j>=0 && j<2); return v[j]->P(); }
inline const typename T::CoordType &cP( const int j ) const { assert(j>=0 && j<2); return v[j]->cP(); }
/** Return the pointer to the ((j+1)%3)-th vertex of the face.
@param j Index of the face vertex.
*/
inline typename T::VertexType * & V0( const int j ) { return V(j);}
inline typename T::VertexType * & V1( const int j ) { return V((j+1)%2);}
inline const typename T::VertexType * const & V0( const int j ) const { return V(j);}
inline const typename T::VertexType * const & V1( const int j ) const { return V((j+1)%2);}
inline const typename T::VertexType * const & cV0( const int j ) const { return cV(j);}
inline const typename T::VertexType * const & cV1( const int j ) const { return cV((j+1)%2);}
/// Shortcut per accedere ai punti delle facce
inline typename T::CoordType & P0( const int j ) { return V(j)->P();}
inline typename T::CoordType & P1( const int j ) { return V((j+1)%2)->P();}
inline const typename T::CoordType & P0( const int j ) const { return V(j)->P();}
inline const typename T::CoordType & P1( const int j ) const { return V((j+1)%2)->P();}
inline const typename T::CoordType & cP0( const int j ) const { return cV(j)->P();}
inline const typename T::CoordType & cP1( const int j ) const { return cV((j+1)%2)->P();}
inline typename T::VertexType * & UberV( const int j ) { assert(j>=0 && j<2); return v[j]; }
inline const typename T::VertexType * const & UberV( const int j ) const { assert(j>=0 && j<2); return v[j]; }
template <class LeftF>
void ImportLocal(const LeftF & leftF){ V(0) = NULL; V(1) = NULL; V(2) = NULL; T::ImportLocal(leftF);}
static bool HasVertexRef() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("VertexRef"));T::Name(name);}
private:
typename T::VertexType *v[2];
};
/*-------------------------- INCREMENTAL MARK ----------------------------------------*/
template <class T> class EmptyMark: public T {
public:
static bool HasMark() { return false; }
static bool HasMarkOcc() { return false; }
inline void InitIMark() { }
inline int & IMark() { assert(0); static int tmp=-1; return tmp;}
inline const int & IMark() const {return 0;}
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
template <class T> class Mark: public T {
public:
static bool HasMark() { return true; }
static bool HasMarkOcc() { return true; }
inline void InitIMark() { _imark = 0; }
inline int & IMark() { return _imark;}
inline const int & IMark() const {return _imark;}
template < class LeftV>
void ImportLocal(const LeftV & left ) { IMark() = left.IMark(); T::ImportLocal( left); }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Mark"));T::Name(name);}
private:
int _imark;
};
/*------------------------- FLAGS -----------------------------------------*/
template <class T> class EmptyBitFlags: public T {
public:
typedef int FlagType;
/// Return the vector of Flags(), senza effettuare controlli sui bit
int &Flags() { static int dummyflags(0); assert(0); return dummyflags; }
const int Flags() const { return 0; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasFlags() { return false; }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
template <class T> class BitFlags: public T {
public:
BitFlags(){_flags=0;}
typedef int FlagType;
int &Flags() {return _flags; }
const int Flags() const {return _flags; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { Flags() = left.Flags(); T::ImportLocal( left); }
static bool HasFlags() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("BitFlags"));T::Name(name);}
private:
int _flags;
};
/*-------------------------- EMPTY COLOR & QUALITY ----------------------------------*/
template <class T> class EmptyColorQuality: public T {
public:
typedef float QualityType;
QualityType &Q() { static QualityType dummyQuality(0); assert(0); return dummyQuality; }
static bool HasQuality() { return false; }
typedef vcg::Color4b ColorType;
ColorType &C() { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasColor() { return false; }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
/*-------------------------- Color ----------------------------------*/
template <class A, class T> class Color: public T {
public:
Color():_color(vcg::Color4b::White) {}
typedef A ColorType;
ColorType &C() { return _color; }
const ColorType &C() const { return _color; }
const ColorType &cC() const { return _color; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { C() = left.cC(); T::ImportLocal( left); }
static bool HasColor() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Color"));T::Name(name);}
private:
ColorType _color;
};
template <class TT> class Color4b: public edge::Color<vcg::Color4b, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Color4b"));TT::Name(name);}
};
/*-------------------------- Quality ----------------------------------*/
template <class A, class TT> class Quality: public TT {
public:
typedef A QualityType;
QualityType &Q() { return _quality; }
const QualityType & cQ() const {return _quality; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { Q() = left.cQ(); TT::ImportLocal( left); }
static bool HasQuality() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality"));TT::Name(name);}
private:
QualityType _quality;
};
template <class TT> class Qualitys: public Quality<short, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualitys"));TT::Name(name);}
};
template <class TT> class Qualityf: public Quality<float, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityf"));TT::Name(name);}
};
template <class TT> class Qualityd: public Quality<double, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityd"));TT::Name(name);}
};
/*----------------------------- EVADJ ------------------------------*/
template <class T> class EmptyEVAdj: public T {
public:
typename T::VertexPointer &V(const int &) { static typename T::VertexPointer ep=0; assert(0); return ep; }
typename T::VertexPointer cV(const int &) { static typename T::VertexPointer ep=0; assert(0); return ep; }
int &EVi(){static int z=0; return z;};
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasEVAdjacency() { return false; }
static bool HasEVAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class EVAdj: public T {
public:
EVAdj(){_vp[0]= _vp[1] =0;}
typename T::VertexPointer & V(const int & i) {return _vp[i]; }
const typename T::VertexPointer cV(const int & i) const {return _vp[i]; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { V() = NULL; T::ImportLocal( left); }
static bool HasEVAdjacency() { return true; }
static bool HasEVAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("EVAdj"));T::Name(name);}
private:
typename T::VertexPointer _vp[2] ;
};
/*----------------------------- HEVADJ ------------------------------*/
template <class T> class EmptyHEVAdj: public T {
public:
typename T::VertexPointer &HEVp() { static typename T::VertexPointer ep=0; assert(0); return ep; }
typename T::VertexPointer cHEVp() { static typename T::VertexPointer ep=0; assert(0); return ep; }
int &EVi(){static int z=0; return z;};
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasHEVAdjacency() { return false; }
static bool HasHEVAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HEVAdj: public T {
public:
HEVAdj(){_vp =0;}
typename T::VertexPointer & HEVp() {return _vp ; }
const typename T::VertexPointer cHEVp() const {return _vp ; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { this->V() = NULL; T::ImportLocal( left); }
static bool HasHEVAdjacency() { return true; }
static bool HasHEVAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HEVAdj"));T::Name(name);}
private:
typename T::VertexPointer _vp ;
};
/*----------------------------- EEADJ ------------------------------*/
template <class T> class EmptyEEAdj: public T {
public:
typename T::EdgePointer &EEp(const int & i ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
typename T::EdgePointer cEEp(const int & i) { static typename T::EdgePointer ep=0; assert(0); return ep; }
int &EEi(){static int z=0; return z;};
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasEEAdjacency() { return false; }
static bool HasEEAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class EEAdj: public T {
public:
EEAdj(){_ep=0;}
typename T::EdgePointer &EEp(const int & i) {return _ep[i]; }
typename T::EdgePointer cEEp(const int & i) {return _ep[i]; }
int &EEi(const int & i) {return _zp[i]; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { EEp() = NULL; T::ImportLocal( left); }
static bool HasEEAdjacency() { return true; }
static bool HasEEAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("EEAdj"));T::Name(name);}
private:
typename T::EdgePointer _ep[2] ;
int _zp[2] ;
};
/*----------------------------- ETADJ ------------------------------*/
template <class T> class EmptyETAdj: public T {
public:
typename T::TetraPointer &ETp() { static typename T::TetraPointer tp = 0; assert(0); return tp; }
typename T::TetraPointer cETp() { static typename T::TetraPointer tp = 0; assert(0); return tp; }
int &VTi() { static int z = 0; return z; };
static bool HasETAdjacency() { return false; }
static bool HasETAdjacencyOcc() { return false; }
static void Name( std::vector< std::string > & name ) { T::Name(name); }
};
template <class T> class ETAdj: public T {
public:
ETAdj() { _tp = 0; }
typename T::TetraPointer &ETp() { return _tp; }
typename T::TetraPointer cETp() { return _tp; }
int &ETi() {return _zp; }
static bool HasETAdjacency() { return true; }
static bool HasETAdjacencyOcc() { return true; }
static void Name( std::vector< std::string > & name ) { name.push_back( std::string("ETAdj") ); T::Name(name); }
private:
typename T::TetraPointer _tp ;
int _zp ;
};
/*----------------------------- HENextADJ ------------------------------*/
template <class T> class EmptyHENextAdj: public T {
public:
typename T::EdgePointer &HENp( ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
typename T::EdgePointer cHEp( ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasHENextAdjacency() { return false; }
static bool HasHENextAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HENextAdj: public T {
public:
HENextAdj(){_nep=0;}
typename T::EdgePointer &HENp() {return _nep; }
typename T::EdgePointer cHENp() {return _nep; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { this->EEp() = NULL; T::ImportLocal( left); }
static bool HasHENextAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HENextAdj"));T::Name(name);}
private:
typename T::EdgePointer _nep ;
};
/*----------------------------- HEOppADJ ------------------------------*/
template <class T> class EmptyHEOppAdj: public T {
public:
typename T::EdgePointer &HEOp(const int & i ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
typename T::EdgePointer cHOp(const int & i) { static typename T::EdgePointer ep=0; assert(0); return ep; }
int &EEi(){static int z=0; return z;};
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasHEOppAdjacency() { return false; }
static bool HasHEOpptAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HEOppAdj: public T {
public:
HEOppAdj(){_oep=0;}
typename T::EdgePointer &HEOp() {return _oep; }
typename T::EdgePointer cHEOp() {return _oep; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { this->EEp() = NULL; T::ImportLocal( left); }
static bool HasHEOppAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HEOpptAdj"));T::Name(name);}
private:
typename T::EdgePointer _oep ;
};
/*----------------------------- HEPrevADJ ------------------------------*/
template <class T> class EmptyHEPrevAdj: public T {
public:
typename T::EdgePointer &HEPp() { static typename T::EdgePointer ep=0; assert(0); return ep; }
typename T::EdgePointer cHPp() { static typename T::EdgePointer ep=0; assert(0); return ep; }
int &EEi(){static int z=0; return z;};
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasHEPrevAdjacency() { return false; }
static bool HasHEPrevAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HEPrevAdj: public T {
public:
HEPrevAdj(){_pep=0;}
typename T::EdgePointer &HEPp() {return _pep; }
typename T::EdgePointer cHEPp() {return _pep; }
int &EEi(const int & i) {return this->_nei[i]; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { this->EEp() = NULL; T::ImportLocal( left); }
static bool HasHEPrevAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HEPrevAdj"));T::Name(name);}
private:
typename T::EdgePointer _pep ;
};
/*----------------------------- EFADJ ------------------------------*/
template <class T> class EmptyEFAdj: public T {
public:
typename T::FacePointer &EFp() { static typename T::FacePointer fp=0; assert(0); return fp; }
typename T::FacePointer cEFp() { static typename T::FacePointer fp=0; assert(0); return fp; }
int &EFi(){static int z=0; return z;};
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasEFAdjacency() { return false; }
static bool HasEFAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class EFAdj: public T {
public:
EFAdj(){_fp=0;}
typename T::FacePointer &EFp() {return _fp; }
typename T::FacePointer cEFp() {return _fp; }
int &EFi() {return _zp; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { this->EFp() = NULL; T::ImportLocal( left); }
static bool HasEFAdjacency() { return true; }
static bool HasEFAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("EFAdj"));T::Name(name);}
private:
typename T::FacePointer _fp ;
int _zp ;
};
/*----------------------------- EFADJ ------------------------------*/
/**
HEdgeData keep all the data for the half edge
*/
template <class T>
class EmptyHEdgeData : public EmptyEFAdj< // pointer to the face
EmptyHEOppAdj < // pointer to the opposite half edge
EmptyHENextAdj < // pointer to the next half edge along the face
EmptyHEVAdj < // pointer to the vertex
EmptyHEPrevAdj<
T > > > > >{};
template <class T>
class HEdgeData : public EFAdj< // pointer to the face
HEOppAdj < // pointer to the opposite half edge
HENextAdj < // pointer to the next half edge along the face
HEVAdj < // pointer to the vertex
T > > > >{
// functions to make the half edge user confortable
typename T::VertexPointer & Vertex() { return this->HEVp();}
const typename T::VertexPointer & cVertex() const { return this->cHEVp();}
typename T::EdgePointer Opposite() { return &this->HEOp();}
const typename T::EdgePointer & cOpposite() const { return this->cHEOp();}
typename T::EdgePointer & Next() { return this->HENp();}
const typename T::EdgePointer & cNext() const { return this->HENp();}
};
} // end namespace edge
}// end namespace vcg
#endif

View File

@ -1,14 +0,0 @@
#ifndef __VCGLIB_EDGE_AE_TYPE
#define __VCGLIB_EDGE_AE_TYPE
#define EDGE_TYPE EdgeAE
#define __VCGLIB_EDGE_AE
#include <vcg/simplex/edge/base.h>
#undef EDGE_TYPE
#undef __VCGLIB_EDGE_AE
#endif

View File

@ -1,14 +0,0 @@
#ifndef __VCGLIB_EDGE_EM_TYPE
#define __VCGLIB_EDGE_EM_TYPE
#define EDGE_TYPE EdgeEMEF
#define __VCGLIB_EDGE_EM
#define __VCGLIB_EDGE_EF
#include <vcg/simplex/edge/base.h>
#undef EDGE_TYPE
#undef __VCGLIB_EDGE_EF
#undef __VCGLIB_EDGE_EM
#endif

View File

@ -1,51 +0,0 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
This folders contains most common EDGE configuration files.
The name of the file specifies the members that are added to the edge
class. The name is a sequence of letter pairs, in strict alphabetical order. The
possible admitted letters pairs are:
Adjacency Info
AV - Vertex-Edge adjacency
AE - Edge-Edge adjacency
Per-Edge Data
EC - Color
EN - Normal
EM - Incremental Mark
EQ - Quality
E.g.
#include<vcg/simplex/vertex/with/aeem.h>
generate a type
VertexAEEM<VScalarType,FaceType>
That can store E-E adjacency and an incremental mark.