big replacement .Zero => .SetZero, and start of Eigen's compatibilities (currently disabled by default)

This commit is contained in:
Paolo Cignoni 2008-10-27 14:48:14 +00:00
parent c0a5159672
commit 4db69febbe
21 changed files with 3260 additions and 1488 deletions

View File

@ -6,7 +6,7 @@ class ImplicitSphere
public:
ImplicitSphere()
{
_center.Zero();
_center.SetZero();
_radius = _sqr_radius = 0.0;
};

View File

@ -144,7 +144,7 @@ ScalarType _VolumePreservingError(PosType &pos,CoordType &new_point,int nsteps)
else
if ((!ext_v0)&&(!ext_v1))
{/*CoordType g;
g.Zero();
g.SetZero();
g+=ve0->cP();
g+=ve1->cP();
g/=2;*/
@ -160,7 +160,7 @@ ScalarType _VolumePreservingError(PosType &pos,CoordType &new_point,int nsteps)
best_error=1000000.f;
ScalarType alfatemp=step*((ScalarType)i);
//CoordType g;
// g.Zero();
// g.SetZero();
//g+=ve0->cP()*alfatemp;
//g+=ve1->cP()*(1-alfatemp);
//CoordType newPTemp=g;

View File

@ -526,7 +526,7 @@ static void InitQuadric(TriMeshType &m)
// m.ClearFlags();
for(pv=m.vert.begin();pv!=m.vert.end();++pv) // Azzero le quadriche
if( ! (*pv).IsD() && (*pv).IsW())
QH::Qd(*pv).Zero();
QH::Qd(*pv).SetZero();
for(pf=m.face.begin();pf!=m.face.end();++pf)

View File

@ -379,7 +379,7 @@ namespace vcg
VertexPointer mean_point = &*AllocatorType::AddVertices( *_mesh, 1);
mean_point->SetUserBit(_featureFlag);
mean_point->P() = point;
mean_point->N().Zero();
mean_point->N().SetZero();
delete []x;
delete []points;
delete []normals;

View File

@ -313,7 +313,7 @@ static void Covariance(const MeshType & m, vcg::Point3<ScalarType> & bary, vcg::
ConstFaceIterator fi;
ScalarType area = 0.0;
bary.Zero();
bary.SetZero();
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{

View File

@ -240,7 +240,7 @@ public:
#define v1 (f->V1(i)->T().P())
#define v2 (f->V2(i)->T().P())
for (VertexIterator v=Super::m.vert.begin(); v!=Super::m.vert.end(); v++) {
sum[v].Zero();
sum[v].SetZero();
}
ScalarType tot_proj_area=0;
@ -424,7 +424,7 @@ void SmoothTextureCoords(MESH_TYPE &m){
sum.Start();
for (typename MESH_TYPE::VertexIterator v=m.vert.begin(); v!=m.vert.end(); v++) {
sum[v].Zero();
sum[v].SetZero();
div[v]=0;
}

View File

@ -278,10 +278,7 @@ public:
S[0][1] = s;
S[1][0] = -1.0f * s;
vcg::ndim::MatrixMNf St (S);
St.Transpose();
vcg::ndim::MatrixMNf StMS(St * minor2x2 * S);
vcg::ndim::MatrixMNf StMS(S.transpose() * minor2x2 * S);
// compute curvatures and curvature directions
float Principal_Curvature1 = (3.0f * StMS[0][0]) - StMS[1][1];

View File

@ -0,0 +1,785 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/***************************************************************************
$Log: not supported by cvs2svn $
Revision 1.9 2006/09/11 16:11:39 marfr960
Added const to declarations of the overloaded (operators *).
Otherwise the * operator would always attempt to convert any type of data passed as an argument to Point3<TYPE>
Revision 1.8 2006/08/23 15:24:45 marfr960
Copy constructor : faster memcpy instead of slow 'for' cycle
empty constructor
Revision 1.7 2006/04/29 10:26:04 fiorin
Added some utility methods (swapping of columns and rows, matrix-vector multiplication)
Revision 1.6 2006/04/11 08:09:35 zifnab1974
changes necessary for gcc 3.4.5 on linux 64bit. Please take note of case-sensitivity of filenames
Revision 1.5 2005/12/12 11:25:00 ganovelli
added diagonal matrix, outer produce and namespace
***************************************************************************/
#ifndef MATRIX_VCGLIB
#define MATRIX_VCGLIB
#include <stdio.h>
#include <math.h>
#include <memory.h>
#include <assert.h>
#include <algorithm>
#include <vcg/space/point.h>
#include <vcg/math/lin_algebra.h>
namespace vcg{
namespace ndim{
/** \addtogroup math */
/* @{ */
/*!
* This class represent a diagonal <I>m</I><EFBFBD><I>m</I> matrix.
*/
class MatrixDiagBase{public:
virtual const int & Dimension()const =0;
virtual const float operator[](const int & i)const = 0;
};
template<int N, class S>
class MatrixDiag: public Point<N,S>, public MatrixDiagBase{
public:
const int & Dimension() const {return N;}
MatrixDiag(const Point<N,S>&p):Point<N,S>(p){}
};
/*!
* This class represent a generic <I>m</I><EFBFBD><I>n</I> matrix. The class is templated over the scalar type field.
* @param TYPE (Templete Parameter) Specifies the ScalarType field.
*/
template<class TYPE>
class Matrix
{
public:
typedef TYPE ScalarType;
/*!
* Default constructor
* All the elements are initialized to zero.
* \param m the number of matrix rows
* \param n the number of matrix columns
*/
Matrix(unsigned int m, unsigned int n)
{
_rows = m;
_columns = n;
_data = new ScalarType[m*n];
memset(_data, 0, m*n*sizeof(ScalarType));
};
/*!
* Constructor
* The matrix elements are initialized with the values of the elements in \i values.
* \param m the number of matrix rows
* \param n the number of matrix columns
* \param values the values of the matrix elements
*/
Matrix(unsigned int m, unsigned int n, TYPE *values)
{
_rows = m;
_columns = n;
unsigned int dim = m*n;
_data = new ScalarType[dim];
memcpy(_data, values, dim*sizeof(ScalarType));
//unsigned int i;
//for (i=0; i<_rows*_columns; i++)
// _data[i] = values[i];
};
/*!
* Empty constructor
* Just create the object
*/
Matrix()
{
_rows = 0;
_columns = 0;
_data = NULL;
};
/*!
* Copy constructor
* The matrix elements are initialized with the value of the corresponding element in \i m
* \param m the matrix to be copied
*/
Matrix(const Matrix<TYPE> &m)
{
_rows = m._rows;
_columns = m._columns;
_data = new ScalarType[_rows*_columns];
unsigned int dim = _rows * _columns;
memcpy(_data, m._data, dim * sizeof(ScalarType));
// for (unsigned int i=0; i<_rows*_columns; i++)
// _data[i] = m._data[i];
};
/*!
* Default destructor
*/
~Matrix()
{
delete []_data;
};
/*!
* Number of columns
*/
inline unsigned int ColumnsNumber() const
{
return _columns;
};
/*!
* Number of rows
*/
inline unsigned int RowsNumber() const
{
return _rows;
};
/*!
* Equality operator.
* \param m
* \return true iff the matrices have same size and its elements have same values.
*/
bool operator==(const Matrix<TYPE> &m) const
{
if (_rows==m._rows && _columns==m._columns)
{
bool result = true;
for (unsigned int i=0; i<_rows*_columns && result; i++)
result = (_data[i]==m._data[i]);
return result;
}
return false;
};
/*!
* Inequality operator
* \param m
* \return true iff the matrices have different size or if their elements have different values.
*/
bool operator!=(const Matrix<TYPE> &m) const
{
if (_rows==m._rows && _columns==m._columns)
{
bool result = false;
for (unsigned int i=0; i<_rows*_columns && !result; i++)
result = (_data[i]!=m._data[i]);
return result;
}
return true;
};
/*!
* Return the element stored in the <I>i</I>-th rows at the <I>j</I>-th column
* \param i the row index
* \param j the column index
* \return the element
*/
inline TYPE ElementAt(unsigned int i, unsigned int j)
{
assert(i>=0 && i<_rows);
assert(j>=0 && j<_columns);
return _data[i*_columns+j];
};
/*!
* Calculate and return the matrix determinant (Laplace)
* \return the matrix determinant
*/
TYPE Determinant() const
{
assert(_rows == _columns);
switch (_rows)
{
case 2:
{
return _data[0]*_data[3]-_data[1]*_data[2];
break;
};
case 3:
{
return _data[0]*(_data[4]*_data[8]-_data[5]*_data[7]) -
_data[1]*(_data[3]*_data[8]-_data[5]*_data[6]) +
_data[2]*(_data[3]*_data[7]-_data[4]*_data[6]) ;
break;
};
default:
{
// da migliorare: si puo' cercare la riga/colonna con maggior numero di zeri
ScalarType det = 0;
for (unsigned int j=0; j<_columns; j++)
if (_data[j]!=0)
det += _data[j]*this->Cofactor(0, j);
return det;
}
};
};
/*!
* Return the cofactor <I>A<SUB>i,j</SUB></I> of the <I>a<SUB>i,j</SUB></I> element
* \return ...
*/
TYPE Cofactor(unsigned int i, unsigned int j) const
{
assert(_rows == _columns);
assert(_rows>2);
TYPE *values = new TYPE[(_rows-1)*(_columns-1)];
unsigned int u, v, p, q, s, t;
for (u=0, p=0, s=0, t=0; u<_rows; u++, t+=_rows)
{
if (i==u)
continue;
for (v=0, q=0; v<_columns; v++)
{
if (j==v)
continue;
values[s+q] = _data[t+v];
q++;
}
p++;
s+=(_rows-1);
}
Matrix<TYPE> temp(_rows-1, _columns-1, values);
return (pow(-1, i+j)*temp.Determinant());
};
/*!
* Subscript operator:
* \param i the index of the row
* \return a reference to the <I>i</I>-th matrix row
*/
inline TYPE* operator[](const unsigned int i)
{
assert(i>=0 && i<_rows);
return _data + i*_columns;
};
/*!
* Const subscript operator
* \param i the index of the row
* \return a reference to the <I>i</I>-th matrix row
*/
inline const TYPE* operator[](const unsigned int i) const
{
assert(i>=0 && i<_rows);
return _data + i*_columns;
};
/*!
* Get the <I>j</I>-th column on the matrix.
* \param j the column index.
* \return the reference to the column elements. This pointer must be deallocated by the caller.
*/
TYPE* GetColumn(const unsigned int j)
{
assert(j>=0 && j<_columns);
ScalarType *v = new ScalarType[_columns];
unsigned int i, p;
for (i=0, p=j; i<_rows; i++, p+=_columns)
v[i] = _data[p];
return v;
};
/*!
* Get the <I>i</I>-th row on the matrix.
* \param i the column index.
* \return the reference to the row elements. This pointer must be deallocated by the caller.
*/
TYPE* GetRow(const unsigned int i)
{
assert(i>=0 && i<_rows);
ScalarType *v = new ScalarType[_rows];
unsigned int j, p;
for (j=0, p=i*_columns; j<_columns; j++, p++)
v[j] = _data[p];
return v;
};
/*!
* Swaps the values of the elements between the <I>i</I>-th and the <I>j</I>-th column.
* \param i the index of the first column
* \param j the index of the second column
*/
void SwapColumns(const unsigned int i, const unsigned int j)
{
assert(0<=i && i<_columns);
assert(0<=j && j<_columns);
if (i==j)
return;
unsigned int r, e0, e1;
for (r=0, e0=i, e1=j; r<_rows; r++, e0+=_columns, e1+=_columns)
std::swap(_data[e0], _data[e1]);
};
/*!
* Swaps the values of the elements between the <I>i</I>-th and the <I>j</I>-th row.
* \param i the index of the first row
* \param j the index of the second row
*/
void SwapRows(const unsigned int i, const unsigned int j)
{
assert(0<=i && i<_rows);
assert(0<=j && j<_rows);
if (i==j)
return;
unsigned int r, e0, e1;
for (r=0, e0=i*_columns, e1=j*_columns; r<_columns; r++, e0++, e1++)
std::swap(_data[e0], _data[e1]);
};
/*!
* Assignment operator
* \param m ...
*/
Matrix<TYPE>& operator=(const Matrix<TYPE> &m)
{
if (this != &m)
{
assert(_rows == m._rows);
assert(_columns == m._columns);
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] = m._data[i];
}
return *this;
};
/*!
* Adds a matrix <I>m</I> to this matrix.
* \param m reference to matrix to add to this
* \return the matrix sum.
*/
Matrix<TYPE>& operator+=(const Matrix<TYPE> &m)
{
assert(_rows == m._rows);
assert(_columns == m._columns);
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] += m._data[i];
return *this;
};
/*!
* Subtracts a matrix <I>m</I> to this matrix.
* \param m reference to matrix to subtract
* \return the matrix difference.
*/
Matrix<TYPE>& operator-=(const Matrix<TYPE> &m)
{
assert(_rows == m._rows);
assert(_columns == m._columns);
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] -= m._data[i];
return *this;
};
/*!
* (Modifier) Add to each element of this matrix the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
Matrix<TYPE>& operator+=(const TYPE k)
{
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] += k;
return *this;
};
/*!
* (Modifier) Subtract from each element of this matrix the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
Matrix<TYPE>& operator-=(const TYPE k)
{
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] -= k;
return *this;
};
/*!
* (Modifier) Multiplies each element of this matrix by the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
Matrix<TYPE>& operator*=(const TYPE k)
{
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] *= k;
return *this;
};
/*!
* (Modifier) Divides each element of this matrix by the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
Matrix<TYPE>& operator/=(const TYPE k)
{
assert(k!=0);
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] /= k;
return *this;
};
/*!
* Matrix multiplication: calculates the cross product.
* \param m reference to the matrix to multiply by
* \return the matrix product
*/
Matrix<TYPE> operator*(const Matrix<TYPE> &m) const
{
assert(_columns == m._rows);
Matrix<TYPE> result(_rows, m._columns);
unsigned int i, j, k, p, q, r;
for (i=0, p=0, r=0; i<result._rows; i++, p+=_columns, r+=result._columns)
for (j=0; j<result._columns; j++)
{
ScalarType temp = 0;
for (k=0, q=0; k<_columns; k++, q+=m._columns)
temp+=(_data[p+k]*m._data[q+j]);
result._data[r+j] = temp;
}
return result;
};
/*!
* Matrix-Vector product. Computes the product of the matrix by the vector v.
* \param v reference to the vector to multiply by
* \return the matrix-vector product. This pointer must be deallocated by the caller
*/
ScalarType* operator*(const ScalarType v[]) const
{
ScalarType *result = new ScalarType[_rows];
memset(result, 0, _rows*sizeof(ScalarType));
unsigned int r, c, i;
for (r=0, i=0; r<_rows; r++)
for (c=0; c<_columns; c++, i++)
result[r] += _data[i]*v[c];
return result;
};
/*!
* Matrix multiplication: calculates the cross product.
* \param reference to the matrix to multiply by
* \return the matrix product
*/
template <int N,int M>
void DotProduct(Point<N,TYPE> &m,Point<M,TYPE> &result)
{
unsigned int i, j, p, r;
for (i=0, p=0, r=0; i<M; i++)
{ result[i]=0;
for (j=0; j<N; j++)
result[i]+=(*this)[i][j]*m[j];
}
};
/*!
* Matrix multiplication by a diagonal matrix
*/
Matrix<TYPE> operator*(const MatrixDiagBase &m) const
{
assert(_columns == _rows);
assert(_columns == m.Dimension());
int i,j;
Matrix<TYPE> result(_rows, _columns);
for (i=0; i<result._rows; i++)
for (j=0; j<result._columns; j++)
result[i][j]*= m[j];
return result;
};
/*!
* Matrix from outer product.
*/
template <int N, int M>
void OuterProduct(const Point<N,TYPE> a, const Point< M,TYPE> b)
{
assert(N == _rows);
assert(M == _columns);
Matrix<TYPE> result(_rows,_columns);
unsigned int i, j;
for (i=0; i<result._rows; i++)
for (j=0; j<result._columns; j++)
(*this)[i][j] = a[i] * b[j];
};
/*!
* Matrix-vector multiplication.
* \param reference to the 3-dimensional vector to multiply by
* \return the resulting vector
*/
Point3<TYPE> operator*(Point3<TYPE> &p) const
{
assert(_columns==3 && _rows==3);
vcg::Point3<TYPE> result;
result[0] = _data[0]*p[0]+_data[1]*p[1]+_data[2]*p[2];
result[1] = _data[3]*p[0]+_data[4]*p[1]+_data[5]*p[2];
result[2] = _data[6]*p[0]+_data[7]*p[1]+_data[8]*p[2];
return result;
};
/*!
* Scalar sum.
* \param k
* \return the resultant matrix
*/
Matrix<TYPE> operator+(const TYPE k)
{
Matrix<TYPE> result(_rows, _columns);
for (unsigned int i=0; i<_rows*_columns; i++)
result._data[i] = _data[i]+k;
return result;
};
/*!
* Scalar difference.
* \param k
* \return the resultant matrix
*/
Matrix<TYPE> operator-(const TYPE k)
{
Matrix<TYPE> result(_rows, _columns);
for (unsigned int i=0; i<_rows*_columns; i++)
result._data[i] = _data[i]-k;
return result;
};
/*!
* Negate all matrix elements
* \return the modified matrix
*/
Matrix<TYPE> operator-() const
{
Matrix<TYPE> result(_rows, _columns, _data);
for (unsigned int i=0; i<_columns*_rows; i++)
result._data[i] = -1*_data[i];
return result;
};
/*!
* Scalar multiplication.
* \param k value to multiply every member by
* \return the resultant matrix
*/
Matrix<TYPE> operator*(const TYPE k) const
{
Matrix<TYPE> result(_rows, _columns);
for (unsigned int i=0; i<_rows*_columns; i++)
result._data[i] = _data[i]*k;
return result;
};
/*!
* Scalar division.
* \param k value to divide every member by
* \return the resultant matrix
*/
Matrix<TYPE> operator/(const TYPE k)
{
Matrix<TYPE> result(_rows, _columns);
for (unsigned int i=0; i<_rows*_columns; i++)
result._data[i] = _data[i]/k;
return result;
};
/*!
* Set all the matrix elements to zero.
*/
void SetZero()
{
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] = ScalarType(0.0);
};
/*!
* Set the matrix to identity.
*/
void SetIdentity()
{
assert(_rows==_columns);
for (unsigned int i=0; i<_rows; i++)
for (unsigned int j=0; j<_columns; j++)
_data[i] = (i==j) ? ScalarType(1.0) : ScalarType(0.0f);
};
/*!
* Set the values of <I>j</I>-th column to v[j]
* \param j the column index
* \param v ...
*/
void SetColumn(const unsigned int j, TYPE* v)
{
assert(j>=0 && j<_columns);
unsigned int i, p;
for (i=0, p=j; i<_rows; i++, p+=_columns)
_data[p] = v[i];
};
/*!
* Set the elements of the <I>i</I>-th row to v[j]
* \param i the row index
* \param v ...
*/
void SetRow(const unsigned int i, TYPE* v)
{
assert(i>=0 && i<_rows);
unsigned int j, p;
for (j=0, p=i*_rows; j<_columns; j++, p++)
_data[p] = v[j];
};
/*!
* Set the diagonal elements <I>v<SUB>i,i</SUB></I> to v[i]
* \param v
*/
void SetDiagonal(TYPE *v)
{
assert(_rows == _columns);
for (unsigned int i=0, p=0; i<_rows; i++, p+=_rows)
_data[p+i] = v[i];
};
/*!
* Resize the current matrix.
* \param m the number of matrix rows.
* \param n the number of matrix columns.
*/
void Resize(const unsigned int m, const unsigned int n)
{
assert(m>=2);
assert(n>=2);
_rows = m;
_columns = n;
delete []_data;
_data = new ScalarType[m*n];
for (unsigned int i=0; i<m*n; i++)
_data[i] = 0;
};
/*!
* Matrix transposition operation: set the current matrix to its transpose
*/
void Transpose()
{
ScalarType *temp = new ScalarType[_rows*_columns];
unsigned int i, j, p, q;
for (i=0, p=0; i<_rows; i++, p+=_columns)
for (j=0, q=0; j<_columns; j++, q+=_rows)
temp[q+i] = _data[p+j];
std::swap(_columns, _rows);
std::swap(_data, temp);
delete []temp;
};
Matrix transpose()
{
Matrix res = *this;
res.Transpose();
return res;
}
/*!
* Print all matrix elements
*/
void Dump()
{
unsigned int i, j, p;
for (i=0, p=0; i<_rows; i++, p+=_columns)
{
printf("[\t");
for (j=0; j<_columns; j++)
printf("%f\t", _data[p+j]);
printf("]\n");
}
printf("\n");
};
protected:
/// the number of matrix rows
unsigned int _rows;
/// the number of matrix rows
unsigned int _columns;
/// the matrix elements
ScalarType *_data;
};
typedef vcg::ndim::Matrix<double> MatrixMNd;
typedef vcg::ndim::Matrix<float> MatrixMNf;
/*! @} */
template <class MatrixType>
void Invert(MatrixType & m){
typedef typename MatrixType::ScalarType X;
X *diag;
diag = new X [m.ColumnsNumber()];
MatrixType res(m.RowsNumber(),m.ColumnsNumber());
vcg::SingularValueDecomposition<MatrixType > (m,&diag[0],res,LeaveUnsorted,50 );
m.Transpose();
// prodotto per la diagonale
unsigned int i,j;
for (i=0; i<m.RowsNumber(); i++)
for (j=0; j<m.ColumnsNumber(); j++)
res[i][j]/= diag[j];
m = res *m;
}
}
}; // end of namespace
#endif

View File

@ -0,0 +1,744 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.18 2007/04/19 14:30:26 pietroni
added RotationMatrix method to calculate rotation matrix along an axis
Revision 1.17 2007/04/07 23:06:47 pietroni
Added function RotationMatrix
Revision 1.16 2007/01/29 00:20:25 pietroni
-Used scalar type passed as template argument istead of double to prevent warnings.. in Rotate function
Revision 1.15 2006/09/25 23:05:29 ganovelli
added constructor from matrix44 excluding a row and colum
Revision 1.14 2006/06/22 08:00:05 ganovelli
bug in operator + with MatrixxDig
Revision 1.13 2006/01/20 16:41:44 pietroni
added operators:
operator -= ( const Matrix33Diag<S> &p )
Matrix33 operator - ( const Matrix33Diag<S> &p )
Matrix33 operator + ( const Matrix33 &m )
Matrix33 operator + ( const Matrix33Diag<S> &p )
Revision 1.12 2005/11/14 10:28:25 cignoni
Changed Invert -> FastInvert for the function based on the maple expansion
Revision 1.11 2005/10/13 15:45:23 ponchio
Changed a Zero in SetZero in WeightedCrossCovariance() (again)
Revision 1.10 2005/10/05 17:06:12 pietroni
corrected sintax error on singular value decomposition
Revision 1.9 2005/09/29 09:53:58 ganovelli
added inverse by SVD
Revision 1.8 2005/06/10 14:51:54 cignoni
Changed a Zero in SetZero in WeightedCrossCovariance()
Revision 1.7 2005/06/10 11:46:49 pietroni
Added Norm Function
Revision 1.6 2005/06/07 14:29:56 ganovelli
changed from Matrix33Ide to MatrixeeDiag
Revision 1.5 2005/05/23 15:05:26 ganovelli
Matrix33Diag Added: it implements diagonal matrix. Added only operator += in Matrix33
Revision 1.4 2005/04/11 14:11:22 pietroni
changed swap to math::Swap in Traspose Function
Revision 1.3 2004/10/18 15:03:02 fiorin
Updated interface: all Matrix classes have now the same interface
Revision 1.2 2004/07/13 06:48:26 cignoni
removed uppercase references in include
Revision 1.1 2004/05/28 13:09:05 ganovelli
created
Revision 1.1 2004/05/28 13:00:39 ganovelli
created
****************************************************************************/
#ifndef __VCGLIB_MATRIX33_H
#define __VCGLIB_MATRIX33_H
#include <stdio.h>
#include <vcg/math/lin_algebra.h>
#include <vcg/math/matrix44.h>
#include <vcg/space/point3.h>
#include <vector>
namespace vcg {
template <class S>
class Matrix33Diag:public Point3<S>{
public:
/** @name Matrix33
Class Matrix33Diag.
This is the class for definition of a diagonal matrix 3x3.
@param S (Templete Parameter) Specifies the ScalarType field.
*/
Matrix33Diag(const S & p0,const S & p1,const S & p2):Point3<S>(p0,p1,p2){};
Matrix33Diag(const Point3<S>&p ):Point3<S>(p){};
};
template<class S>
/** @name Matrix33
Class Matrix33.
This is the class for definition of a matrix 3x3.
@param S (Templete Parameter) Specifies the ScalarType field.
*/
class Matrix33
{
public:
typedef S ScalarType;
/// Default constructor
inline Matrix33() {}
/// Copy constructor
Matrix33( const Matrix33 & m )
{
for(int i=0;i<9;++i)
a[i] = m.a[i];
}
/// create from array
Matrix33( const S * v )
{
for(int i=0;i<9;++i) a[i] = v[i];
}
/// create from Matrix44 excluding row and column k
Matrix33 (const Matrix44<S> & m, const int & k)
{
int i,j, r=0, c=0;
for(i = 0; i< 4;++i)if(i!=k){c=0;
for(j=0; j < 4;++j)if(j!=k)
{ (*this)[r][c] = m[i][j]; ++c;}
++r;
}
}
/// Number of columns
inline unsigned int ColumnsNumber() const
{
return 3;
};
/// Number of rows
inline unsigned int RowsNumber() const
{
return 3;
};
/// Assignment operator
Matrix33 & operator = ( const Matrix33 & m )
{
for(int i=0;i<9;++i)
a[i] = m.a[i];
return *this;
}
/// Operatore di indicizzazione
inline S * operator [] ( const int i )
{
return a+i*3;
}
/// Operatore const di indicizzazione
inline const S * operator [] ( const int i ) const
{
return a+i*3;
}
/// Modificatore somma per matrici 3x3
Matrix33 & operator += ( const Matrix33 &m )
{
for(int i=0;i<9;++i)
a[i] += m.a[i];
return *this;
}
/// Modificatore somma per matrici 3x3
Matrix33 & operator += ( const Matrix33Diag<S> &p )
{
a[0] += p[0];
a[4] += p[1];
a[8] += p[2];
return *this;
}
/// Modificatore sottrazione per matrici 3x3
Matrix33 & operator -= ( const Matrix33 &m )
{
for(int i=0;i<9;++i)
a[i] -= m.a[i];
return *this;
}
/// Modificatore somma per matrici 3x3
Matrix33 & operator -= ( const Matrix33Diag<S> &p )
{
a[0] -= p[0];
a[4] -= p[1];
a[8] -= p[2];
return *this;
}
/// Modificatore divisione per scalare
Matrix33 & operator /= ( const S &s )
{
for(int i=0;i<9;++i)
a[i] /= s;
return *this;
}
/// Modificatore prodotto per matrice
Matrix33 operator * ( const Matrix33< S> & t ) const
{
Matrix33<S> r;
int i,j;
for(i=0;i<3;++i)
for(j=0;j<3;++j)
r[i][j] = (*this)[i][0]*t[0][j] + (*this)[i][1]*t[1][j] + (*this)[i][2]*t[2][j];
return r;
}
/// Modificatore prodotto per matrice
void operator *=( const Matrix33< S> & t )
{
int i,j;
for(i=0;i<3;++i)
for(j=0;j<3;++j)
(*this)[i][j] = (*this)[i][0]*t[0][j] + (*this)[i][1]*t[1][j] + (*this)[i][2]*t[2][j];
}
/// Dot product with a diagonal matrix
Matrix33 operator * ( const Matrix33Diag< S> & t ) const
{
Matrix33<S> r;
int i,j;
for(i=0;i<3;++i)
for(j=0;j<3;++j)
r[i][j] = (*this)[i][j]*t[j];
return r;
}
/// Dot product modifier with a diagonal matrix
void operator *=( const Matrix33Diag< S> & t )
{
int i,j;
for(i=0;i<3;++i)
for(j=0;j<3;++j)
(*this)[i][j] = (*this)[i][j]*t[j];
}
/// Modificatore prodotto per costante
Matrix33 & operator *= ( const S t )
{
for(int i=0;i<9;++i)
a[i] *= t;
return *this;
}
/// Operatore prodotto per costante
Matrix33 operator * ( const S t ) const
{
Matrix33<S> r;
for(int i=0;i<9;++i)
r.a[i] = a[i]* t;
return r;
}
/// Operatore sottrazione per matrici 3x3
Matrix33 operator - ( const Matrix33 &m ) const
{
Matrix33<S> r;
for(int i=0;i<9;++i)
r.a[i] = a[i] - m.a[i];
return r;
}
/// Operatore sottrazione di matrici 3x3 con matrici diagonali
Matrix33 operator - ( const Matrix33Diag<S> &p ) const
{
Matrix33<S> r=a;
r[0][0] -= p[0];
r[1][1] -= p[1];
r[2][2] -= p[2];
return r;
}
/// Operatore sottrazione per matrici 3x3
Matrix33 operator + ( const Matrix33 &m ) const
{
Matrix33<S> r;
for(int i=0;i<9;++i)
r.a[i] = a[i] + m.a[i];
return r;
}
/// Operatore addizione di matrici 3x3 con matrici diagonali
Matrix33 operator + ( const Matrix33Diag<S> &p ) const
{
Matrix33<S> r=(*this);
r[0][0] += p[0];
r[1][1] += p[1];
r[2][2] += p[2];
return r;
}
/** Operatore per il prodotto matrice-vettore.
@param v A point in $R^{3}$
@return Il vettore risultante in $R^{3}$
*/
Point3<S> operator * ( const Point3<S> & v ) const
{
Point3<S> t;
t[0] = a[0]*v[0] + a[1]*v[1] + a[2]*v[2];
t[1] = a[3]*v[0] + a[4]*v[1] + a[5]*v[2];
t[2] = a[6]*v[0] + a[7]*v[1] + a[8]*v[2];
return t;
}
void OuterProduct(Point3<S> const &p0, Point3<S> const &p1) {
Point3<S> row;
row = p1*p0[0];
a[0] = row[0];a[1] = row[1];a[2] = row[2];
row = p1*p0[1];
a[3] = row[0]; a[4] = row[1]; a[5] = row[2];
row = p1*p0[2];
a[6] = row[0];a[7] = row[1];a[8] = row[2];
}
Matrix33 & SetZero() {
for(int i=0;i<9;++i) a[i] =0;
return (*this);
}
Matrix33 & SetIdentity() {
for(int i=0;i<9;++i) a[i] =0;
a[0]=a[4]=a[8]=1.0;
return (*this);
}
Matrix33 & SetRotateRad(S angle, const Point3<S> & axis )
{
S c = cos(angle);
S s = sin(angle);
S q = 1-c;
Point3<S> t = axis;
t.Normalize();
a[0] = t[0]*t[0]*q + c;
a[1] = t[0]*t[1]*q - t[2]*s;
a[2] = t[0]*t[2]*q + t[1]*s;
a[3] = t[1]*t[0]*q + t[2]*s;
a[4] = t[1]*t[1]*q + c;
a[5] = t[1]*t[2]*q - t[0]*s;
a[6] = t[2]*t[0]*q -t[1]*s;
a[7] = t[2]*t[1]*q +t[0]*s;
a[8] = t[2]*t[2]*q +c;
return (*this);
}
Matrix33 & SetRotateDeg(S angle, const Point3<S> & axis ){
return SetRotateRad(math::ToRad(angle),axis);
}
/// Funzione per eseguire la trasposta della matrice
Matrix33 & Transpose()
{
math::Swap(a[1],a[3]);
math::Swap(a[2],a[6]);
math::Swap(a[5],a[7]);
return *this;
}
// for the transistion to eigen
Matrix33 transpose()
{
Matrix33 res = *this;
res.Transpose();
return res;
}
/// Funzione per costruire una matrice diagonale dati i tre elem.
Matrix33 & SetDiagonal(S *v)
{int i,j;
for(i=0;i<3;i++)
for(j=0;j<3;j++)
if(i==j) (*this)[i][j] = v[i];
else (*this)[i][j] = 0;
return *this;
}
/// Assegna l'n-simo vettore colonna
void SetColumn(const int n, S* v){
assert( (n>=0) && (n<3) );
a[n]=v[0]; a[n+3]=v[1]; a[n+6]=v[2];
};
/// Assegna l'n-simo vettore riga
void SetRow(const int n, S* v){
assert( (n>=0) && (n<3) );
int m=n*3;
a[m]=v[0]; a[m+1]=v[1]; a[m+2]=v[2];
};
/// Assegna l'n-simo vettore colonna
void SetColumn(const int n, const Point3<S> v){
assert( (n>=0) && (n<3) );
a[n]=v[0]; a[n+3]=v[1]; a[n+6]=v[2];
};
/// Assegna l'n-simo vettore riga
void SetRow(const int n, const Point3<S> v){
assert( (n>=0) && (n<3) );
int m=n*3;
a[m]=v[0]; a[m+1]=v[1]; a[m+2]=v[2];
};
/// Restituisce l'n-simo vettore colonna
Point3<S> GetColumn(const int n) const {
assert( (n>=0) && (n<3) );
Point3<S> t;
t[0]=a[n]; t[1]=a[n+3]; t[2]=a[n+6];
return t;
};
/// Restituisce l'n-simo vettore riga
Point3<S> GetRow(const int n) const {
assert( (n>=0) && (n<3) );
Point3<S> t;
int m=n*3;
t[0]=a[m]; t[1]=a[m+1]; t[2]=a[m+2];
return t;
};
/// Funzione per il calcolo del determinante
S Determinant() const
{
return a[0]*(a[4]*a[8]-a[5]*a[7]) -
a[1]*(a[3]*a[8]-a[5]*a[6]) +
a[2]*(a[3]*a[7]-a[4]*a[6]) ;
}
// Warning, this Inversion code can be HIGHLY NUMERICALLY UNSTABLE!
// In most case you are advised to use the Invert() method based on SVD decomposition.
Matrix33 & FastInvert()
{
// Maple produsse:
S t4 = a[0]*a[4];
S t6 = a[0]*a[5];
S t8 = a[1]*a[3];
S t10 = a[2]*a[3];
S t12 = a[1]*a[6];
S t14 = a[2]*a[6];
S t17 = 1/(t4*a[8]-t6*a[7]-t8*a[8]+t10*a[7]+t12*a[5]-t14*a[4]);
S a0 = a[0];
S a1 = a[1];
S a3 = a[3];
S a4 = a[4];
a[0] = (a[4]*a[8]-a[5]*a[7])*t17;
a[1] = -(a[1]*a[8]-a[2]*a[7])*t17;
a[2] = (a1 *a[5]-a[2]*a[4])*t17;
a[3] = -(a[3]*a[8]-a[5]*a[6])*t17;
a[4] = (a0 *a[8]-t14 )*t17;
a[5] = -(t6 - t10)*t17;
a[6] = (a3 *a[7]-a[4]*a[6])*t17;
a[7] = -(a[0]*a[7]-t12)*t17;
a[8] = (t4-t8)*t17;
return *this;
}
void show(FILE * fp)
{
for(int i=0;i<3;++i)
printf("| %g \t%g \t%g |\n",a[3*i+0],a[3*i+1],a[3*i+2]);
}
// return the Trace of the matrix i.e. the sum of the diagonal elements
S Trace() const
{
return a[0]+a[4]+a[8];
}
/*
compute the matrix generated by the product of a * b^T
*/
void ExternalProduct(const Point3<S> &a, const Point3<S> &b)
{
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
(*this)[i][j] = a[i]*b[j];
}
/* Compute the Frobenius Norm of the Matrix
*/
ScalarType Norm()
{
ScalarType SQsum=0;
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
SQsum += a[i]*a[i];
return (math::Sqrt(SQsum));
}
/*
It compute the covariance matrix of a set of 3d points. Returns the barycenter
*/
template <class STLPOINTCONTAINER >
void Covariance(const STLPOINTCONTAINER &points, Point3<S> &bp) {
assert(!points.empty());
typedef typename STLPOINTCONTAINER::const_iterator PointIte;
// first cycle: compute the barycenter
bp.SetZero();
for( PointIte pi = points.begin(); pi != points.end(); ++pi) bp+= (*pi);
bp/=points.size();
// second cycle: compute the covariance matrix
this->SetZero();
vcg::Matrix33<ScalarType> A;
for( PointIte pi = points.begin(); pi != points.end(); ++pi) {
Point3<S> p = (*pi)-bp;
A.OuterProduct(p,p);
(*this)+= A;
}
}
/*
It compute the cross covariance matrix of two set of 3d points P and X;
it returns also the barycenters of P and X.
fonte:
Besl, McKay
A method for registration o f 3d Shapes
IEEE TPAMI Vol 14, No 2 1992
*/
template <class STLPOINTCONTAINER >
void CrossCovariance(const STLPOINTCONTAINER &P, const STLPOINTCONTAINER &X,
Point3<S> &bp, Point3<S> &bx)
{
SetZero();
assert(P.size()==X.size());
bx.SetZero();
bp.SetZero();
Matrix33<S> tmp;
typename std::vector <Point3<S> >::const_iterator pi,xi;
for(pi=P.begin(),xi=X.begin();pi!=P.end();++pi,++xi){
bp+=*pi;
bx+=*xi;
tmp.ExternalProduct(*pi,*xi);
(*this)+=tmp;
}
bp/=P.size();
bx/=X.size();
(*this)/=P.size();
tmp.ExternalProduct(bp,bx);
(*this)-=tmp;
}
template <class STLPOINTCONTAINER, class STLREALCONTAINER>
void WeightedCrossCovariance(const STLREALCONTAINER & weights,
const STLPOINTCONTAINER &P,
const STLPOINTCONTAINER &X,
Point3<S> &bp,
Point3<S> &bx)
{
SetZero();
assert(P.size()==X.size());
bx.SetZero();
bp.SetZero();
Matrix33<S> tmp;
typename std::vector <Point3<S> >::const_iterator pi,xi;
typename STLREALCONTAINER::const_iterator pw;
for(pi=P.begin(),xi=X.begin();pi!=P.end();++pi,++xi){
bp+=(*pi);
bx+=(*xi);
}
bp/=P.size();
bx/=X.size();
for(pi=P.begin(),xi=X.begin(),pw = weights.begin();pi!=P.end();++pi,++xi,++pw){
tmp.ExternalProduct(((*pi)-(bp)),((*xi)-(bp)));
(*this)+=tmp*(*pw);
}
}
private:
S a[9];
};
template <class S>
void Invert(Matrix33<S> &m)
{
Matrix33<S> v;
Point3<typename Matrix33<S>::ScalarType> e;
SingularValueDecomposition(m,&e[0],v);
e[0]=1/e[0];e[1]=1/e[1];e[2]=1/e[2];
m.Transpose();
m = v * Matrix33Diag<S>(e) * m;
}
template <class S>
Matrix33<S> Inverse(const Matrix33<S>&m)
{
Matrix33<S> v,m_copy=m;
Point3<S> e;
SingularValueDecomposition(m_copy,&e[0],v);
m_copy.Transpose();
e[0]=1/e[0];e[1]=1/e[1];e[2]=1/e[2];
return v * Matrix33Diag<S>(e) * m_copy;
}
///given 2 vector centered into origin calculate the rotation matrix from first to the second
template <class S>
Matrix33<S> RotationMatrix(vcg::Point3<S> v0,vcg::Point3<S> v1,bool normalized=true)
{
typedef typename vcg::Point3<S> CoordType;
Matrix33<S> rotM;
const S epsilon=0.00001;
if (!normalized)
{
v0.Normalize();
v1.Normalize();
}
S dot=(v0*v1);
///control if there is no rotation
if (dot>((S)1-epsilon))
{
rotM.SetIdentity();
return rotM;
}
///find the axis of rotation
CoordType axis;
axis=v0^v1;
axis.Normalize();
///construct rotation matrix
S u=axis.X();
S v=axis.Y();
S w=axis.Z();
S phi=acos(dot);
S rcos = cos(phi);
S rsin = sin(phi);
rotM[0][0] = rcos + u*u*(1-rcos);
rotM[1][0] = w * rsin + v*u*(1-rcos);
rotM[2][0] = -v * rsin + w*u*(1-rcos);
rotM[0][1] = -w * rsin + u*v*(1-rcos);
rotM[1][1] = rcos + v*v*(1-rcos);
rotM[2][1] = u * rsin + w*v*(1-rcos);
rotM[0][2] = v * rsin + u*w*(1-rcos);
rotM[1][2] = -u * rsin + v*w*(1-rcos);
rotM[2][2] = rcos + w*w*(1-rcos);
return rotM;
}
///return the rotation matrix along axis
template <class S>
Matrix33<S> RotationMatrix(const vcg::Point3<S> &axis,
const float &angleRad)
{
vcg::Matrix44<S> matr44;
vcg::Matrix33<S> matr33;
matr44.SetRotate(angleRad,axis);
for (int i=0;i<3;i++)
for (int j=0;j<3;j++)
matr33[i][j]=matr44[i][j];
return matr33;
}
/// return a random rotation matrix, from the paper:
/// Fast Random Rotation Matrices, James Arvo
/// Graphics Gems III pp. 117-120
template <class S>
Matrix33<S> RandomRotation(){
S x1,x2,x3;
Matrix33<S> R,H,M,vv;
Point3<S> v;
R.SetIdentity();
H.SetIdentity();
x1 = rand()/S(RAND_MAX);
x2 = rand()/S(RAND_MAX);
x3 = rand()/S(RAND_MAX);
R[0][0] = cos(S(2)*M_PI*x1);
R[0][1] = sin(S(2)*M_PI*x1);
R[1][0] = - R[0][1];
R[1][1] = R[0][0];
v[0] = cos(2.0 * M_PI * x2)*sqrt(x3);
v[1] = sin(2.0 * M_PI * x2)*sqrt(x3);
v[2] = sqrt(1-x3);
vv.OuterProduct(v,v);
H -= vv*S(2);
M = H*R*S(-1);
return M;
}
///
typedef Matrix33<short> Matrix33s;
typedef Matrix33<int> Matrix33i;
typedef Matrix33<float> Matrix33f;
typedef Matrix33<double> Matrix33d;
} // end of namespace
#endif

View File

@ -0,0 +1,984 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.34 2007/07/12 06:42:01 cignoni
added the missing static Construct() member
Revision 1.33 2007/07/03 16:06:48 corsini
add DCM to Euler Angles conversion
Revision 1.32 2007/03/08 14:39:27 corsini
final fix to euler angles transformation
Revision 1.31 2007/02/06 09:57:40 corsini
fix euler angles computation
Revision 1.30 2007/02/05 14:16:33 corsini
add from euler angles to rotation matrix conversion
Revision 1.29 2005/12/02 09:46:49 croccia
Corrected bug in == and != Matrix44 operators
Revision 1.28 2005/06/28 17:42:47 ganovelli
added Matrix44Diag
Revision 1.27 2005/06/17 05:28:47 cignoni
Completed Shear Matrix code and comments,
Added use of swap inside Transpose
Added more complete comments on the usage of Decompose
Revision 1.26 2005/06/10 15:04:12 cignoni
Added Various missing functions: SetShearXY, SetShearXZ, SetShearYZ, SetScale for point3 and Decompose
Completed *=(scalar); made uniform GetRow and GetColumn
Revision 1.25 2005/04/14 11:35:09 ponchio
*** empty log message ***
Revision 1.24 2005/03/18 00:14:39 cignoni
removed small gcc compiling issues
Revision 1.23 2005/03/15 11:40:56 cignoni
Added operator*=( std::vector<PointType> ...) to apply a matrix to a vector of vertexes (replacement of the old style mesh.Apply(tr).
Revision 1.22 2004/12/15 18:45:50 tommyfranken
*** empty log message ***
Revision 1.21 2004/10/22 14:41:30 ponchio
return in operator+ added.
Revision 1.20 2004/10/18 15:03:14 fiorin
Updated interface: all Matrix classes have now the same interface
Revision 1.19 2004/10/07 14:23:57 ganovelli
added function to take rows and comlumns. Added toMatrix and fromMatrix to comply
RotationTYpe prototype in Similarity.h
Revision 1.18 2004/05/28 13:01:50 ganovelli
changed scalar to ScalarType
Revision 1.17 2004/05/26 15:09:32 cignoni
better comments in set rotate
Revision 1.16 2004/05/07 10:05:50 cignoni
Corrected abuse of for index variable scope
Revision 1.15 2004/05/04 23:19:41 cignoni
Clarified initial comment, removed vector*matrix operator (confusing!)
Corrected translate and Rotate, removed gl stuff.
Revision 1.14 2004/05/04 02:34:03 ganovelli
wrong use of operator [] corrected
Revision 1.13 2004/04/07 10:45:54 cignoni
Added: [i][j] access, V() for the raw float values, constructor from T[16]
Revision 1.12 2004/03/25 14:57:49 ponchio
****************************************************************************/
#ifndef __VCGLIB_MATRIX44
#define __VCGLIB_MATRIX44
#include <memory.h>
#include <vcg/math/base.h>
#include <vcg/space/point3.h>
#include <vcg/space/point4.h>
#include <vector>
namespace vcg {
/*
Annotations:
Opengl stores matrix in column-major order. That is, the matrix is stored as:
a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15
Usually in opengl (see opengl specs) vectors are 'column' vectors
so usually matrix are PRE-multiplied for a vector.
So the command glTranslate generate a matrix that
is ready to be premultipled for a vector:
1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1
Matrix44 stores matrix in row-major order i.e.
a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15
So for the use of that matrix in opengl with their supposed meaning you have to transpose them before feeding to glMultMatrix.
This mechanism is hidden by the templated function defined in wrap/gl/math.h;
If your machine has the ARB_transpose_matrix extension it will use the appropriate;
The various gl-like command SetRotate, SetTranslate assume that you are making matrix
for 'column' vectors.
*/
template <class S>
class Matrix44Diag:public Point4<S>{
public:
/** @name Matrix33
Class Matrix33Diag.
This is the class for definition of a diagonal matrix 4x4.
@param S (Templete Parameter) Specifies the ScalarType field.
*/
Matrix44Diag(const S & p0,const S & p1,const S & p2,const S & p3):Point4<S>(p0,p1,p2,p3){};
Matrix44Diag( const Point4<S> & p ):Point4<S>(p){};
};
/** This class represent a 4x4 matrix. T is the kind of element in the matrix.
*/
template <class T> class Matrix44 {
protected:
T _a[16];
public:
typedef T ScalarType;
///@{
/** $name Constructors
* No automatic casting and default constructor is empty
*/
Matrix44() {};
~Matrix44() {};
Matrix44(const Matrix44 &m);
Matrix44(const T v[]);
/// Number of columns
inline unsigned int ColumnsNumber() const
{
return 4;
};
/// Number of rows
inline unsigned int RowsNumber() const
{
return 4;
};
T &ElementAt(const int row, const int col);
T ElementAt(const int row, const int col) const;
//T &operator[](const int i);
//const T &operator[](const int i) const;
T *V();
const T *V() const ;
T *operator[](const int i);
const T *operator[](const int i) const;
// return a copy of the i-th column
Point4<T> GetColumn4(const int& i)const{
assert(i>=0 && i<4);
return Point4<T>(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i),ElementAt(3,i));
//return Point4<T>(_a[i],_a[i+4],_a[i+8],_a[i+12]);
}
Point3<T> GetColumn3(const int& i)const{
assert(i>=0 && i<4);
return Point3<T>(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i));
}
Point4<T> GetRow4(const int& i)const{
assert(i>=0 && i<4);
return Point4<T>(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2),ElementAt(i,3));
// return *((Point4<T>*)(&_a[i<<2])); alternativa forse + efficiente
}
Point3<T> GetRow3(const int& i)const{
assert(i>=0 && i<4);
return Point3<T>(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2));
// return *((Point4<T>*)(&_a[i<<2])); alternativa forse + efficiente
}
Matrix44 operator+(const Matrix44 &m) const;
Matrix44 operator-(const Matrix44 &m) const;
Matrix44 operator*(const Matrix44 &m) const;
Matrix44 operator*(const Matrix44Diag<T> &m) const;
Point4<T> operator*(const Point4<T> &v) const;
bool operator==(const Matrix44 &m) const;
bool operator!= (const Matrix44 &m) const;
Matrix44 operator-() const;
Matrix44 operator*(const T k) const;
void operator+=(const Matrix44 &m);
void operator-=(const Matrix44 &m);
void operator*=( const Matrix44 & m );
void operator*=( const T k );
template <class Matrix44Type>
void ToMatrix(Matrix44Type & m) const {for(int i = 0; i < 16; i++) m.V()[i]=V()[i];}
void ToEulerAngles(T &alpha, T &beta, T &gamma);
template <class Matrix44Type>
void FromMatrix(const Matrix44Type & m){for(int i = 0; i < 16; i++) V()[i]=m.V()[i];}
void FromEulerAngles(T alpha, T beta, T gamma);
void SetZero();
void SetIdentity();
void SetDiagonal(const T k);
Matrix44 &SetScale(const T sx, const T sy, const T sz);
Matrix44 &SetScale(const Point3<T> &t);
Matrix44 &SetTranslate(const Point3<T> &t);
Matrix44 &SetTranslate(const T sx, const T sy, const T sz);
Matrix44 &SetShearXY(const T sz);
Matrix44 &SetShearXZ(const T sy);
Matrix44 &SetShearYZ(const T sx);
///use radiants for angle.
Matrix44 &SetRotateDeg(T AngleDeg, const Point3<T> & axis);
Matrix44 &SetRotateRad(T AngleRad, const Point3<T> & axis);
T Determinant() const;
template <class Q> void Import(const Matrix44<Q> &m) {
for(int i = 0; i < 16; i++)
_a[i] = (T)(m.V()[i]);
}
template <class Q>
static inline Matrix44 Construct( const Matrix44<Q> & b )
{
Matrix44<T> tmp; tmp.FromMatrix(b);
return tmp;
}
static inline const Matrix44 &Identity( )
{
static Matrix44<T> tmp; tmp.SetIdentity();
return tmp;
}
};
/** Class for solving A * x = b. */
template <class T> class LinearSolve: public Matrix44<T> {
public:
LinearSolve(const Matrix44<T> &m);
Point4<T> Solve(const Point4<T> &b); // solve A · x = b
///If you need to solve some equation you can use this function instead of Matrix44 one for speed.
T Determinant() const;
protected:
///Holds row permutation.
int index[4]; //hold permutation
///Hold sign of row permutation (used for determinant sign)
T d;
bool Decompose();
};
/*** Postmultiply */
//template <class T> Point3<T> operator*(const Point3<T> &p, const Matrix44<T> &m);
///Premultiply
template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p);
template <class T> Matrix44<T> &Transpose(Matrix44<T> &m);
//return NULL matrix if not invertible
template <class T> Matrix44<T> &Invert(Matrix44<T> &m);
template <class T> Matrix44<T> Inverse(const Matrix44<T> &m);
typedef Matrix44<short> Matrix44s;
typedef Matrix44<int> Matrix44i;
typedef Matrix44<float> Matrix44f;
typedef Matrix44<double> Matrix44d;
template <class T> Matrix44<T>::Matrix44(const Matrix44<T> &m) {
memcpy((T *)_a, (T *)m._a, 16 * sizeof(T));
}
template <class T> Matrix44<T>::Matrix44(const T v[]) {
memcpy((T *)_a, v, 16 * sizeof(T));
}
template <class T> T &Matrix44<T>::ElementAt(const int row, const int col) {
assert(row >= 0 && row < 4);
assert(col >= 0 && col < 4);
return _a[(row<<2) + col];
}
template <class T> T Matrix44<T>::ElementAt(const int row, const int col) const {
assert(row >= 0 && row < 4);
assert(col >= 0 && col < 4);
return _a[(row<<2) + col];
}
//template <class T> T &Matrix44<T>::operator[](const int i) {
// assert(i >= 0 && i < 16);
// return ((T *)_a)[i];
//}
//
//template <class T> const T &Matrix44<T>::operator[](const int i) const {
// assert(i >= 0 && i < 16);
// return ((T *)_a)[i];
//}
template <class T> T *Matrix44<T>::operator[](const int i) {
assert(i >= 0 && i < 4);
return _a+i*4;
}
template <class T> const T *Matrix44<T>::operator[](const int i) const {
assert(i >= 0 && i < 4);
return _a+i*4;
}
template <class T> T *Matrix44<T>::V() { return _a;}
template <class T> const T *Matrix44<T>::V() const { return _a;}
template <class T> Matrix44<T> Matrix44<T>::operator+(const Matrix44 &m) const {
Matrix44<T> ret;
for(int i = 0; i < 16; i++)
ret.V()[i] = V()[i] + m.V()[i];
return ret;
}
template <class T> Matrix44<T> Matrix44<T>::operator-(const Matrix44 &m) const {
Matrix44<T> ret;
for(int i = 0; i < 16; i++)
ret.V()[i] = V()[i] - m.V()[i];
return ret;
}
template <class T> Matrix44<T> Matrix44<T>::operator*(const Matrix44 &m) const {
Matrix44 ret;
for(int i = 0; i < 4; i++)
for(int j = 0; j < 4; j++) {
T t = 0.0;
for(int k = 0; k < 4; k++)
t += ElementAt(i, k) * m.ElementAt(k, j);
ret.ElementAt(i, j) = t;
}
return ret;
}
template <class T> Matrix44<T> Matrix44<T>::operator*(const Matrix44Diag<T> &m) const {
Matrix44 ret = (*this);
for(int i = 0; i < 4; ++i)
for(int j = 0; j < 4; ++j)
ret[i][j]*=m[i];
return ret;
}
template <class T> Point4<T> Matrix44<T>::operator*(const Point4<T> &v) const {
Point4<T> ret;
for(int i = 0; i < 4; i++){
T t = 0.0;
for(int k = 0; k < 4; k++)
t += ElementAt(i,k) * v[k];
ret[i] = t;
}
return ret;
}
template <class T> bool Matrix44<T>::operator==(const Matrix44 &m) const {
for(int i = 0; i < 4; ++i)
for(int j = 0; j < 4; ++j)
if(ElementAt(i,j) != m.ElementAt(i,j))
return false;
return true;
}
template <class T> bool Matrix44<T>::operator!=(const Matrix44 &m) const {
for(int i = 0; i < 4; ++i)
for(int j = 0; j < 4; ++j)
if(ElementAt(i,j) != m.ElementAt(i,j))
return true;
return false;
}
template <class T> Matrix44<T> Matrix44<T>::operator-() const {
Matrix44<T> res;
for(int i = 0; i < 16; i++)
res.V()[i] = -V()[i];
return res;
}
template <class T> Matrix44<T> Matrix44<T>::operator*(const T k) const {
Matrix44<T> res;
for(int i = 0; i < 16; i++)
res.V()[i] =V()[i] * k;
return res;
}
template <class T> void Matrix44<T>::operator+=(const Matrix44 &m) {
for(int i = 0; i < 16; i++)
V()[i] += m.V()[i];
}
template <class T> void Matrix44<T>::operator-=(const Matrix44 &m) {
for(int i = 0; i < 16; i++)
V()[i] -= m.V()[i];
}
template <class T> void Matrix44<T>::operator*=( const Matrix44 & m ) {
*this = *this *m;
/*for(int i = 0; i < 4; i++) { //sbagliato
Point4<T> t(0, 0, 0, 0);
for(int k = 0; k < 4; k++) {
for(int j = 0; j < 4; j++) {
t[k] += ElementAt(i, k) * m.ElementAt(k, j);
}
}
for(int l = 0; l < 4; l++)
ElementAt(i, l) = t[l];
} */
}
template < class PointType , class T > void operator*=( std::vector<PointType> &vert, const Matrix44<T> & m ) {
typename std::vector<PointType>::iterator ii;
for(ii=vert.begin();ii!=vert.end();++ii)
(*ii).P()=m * (*ii).P();
}
template <class T> void Matrix44<T>::operator*=( const T k ) {
for(int i = 0; i < 16; i++)
_a[i] *= k;
}
template <class T>
void Matrix44<T>::ToEulerAngles(T &alpha, T &beta, T &gamma)
{
alpha = atan2(ElementAt(1,2), ElementAt(2,2));
beta = asin(-ElementAt(0,2));
gamma = atan2(ElementAt(0,1), ElementAt(1,1));
}
template <class T>
void Matrix44<T>::FromEulerAngles(T alpha, T beta, T gamma)
{
this->SetZero();
T cosalpha = cos(alpha);
T cosbeta = cos(beta);
T cosgamma = cos(gamma);
T sinalpha = sin(alpha);
T sinbeta = sin(beta);
T singamma = sin(gamma);
ElementAt(0,0) = cosbeta * cosgamma;
ElementAt(1,0) = -cosalpha * singamma + sinalpha * sinbeta * cosgamma;
ElementAt(2,0) = sinalpha * singamma + cosalpha * sinbeta * cosgamma;
ElementAt(0,1) = cosbeta * singamma;
ElementAt(1,1) = cosalpha * cosgamma + sinalpha * sinbeta * singamma;
ElementAt(2,1) = -sinalpha * cosgamma + cosalpha * sinbeta * singamma;
ElementAt(0,2) = -sinbeta;
ElementAt(1,2) = sinalpha * cosbeta;
ElementAt(2,2) = cosalpha * cosbeta;
ElementAt(3,3) = 1;
}
template <class T> void Matrix44<T>::SetZero() {
memset((T *)_a, 0, 16 * sizeof(T));
}
template <class T> void Matrix44<T>::SetIdentity() {
SetDiagonal(1);
}
template <class T> void Matrix44<T>::SetDiagonal(const T k) {
SetZero();
ElementAt(0, 0) = k;
ElementAt(1, 1) = k;
ElementAt(2, 2) = k;
ElementAt(3, 3) = 1;
}
template <class T> Matrix44<T> &Matrix44<T>::SetScale(const Point3<T> &t) {
SetScale(t[0], t[1], t[2]);
return *this;
}
template <class T> Matrix44<T> &Matrix44<T>::SetScale(const T sx, const T sy, const T sz) {
SetZero();
ElementAt(0, 0) = sx;
ElementAt(1, 1) = sy;
ElementAt(2, 2) = sz;
ElementAt(3, 3) = 1;
return *this;
}
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const Point3<T> &t) {
SetTranslate(t[0], t[1], t[2]);
return *this;
}
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const T tx, const T ty, const T tz) {
SetIdentity();
ElementAt(0, 3) = tx;
ElementAt(1, 3) = ty;
ElementAt(2, 3) = tz;
return *this;
}
template <class T> Matrix44<T> &Matrix44<T>::SetRotateDeg(T AngleDeg, const Point3<T> & axis) {
return SetRotateRad(math::ToRad(AngleDeg),axis);
}
template <class T> Matrix44<T> &Matrix44<T>::SetRotateRad(T AngleRad, const Point3<T> & axis) {
//angle = angle*(T)3.14159265358979323846/180; e' in radianti!
T c = math::Cos(AngleRad);
T s = math::Sin(AngleRad);
T q = 1-c;
Point3<T> t = axis;
t.Normalize();
ElementAt(0,0) = t[0]*t[0]*q + c;
ElementAt(0,1) = t[0]*t[1]*q - t[2]*s;
ElementAt(0,2) = t[0]*t[2]*q + t[1]*s;
ElementAt(0,3) = 0;
ElementAt(1,0) = t[1]*t[0]*q + t[2]*s;
ElementAt(1,1) = t[1]*t[1]*q + c;
ElementAt(1,2) = t[1]*t[2]*q - t[0]*s;
ElementAt(1,3) = 0;
ElementAt(2,0) = t[2]*t[0]*q -t[1]*s;
ElementAt(2,1) = t[2]*t[1]*q +t[0]*s;
ElementAt(2,2) = t[2]*t[2]*q +c;
ElementAt(2,3) = 0;
ElementAt(3,0) = 0;
ElementAt(3,1) = 0;
ElementAt(3,2) = 0;
ElementAt(3,3) = 1;
return *this;
}
/* Shear Matrixes
XY
1 k 0 0 x x+ky
0 1 0 0 y y
0 0 1 0 z z
0 0 0 1 1 1
1 0 k 0 x x+kz
0 1 0 0 y y
0 0 1 0 z z
0 0 0 1 1 1
1 1 0 0 x x
0 1 k 0 y y+kz
0 0 1 0 z z
0 0 0 1 1 1
*/
template <class T> Matrix44<T> & Matrix44<T>:: SetShearXY( const T sh) {// shear the X coordinate as the Y coordinate change
SetIdentity();
ElementAt(0,1) = sh;
return *this;
}
template <class T> Matrix44<T> & Matrix44<T>:: SetShearXZ( const T sh) {// shear the X coordinate as the Z coordinate change
SetIdentity();
ElementAt(0,2) = sh;
return *this;
}
template <class T> Matrix44<T> &Matrix44<T>:: SetShearYZ( const T sh) {// shear the Y coordinate as the Z coordinate change
SetIdentity();
ElementAt(1,2) = sh;
return *this;
}
/*
Given a non singular, non projective matrix (e.g. with the last row equal to [0,0,0,1] )
This procedure decompose it in a sequence of
Scale,Shear,Rotation e Translation
- ScaleV and Tranv are obiviously scaling and translation.
- ShearV contains three scalars with, respectively
ShearXY, ShearXZ e ShearYZ
- RotateV contains the rotations (in degree!) around the x,y,z axis
The input matrix is modified leaving inside it a simple roto translation.
To obtain the original matrix the above transformation have to be applied in the strict following way:
OriginalMatrix = Trn * Rtx*Rty*Rtz * ShearYZ*ShearXZ*ShearXY * Scl
Example Code:
double srv() { return (double(rand()%40)-20)/2.0; } // small random value
srand(time(0));
Point3d ScV(10+srv(),10+srv(),10+srv()),ScVOut(-1,-1,-1);
Point3d ShV(srv(),srv(),srv()),ShVOut(-1,-1,-1);
Point3d RtV(10+srv(),srv(),srv()),RtVOut(-1,-1,-1);
Point3d TrV(srv(),srv(),srv()),TrVOut(-1,-1,-1);
Matrix44d Scl; Scl.SetScale(ScV);
Matrix44d Sxy; Sxy.SetShearXY(ShV[0]);
Matrix44d Sxz; Sxz.SetShearXZ(ShV[1]);
Matrix44d Syz; Syz.SetShearYZ(ShV[2]);
Matrix44d Rtx; Rtx.SetRotate(math::ToRad(RtV[0]),Point3d(1,0,0));
Matrix44d Rty; Rty.SetRotate(math::ToRad(RtV[1]),Point3d(0,1,0));
Matrix44d Rtz; Rtz.SetRotate(math::ToRad(RtV[2]),Point3d(0,0,1));
Matrix44d Trn; Trn.SetTranslate(TrV);
Matrix44d StartM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy *Scl;
Matrix44d ResultM=StartM;
Decompose(ResultM,ScVOut,ShVOut,RtVOut,TrVOut);
Scl.SetScale(ScVOut);
Sxy.SetShearXY(ShVOut[0]);
Sxz.SetShearXZ(ShVOut[1]);
Syz.SetShearYZ(ShVOut[2]);
Rtx.SetRotate(math::ToRad(RtVOut[0]),Point3d(1,0,0));
Rty.SetRotate(math::ToRad(RtVOut[1]),Point3d(0,1,0));
Rtz.SetRotate(math::ToRad(RtVOut[2]),Point3d(0,0,1));
Trn.SetTranslate(TrVOut);
// Now Rebuild is equal to StartM
Matrix44d RebuildM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy * Scl ;
*/
template <class T>
bool Decompose(Matrix44<T> &M, Point3<T> &ScaleV, Point3<T> &ShearV, Point3<T> &RotV,Point3<T> &TranV)
{
if(!(M[3][0]==0 && M[3][1]==0 && M[3][2]==0 && M[3][3]==1) ) // the matrix is projective
return false;
if(math::Abs(M.Determinant())<1e-10) return false; // matrix should be at least invertible...
// First Step recover the traslation
TranV=M.GetColumn3(3);
// Second Step Recover Scale and Shearing interleaved
ScaleV[0]=Norm(M.GetColumn3(0));
Point3<T> R[3];
R[0]=M.GetColumn3(0);
R[0].Normalize();
ShearV[0]=R[0]*M.GetColumn3(1); // xy shearing
R[1]= M.GetColumn3(1)-R[0]*ShearV[0];
assert(math::Abs(R[1]*R[0])<1e-10);
ScaleV[1]=Norm(R[1]); // y scaling
R[1]=R[1]/ScaleV[1];
ShearV[0]=ShearV[0]/ScaleV[1];
ShearV[1]=R[0]*M.GetColumn3(2); // xz shearing
R[2]= M.GetColumn3(2)-R[0]*ShearV[1];
assert(math::Abs(R[2]*R[0])<1e-10);
R[2] = R[2]-R[1]*(R[2]*R[1]);
assert(math::Abs(R[2]*R[1])<1e-10);
assert(math::Abs(R[2]*R[0])<1e-10);
ScaleV[2]=Norm(R[2]);
ShearV[1]=ShearV[1]/ScaleV[2];
R[2]=R[2]/ScaleV[2];
assert(math::Abs(R[2]*R[1])<1e-10);
assert(math::Abs(R[2]*R[0])<1e-10);
ShearV[2]=R[1]*M.GetColumn3(2); // yz shearing
ShearV[2]=ShearV[2]/ScaleV[2];
int i,j;
for(i=0;i<3;++i)
for(j=0;j<3;++j)
M[i][j]=R[j][i];
// Third and last step: Recover the rotation
//now the matrix should be a pure rotation matrix so its determinant is +-1
double det=M.Determinant();
if(math::Abs(det)<1e-10) return false; // matrix should be at least invertible...
assert(math::Abs(math::Abs(det)-1.0)<1e-10); // it should be +-1...
if(det<0) {
ScaleV *= -1;
M *= -1;
}
double alpha,beta,gamma; // rotations around the x,y and z axis
beta=asin( M[0][2]);
double cosbeta=cos(beta);
if(math::Abs(cosbeta) > 1e-5)
{
alpha=asin(-M[1][2]/cosbeta);
if((M[2][2]/cosbeta) < 0 ) alpha=M_PI-alpha;
gamma=asin(-M[0][1]/cosbeta);
if((M[0][0]/cosbeta)<0) gamma = M_PI-gamma;
}
else
{
alpha=asin(-M[1][0]);
if(M[1][1]<0) alpha=M_PI-alpha;
gamma=0;
}
RotV[0]=math::ToDeg(alpha);
RotV[1]=math::ToDeg(beta);
RotV[2]=math::ToDeg(gamma);
return true;
}
template <class T> T Matrix44<T>::Determinant() const {
LinearSolve<T> solve(*this);
return solve.Determinant();
}
template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p) {
T w;
Point3<T> s;
s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(0, 1)*p[1] + m.ElementAt(0, 2)*p[2] + m.ElementAt(0, 3);
s[1] = m.ElementAt(1, 0)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(1, 2)*p[2] + m.ElementAt(1, 3);
s[2] = m.ElementAt(2, 0)*p[0] + m.ElementAt(2, 1)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(2, 3);
w = m.ElementAt(3, 0)*p[0] + m.ElementAt(3, 1)*p[1] + m.ElementAt(3, 2)*p[2] + m.ElementAt(3, 3);
if(w!= 0) s /= w;
return s;
}
//template <class T> Point3<T> operator*(const Point3<T> &p, const Matrix44<T> &m) {
// T w;
// Point3<T> s;
// s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(1, 0)*p[1] + m.ElementAt(2, 0)*p[2] + m.ElementAt(3, 0);
// s[1] = m.ElementAt(0, 1)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(2, 1)*p[2] + m.ElementAt(3, 1);
// s[2] = m.ElementAt(0, 2)*p[0] + m.ElementAt(1, 2)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(3, 2);
// w = m.ElementAt(0, 3)*p[0] + m.ElementAt(1, 3)*p[1] + m.ElementAt(2, 3)*p[2] + m.ElementAt(3, 3);
// if(w != 0) s /= w;
// return s;
//}
template <class T> Matrix44<T> &Transpose(Matrix44<T> &m) {
for(int i = 1; i < 4; i++)
for(int j = 0; j < i; j++) {
math::Swap(m.ElementAt(i, j), m.ElementAt(j, i));
}
return m;
}
/*
To invert a matrix you can
either invert the matrix inplace calling
vcg::Invert(yourMatrix);
or get the inverse matrix of a given matrix without touching it:
invertedMatrix = vcg::Inverse(untouchedMatrix);
*/
template <class T> Matrix44<T> & Invert(Matrix44<T> &m) {
LinearSolve<T> solve(m);
for(int j = 0; j < 4; j++) { //Find inverse by columns.
Point4<T> col(0, 0, 0, 0);
col[j] = 1.0;
col = solve.Solve(col);
for(int i = 0; i < 4; i++)
m.ElementAt(i, j) = col[i];
}
return m;
}
template <class T> Matrix44<T> Inverse(const Matrix44<T> &m) {
LinearSolve<T> solve(m);
Matrix44<T> res;
for(int j = 0; j < 4; j++) { //Find inverse by columns.
Point4<T> col(0, 0, 0, 0);
col[j] = 1.0;
col = solve.Solve(col);
for(int i = 0; i < 4; i++)
res.ElementAt(i, j) = col[i];
}
return res;
}
/* LINEAR SOLVE IMPLEMENTATION */
template <class T> LinearSolve<T>::LinearSolve(const Matrix44<T> &m): Matrix44<T>(m) {
if(!Decompose()) {
for(int i = 0; i < 4; i++)
index[i] = i;
Matrix44<T>::SetZero();
}
}
template <class T> T LinearSolve<T>::Determinant() const {
T det = d;
for(int j = 0; j < 4; j++)
det *= this-> ElementAt(j, j);
return det;
}
/*replaces a matrix by its LU decomposition of a rowwise permutation.
d is +or -1 depeneing of row permutation even or odd.*/
#define TINY 1e-100
template <class T> bool LinearSolve<T>::Decompose() {
/* Matrix44<T> A;
for(int i = 0; i < 16; i++)
A[i] = operator[](i);
SetIdentity();
Point4<T> scale;
// Set scale factor, scale(i) = max( |a(i,j)| ), for each row
for(int i = 0; i < 4; i++ ) {
index[i] = i; // Initialize row index list
T scalemax = (T)0.0;
for(int j = 0; j < 4; j++)
scalemax = (scalemax > math::Abs(A.ElementAt(i,j))) ? scalemax : math::Abs(A.ElementAt(i,j));
scale[i] = scalemax;
}
// Loop over rows k = 1, ..., (N-1)
int signDet = 1;
for(int k = 0; k < 3; k++ ) {
// Select pivot row from max( |a(j,k)/s(j)| )
T ratiomax = (T)0.0;
int jPivot = k;
for(int i = k; i < 4; i++ ) {
T ratio = math::Abs(A.ElementAt(index[i], k))/scale[index[i]];
if(ratio > ratiomax) {
jPivot = i;
ratiomax = ratio;
}
}
// Perform pivoting using row index list
int indexJ = index[k];
if( jPivot != k ) { // Pivot
indexJ = index[jPivot];
index[jPivot] = index[k]; // Swap index jPivot and k
index[k] = indexJ;
signDet *= -1; // Flip sign of determinant
}
// Perform forward elimination
for(int i=k+1; i < 4; i++ ) {
T coeff = A.ElementAt(index[i],k)/A.ElementAt(indexJ,k);
for(int j=k+1; j < 4; j++ )
A.ElementAt(index[i],j) -= coeff*A.ElementAt(indexJ,j);
A.ElementAt(index[i],k) = coeff;
//for( j=1; j< 4; j++ )
// ElementAt(index[i],j) -= A.ElementAt(index[i], k)*ElementAt(indexJ, j);
}
}
for(int i = 0; i < 16; i++)
operator[](i) = A[i];
d = signDet;
// this = A;
return true; */
d = 1; //no permutation still
T scaling[4];
int i,j,k;
//Saving the scvaling information per row
for(i = 0; i < 4; i++) {
T largest = 0.0;
for(j = 0; j < 4; j++) {
T t = math::Abs(this->ElementAt(i, j));
if (t > largest) largest = t;
}
if (largest == 0.0) { //oooppps there is a zero row!
return false;
}
scaling[i] = (T)1.0 / largest;
}
int imax = 0;
for(j = 0; j < 4; j++) {
for(i = 0; i < j; i++) {
T sum = this->ElementAt(i,j);
for(int k = 0; k < i; k++)
sum -= this->ElementAt(i,k)*this->ElementAt(k,j);
this->ElementAt(i,j) = sum;
}
T largest = 0.0;
for(i = j; i < 4; i++) {
T sum = this->ElementAt(i,j);
for(k = 0; k < j; k++)
sum -= this->ElementAt(i,k)*this->ElementAt(k,j);
this->ElementAt(i,j) = sum;
T t = scaling[i] * math::Abs(sum);
if(t >= largest) {
largest = t;
imax = i;
}
}
if (j != imax) {
for (int k = 0; k < 4; k++) {
T dum = this->ElementAt(imax,k);
this->ElementAt(imax,k) = this->ElementAt(j,k);
this->ElementAt(j,k) = dum;
}
d = -(d);
scaling[imax] = scaling[j];
}
index[j]=imax;
if (this->ElementAt(j,j) == 0.0) this->ElementAt(j,j) = (T)TINY;
if (j != 3) {
T dum = (T)1.0 / (this->ElementAt(j,j));
for (i = j+1; i < 4; i++)
this->ElementAt(i,j) *= dum;
}
}
return true;
}
template <class T> Point4<T> LinearSolve<T>::Solve(const Point4<T> &b) {
Point4<T> x(b);
int first = -1, ip;
for(int i = 0; i < 4; i++) {
ip = index[i];
T sum = x[ip];
x[ip] = x[i];
if(first!= -1)
for(int j = first; j <= i-1; j++)
sum -= this->ElementAt(i,j) * x[j];
else
if(sum) first = i;
x[i] = sum;
}
for (int i = 3; i >= 0; i--) {
T sum = x[i];
for (int j = i+1; j < 4; j++)
sum -= this->ElementAt(i, j) * x[j];
x[i] = sum / this->ElementAt(i, i);
}
return x;
}
} //namespace
#endif

57
vcg/math/eigen.h Normal file
View File

@ -0,0 +1,57 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef EIGEN_VCGLIB
#define EIGEN_VCGLIB
#define EIGEN_MATRIXBASE_PLUGIN <vcg/math/eigen_vcgaddons.h>
#include "../Eigen/Array"
#include "../Eigen/Core"
#define VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \
template<typename OtherDerived> \
Derived& operator Op(const Eigen::MatrixBase<OtherDerived>& other) \
{ \
Base::operator Op(other.derived()); return *this;\
} \
Derived& operator Op(const Derived& other) \
{ \
Base::operator Op(other); return *this;\
}
#define VCG_EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, Op) \
template<typename Other> \
Derived& operator Op(const Other& scalar) \
{ \
Base::operator Op(scalar); return *this;\
}
#define VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, =) \
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, +=) \
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, -=) \
VCG_EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, *=) \
VCG_EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, /=)
#endif

319
vcg/math/eigen_vcgaddons.h Normal file
View File

@ -0,0 +1,319 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#warning You are including deprecated math stuff
/*!
* \deprecated use cols()
* Number of columns
*/
EIGEN_DEPRECATED inline unsigned int ColumnsNumber() const
{
return cols();
};
/*!
* \deprecated use rows()
* Number of rows
*/
EIGEN_DEPRECATED inline unsigned int RowsNumber() const
{
return rows();
};
/*
* \deprecated use *this.isApprox(m) or *this.cwise() == m
* Equality operator.
* \param m
* \return true iff the matrices have same size and its elements have same values.
*/
// template<typename OtherDerived>
// EIGEN_DEPRECATED bool operator==(const MatrixBase<OtherDerived> &m) const
// {
// return (this->cwise() == m);
// }
/*
* \deprecated use !*this.isApprox(m) or *this.cwise() != m
* Inequality operator
* \param m
* \return true iff the matrices have different size or if their elements have different values.
*/
// template<typename OtherDerived>
// EIGEN_DEPRECATED bool operator!=(const MatrixBase<OtherDerived> &m) const
// {
// return (this->cwise() != m);
// };
/*!
* \deprecated use *this(i,j) (or *this.coeff(i,j))
* Return the element stored in the <I>i</I>-th rows at the <I>j</I>-th column
* \param i the row index
* \param j the column index
* \return the element
*/
EIGEN_DEPRECATED inline Scalar ElementAt(unsigned int i, unsigned int j)
{
return (*this)(i,j);
};
/*!
* \deprecated use *this.determinant() (or *this.lu().determinant() for large matrices)
* Calculate and return the matrix determinant (Laplace)
* \return the matrix determinant
*/
EIGEN_DEPRECATED Scalar Determinant() const
{
return determinant();
};
/*!
* Return the cofactor <I>A<SUB>i,j</SUB></I> of the <I>a<SUB>i,j</SUB></I> element
* \return ...
*/
EIGEN_DEPRECATED Scalar Cofactor(unsigned int i, unsigned int j) const
{
assert(rows() == cols());
assert(rows()>2);
return (((i+j)%2==0) ? 1. : -1.) * minor(i,j).determinant();
};
/*!
* \deprecated use *this.col(j)
* Get the <I>j</I>-th column on the matrix.
* \param j the column index.
* \return the reference to the column elements. This pointer must be deallocated by the caller.
*/
EIGEN_DEPRECATED ColXpr GetColumn(const unsigned int j)
{
return col(j);
};
/*!
* \deprecated use *this.row(i)
* Get the <I>i</I>-th row on the matrix.
* \param i the column index.
* \return the reference to the row elements. This pointer must be deallocated by the caller.
*/
EIGEN_DEPRECATED RowXpr GetRow(const unsigned int i)
{
return row(i);
};
/*!
* \deprecated use m1.col(i).swap(m1.col(j));
* Swaps the values of the elements between the <I>i</I>-th and the <I>j</I>-th column.
* \param i the index of the first column
* \param j the index of the second column
*/
EIGEN_DEPRECATED void SwapColumns(const unsigned int i, const unsigned int j)
{
if (i==j)
return;
col(i).swap(col(j));
};
/*!
* \deprecated use m1.col(i).swap(m1.col(j))
* Swaps the values of the elements between the <I>i</I>-th and the <I>j</I>-th row.
* \param i the index of the first row
* \param j the index of the second row
*/
EIGEN_DEPRECATED void SwapRows(const unsigned int i, const unsigned int j)
{
if (i==j)
return;
row(i).swap(row(j));
};
/*!
* \deprecated use *this.cwise() += k
* (Modifier) Add to each element of this matrix the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
EIGEN_DEPRECATED Derived& operator+=(const Scalar k)
{
cwise() += k;
return *this;
};
/*!
* \deprecated use *this.cwise() -= k
* (Modifier) Subtract from each element of this matrix the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
EIGEN_DEPRECATED Derived& operator-=(const Scalar k)
{
cwise() -= k;
return *this;
};
/*!
* \deprecated use *this.dot
* Matrix multiplication: calculates the cross product.
* \param reference to the matrix to multiply by
* \return the matrix product
*/
// template <int N,int M>
// EIGEN_DEPRECATED void DotProduct(Point<N,Scalar> &m,Point<M,Scalar> &result)
// {
// unsigned int i, j;
// for (i=0; i<M; i++)
// { result[i]=0;
// for (j=0; j<N; j++)
// result[i]+=(*this)[i][j]*m[j];
// }
// };
/*!
* \deprecated use (*this) * vec.asDiagonal() or (*this) * mat.mark<Diagonal>()
* Matrix multiplication by a diagonal matrix
*/
// EIGEN_DEPRECATED Matrix<Scalar> operator*(const MatrixDiagBase &m) const
// {
// assert(_columns == _rows);
// assert(_columns == m.Dimension());
// int i,j;
// Matrix<Scalar> result(_rows, _columns);
//
// for (i=0; i<result._rows; i++)
// for (j=0; j<result._columns; j++)
// result[i][j]*= m[j];
//
// return result;
// };
/*!
* \deprecated use *this = a * b.transpose()
* Matrix from outer product.
*/
template <typename OtherDerived1, typename OtherDerived2>
EIGEN_DEPRECATED void OuterProduct(const MatrixBase<OtherDerived1>& a, const MatrixBase<OtherDerived2>& b)
{
*this = a * b.transpose();
}
typedef CwiseUnaryOp<ei_scalar_add_op<Scalar>, Derived> ScalarAddReturnType;
/*!
* \deprecated use *this.cwise() + k
* Scalar sum.
* \param k
* \return the resultant matrix
*/
EIGEN_DEPRECATED const ScalarAddReturnType operator+(const Scalar k) { return cwise() + k; }
/*!
* \deprecated use *this.cwise() - k
* Scalar difference.
* \param k
* \return the resultant matrix
*/
EIGEN_DEPRECATED const ScalarAddReturnType operator-(const Scalar k) { return cwise() - k; }
/*!
* \deprecated use *this.setZero() or *this = MatrixType::Zero(rows,cols), etc.
* Set all the matrix elements to zero.
*/
EIGEN_DEPRECATED void SetZero()
{
setZero();
};
/*!
* \deprecated use *this.setIdentity() or *this = MatrixType::Identity(rows,cols), etc.
* Set the matrix to identity.
*/
EIGEN_DEPRECATED void SetIdentity()
{
setIdentity();
};
/*!
* \deprecated use *this.col(j) = expression
* Set the values of <I>j</I>-th column to v[j]
* \param j the column index
* \param v ...
*/
EIGEN_DEPRECATED void SetColumn(const unsigned int j, Scalar* v)
{
col(j) = Map<Matrix<Scalar,RowsAtCompileTime,1> >(v,cols(),1);
};
/*!
* \deprecated use *this.row(i) = expression
* Set the elements of the <I>i</I>-th row to v[j]
* \param i the row index
* \param v ...
*/
EIGEN_DEPRECATED void SetRow(const unsigned int i, Scalar* v)
{
row(i) = Map<Matrix<Scalar,1,ColsAtCompileTime> >(v,1,rows());
};
/*!
* \deprecated use *this.diagonal() = expression
* Set the diagonal elements <I>v<SUB>i,i</SUB></I> to v[i]
* \param v
*/
EIGEN_DEPRECATED void SetDiagonal(Scalar *v)
{
assert(rows() == cols());
diagonal() = Map<Matrix<Scalar,RowsAtCompileTime,1> >(v,cols(),1);
}
/*!
* \deprecated use *this = *this.transpose()
*/
// Transpose already exist
// EIGEN_DEPRECATED void Transpose()
// {
// assert(0 && "dangerous use of deprecated Transpose function, please use: m = m.transpose();");
// };
/*!
* \deprecated use ostream << *this or ostream << *this.withFormat(...)
* Print all matrix elements
*/
EIGEN_DEPRECATED void Dump()
{
unsigned int i, j;
for (i=0; i<rows(); ++i)
{
printf("[\t");
for (j=0; j<cols(); j++)
printf("%f\t", coeff(i,j));
printf("]\n");
}
printf("\n");
}

View File

@ -8,7 +8,7 @@
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
@ -20,759 +20,180 @@
* for more details. *
* *
****************************************************************************/
/***************************************************************************
$Log: not supported by cvs2svn $
Revision 1.9 2006/09/11 16:11:39 marfr960
Added const to declarations of the overloaded (operators *).
Otherwise the * operator would always attempt to convert any type of data passed as an argument to Point3<TYPE>
Revision 1.8 2006/08/23 15:24:45 marfr960
Copy constructor : faster memcpy instead of slow 'for' cycle
empty constructor
#ifndef VCG_USE_EIGEN
#include "deprecated_matrix.h"
#endif
Revision 1.7 2006/04/29 10:26:04 fiorin
Added some utility methods (swapping of columns and rows, matrix-vector multiplication)
Revision 1.6 2006/04/11 08:09:35 zifnab1974
changes necessary for gcc 3.4.5 on linux 64bit. Please take note of case-sensitivity of filenames
Revision 1.5 2005/12/12 11:25:00 ganovelli
added diagonal matrix, outer produce and namespace
***************************************************************************/
#ifndef MATRIX_VCGLIB
#define MATRIX_VCGLIB
#include <stdio.h>
#include <math.h>
#include <memory.h>
#include <assert.h>
#include <algorithm>
#include "eigen.h"
#include <vcg/space/point.h>
#include <vcg/math/lin_algebra.h>
namespace vcg{
namespace ndim{
namespace ndim{
template<class Scalar> class Matrix;
}
}
/** \addtogroup math */
/* @{ */
namespace Eigen{
template<typename Scalar>
struct ei_traits<vcg::ndim::Matrix<Scalar> > : ei_traits<Eigen::Matrix<Scalar,Dynamic,Dynamic> > {};
}
/*!
* This class represent a diagonal <I>m</I>×<I>m</I> matrix.
*/
class MatrixDiagBase{public:
virtual const int & Dimension()const =0;
virtual const float operator[](const int & i)const = 0;
};
template<int N, class S>
class MatrixDiag: public Point<N,S>, public MatrixDiagBase{
public:
const int & Dimension() const {return N;}
MatrixDiag(const Point<N,S>&p):Point<N,S>(p){}
};
namespace vcg{
namespace ndim{
/** \addtogroup math */
/* @{ */
/*!
* This class represent a generic <I>m</I>×<I>n</I> matrix. The class is templated over the scalar type field.
* @param TYPE (Templete Parameter) Specifies the ScalarType field.
* This class represent a diagonal <I>m</I><EFBFBD><I>m</I> matrix.
*/
template<class TYPE>
class Matrix
{
public:
typedef TYPE ScalarType;
/*!
* Default constructor
* All the elements are initialized to zero.
* \param m the number of matrix rows
* \param n the number of matrix columns
*/
Matrix(unsigned int m, unsigned int n)
{
_rows = m;
_columns = n;
_data = new ScalarType[m*n];
memset(_data, 0, m*n*sizeof(ScalarType));
};
/*!
* Constructor
* The matrix elements are initialized with the values of the elements in \i values.
* \param m the number of matrix rows
* \param n the number of matrix columns
* \param values the values of the matrix elements
*/
Matrix(unsigned int m, unsigned int n, TYPE *values)
{
_rows = m;
_columns = n;
unsigned int dim = m*n;
_data = new ScalarType[dim];
memcpy(_data, values, dim*sizeof(ScalarType));
//unsigned int i;
//for (i=0; i<_rows*_columns; i++)
// _data[i] = values[i];
};
/*!
* Empty constructor
* Just create the object
*/
Matrix()
{
_rows = 0;
_columns = 0;
_data = NULL;
};
/*!
* Copy constructor
* The matrix elements are initialized with the value of the corresponding element in \i m
* \param m the matrix to be copied
*/
Matrix(const Matrix<TYPE> &m)
{
_rows = m._rows;
_columns = m._columns;
_data = new ScalarType[_rows*_columns];
unsigned int dim = _rows * _columns;
memcpy(_data, m._data, dim * sizeof(ScalarType));
// for (unsigned int i=0; i<_rows*_columns; i++)
// _data[i] = m._data[i];
};
/*!
* Default destructor
*/
~Matrix()
{
delete []_data;
};
/*!
* Number of columns
*/
inline unsigned int ColumnsNumber() const
{
return _columns;
};
/*!
* Number of rows
*/
inline unsigned int RowsNumber() const
{
return _rows;
};
/*!
* Equality operator.
* \param m
* \return true iff the matrices have same size and its elements have same values.
*/
bool operator==(const Matrix<TYPE> &m) const
{
if (_rows==m._rows && _columns==m._columns)
{
bool result = true;
for (unsigned int i=0; i<_rows*_columns && result; i++)
result = (_data[i]==m._data[i]);
return result;
}
return false;
};
/*!
* Inequality operator
* \param m
* \return true iff the matrices have different size or if their elements have different values.
*/
bool operator!=(const Matrix<TYPE> &m) const
{
if (_rows==m._rows && _columns==m._columns)
{
bool result = false;
for (unsigned int i=0; i<_rows*_columns && !result; i++)
result = (_data[i]!=m._data[i]);
return result;
}
return true;
};
/*!
* Return the element stored in the <I>i</I>-th rows at the <I>j</I>-th column
* \param i the row index
* \param j the column index
* \return the element
*/
inline TYPE ElementAt(unsigned int i, unsigned int j)
{
assert(i>=0 && i<_rows);
assert(j>=0 && j<_columns);
return _data[i*_columns+j];
};
/*!
* Calculate and return the matrix determinant (Laplace)
* \return the matrix determinant
*/
TYPE Determinant() const
{
assert(_rows == _columns);
switch (_rows)
{
case 2:
{
return _data[0]*_data[3]-_data[1]*_data[2];
break;
};
case 3:
{
return _data[0]*(_data[4]*_data[8]-_data[5]*_data[7]) -
_data[1]*(_data[3]*_data[8]-_data[5]*_data[6]) +
_data[2]*(_data[3]*_data[7]-_data[4]*_data[6]) ;
break;
};
default:
{
// da migliorare: si puo' cercare la riga/colonna con maggior numero di zeri
ScalarType det = 0;
for (unsigned int j=0; j<_columns; j++)
if (_data[j]!=0)
det += _data[j]*this->Cofactor(0, j);
return det;
}
};
};
/*!
* Return the cofactor <I>A<SUB>i,j</SUB></I> of the <I>a<SUB>i,j</SUB></I> element
* \return ...
*/
TYPE Cofactor(unsigned int i, unsigned int j) const
{
assert(_rows == _columns);
assert(_rows>2);
TYPE *values = new TYPE[(_rows-1)*(_columns-1)];
unsigned int u, v, p, q, s, t;
for (u=0, p=0, s=0, t=0; u<_rows; u++, t+=_rows)
{
if (i==u)
continue;
for (v=0, q=0; v<_columns; v++)
{
if (j==v)
continue;
values[s+q] = _data[t+v];
q++;
}
p++;
s+=(_rows-1);
}
Matrix<TYPE> temp(_rows-1, _columns-1, values);
return (pow(-1, i+j)*temp.Determinant());
};
/*!
* Subscript operator:
* \param i the index of the row
* \return a reference to the <I>i</I>-th matrix row
*/
inline TYPE* operator[](const unsigned int i)
{
assert(i>=0 && i<_rows);
return _data + i*_columns;
};
/*!
* Const subscript operator
* \param i the index of the row
* \return a reference to the <I>i</I>-th matrix row
*/
inline const TYPE* operator[](const unsigned int i) const
{
assert(i>=0 && i<_rows);
return _data + i*_columns;
};
/*!
* Get the <I>j</I>-th column on the matrix.
* \param j the column index.
* \return the reference to the column elements. This pointer must be deallocated by the caller.
*/
TYPE* GetColumn(const unsigned int j)
{
assert(j>=0 && j<_columns);
ScalarType *v = new ScalarType[_columns];
unsigned int i, p;
for (i=0, p=j; i<_rows; i++, p+=_columns)
v[i] = _data[p];
return v;
};
/*!
* Get the <I>i</I>-th row on the matrix.
* \param i the column index.
* \return the reference to the row elements. This pointer must be deallocated by the caller.
*/
TYPE* GetRow(const unsigned int i)
{
assert(i>=0 && i<_rows);
ScalarType *v = new ScalarType[_rows];
unsigned int j, p;
for (j=0, p=i*_columns; j<_columns; j++, p++)
v[j] = _data[p];
return v;
};
/*!
* Swaps the values of the elements between the <I>i</I>-th and the <I>j</I>-th column.
* \param i the index of the first column
* \param j the index of the second column
*/
void SwapColumns(const unsigned int i, const unsigned int j)
{
assert(0<=i && i<_columns);
assert(0<=j && j<_columns);
if (i==j)
return;
unsigned int r, e0, e1;
for (r=0, e0=i, e1=j; r<_rows; r++, e0+=_columns, e1+=_columns)
std::swap(_data[e0], _data[e1]);
};
/*!
* Swaps the values of the elements between the <I>i</I>-th and the <I>j</I>-th row.
* \param i the index of the first row
* \param j the index of the second row
*/
void SwapRows(const unsigned int i, const unsigned int j)
{
assert(0<=i && i<_rows);
assert(0<=j && j<_rows);
if (i==j)
return;
unsigned int r, e0, e1;
for (r=0, e0=i*_columns, e1=j*_columns; r<_columns; r++, e0++, e1++)
std::swap(_data[e0], _data[e1]);
};
/*!
* Assignment operator
* \param m ...
*/
Matrix<TYPE>& operator=(const Matrix<TYPE> &m)
{
if (this != &m)
{
assert(_rows == m._rows);
assert(_columns == m._columns);
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] = m._data[i];
}
return *this;
};
/*!
* Adds a matrix <I>m</I> to this matrix.
* \param m reference to matrix to add to this
* \return the matrix sum.
*/
Matrix<TYPE>& operator+=(const Matrix<TYPE> &m)
{
assert(_rows == m._rows);
assert(_columns == m._columns);
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] += m._data[i];
return *this;
};
/*!
* Subtracts a matrix <I>m</I> to this matrix.
* \param m reference to matrix to subtract
* \return the matrix difference.
*/
Matrix<TYPE>& operator-=(const Matrix<TYPE> &m)
{
assert(_rows == m._rows);
assert(_columns == m._columns);
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] -= m._data[i];
return *this;
};
/*!
* (Modifier) Add to each element of this matrix the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
Matrix<TYPE>& operator+=(const TYPE k)
{
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] += k;
return *this;
};
/*!
* (Modifier) Subtract from each element of this matrix the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
Matrix<TYPE>& operator-=(const TYPE k)
{
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] -= k;
return *this;
};
/*!
* (Modifier) Multiplies each element of this matrix by the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
Matrix<TYPE>& operator*=(const TYPE k)
{
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] *= k;
return *this;
};
/*!
* (Modifier) Divides each element of this matrix by the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
Matrix<TYPE>& operator/=(const TYPE k)
{
assert(k!=0);
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] /= k;
return *this;
};
/*!
* Matrix multiplication: calculates the cross product.
* \param m reference to the matrix to multiply by
* \return the matrix product
*/
Matrix<TYPE> operator*(const Matrix<TYPE> &m) const
{
assert(_columns == m._rows);
Matrix<TYPE> result(_rows, m._columns);
unsigned int i, j, k, p, q, r;
for (i=0, p=0, r=0; i<result._rows; i++, p+=_columns, r+=result._columns)
for (j=0; j<result._columns; j++)
{
ScalarType temp = 0;
for (k=0, q=0; k<_columns; k++, q+=m._columns)
temp+=(_data[p+k]*m._data[q+j]);
result._data[r+j] = temp;
}
return result;
};
/*!
* Matrix-Vector product. Computes the product of the matrix by the vector v.
* \param v reference to the vector to multiply by
* \return the matrix-vector product. This pointer must be deallocated by the caller
*/
ScalarType* operator*(const ScalarType v[]) const
{
ScalarType *result = new ScalarType[_rows];
memset(result, 0, _rows*sizeof(ScalarType));
unsigned int r, c, i;
for (r=0, i=0; r<_rows; r++)
for (c=0; c<_columns; c++, i++)
result[r] += _data[i]*v[c];
return result;
};
/*!
* Matrix multiplication: calculates the cross product.
* \param reference to the matrix to multiply by
* \return the matrix product
*/
template <int N,int M>
void DotProduct(Point<N,TYPE> &m,Point<M,TYPE> &result)
{
unsigned int i, j, p, r;
for (i=0, p=0, r=0; i<M; i++)
{ result[i]=0;
for (j=0; j<N; j++)
result[i]+=(*this)[i][j]*m[j];
}
};
/*!
* Matrix multiplication by a diagonal matrix
*/
Matrix<TYPE> operator*(const MatrixDiagBase &m) const
{
assert(_columns == _rows);
assert(_columns == m.Dimension());
int i,j;
Matrix<TYPE> result(_rows, _columns);
for (i=0; i<result._rows; i++)
for (j=0; j<result._columns; j++)
result[i][j]*= m[j];
return result;
};
/*!
* Matrix from outer product.
*/
template <int N, int M>
void OuterProduct(const Point<N,TYPE> a, const Point< M,TYPE> b)
{
assert(N == _rows);
assert(M == _columns);
Matrix<TYPE> result(_rows,_columns);
unsigned int i, j;
for (i=0; i<result._rows; i++)
for (j=0; j<result._columns; j++)
(*this)[i][j] = a[i] * b[j];
};
/*!
* Matrix-vector multiplication.
* \param reference to the 3-dimensional vector to multiply by
* \return the resulting vector
*/
Point3<TYPE> operator*(Point3<TYPE> &p) const
{
assert(_columns==3 && _rows==3);
vcg::Point3<TYPE> result;
result[0] = _data[0]*p[0]+_data[1]*p[1]+_data[2]*p[2];
result[1] = _data[3]*p[0]+_data[4]*p[1]+_data[5]*p[2];
result[2] = _data[6]*p[0]+_data[7]*p[1]+_data[8]*p[2];
return result;
};
/*!
* Scalar sum.
* \param k
* \return the resultant matrix
*/
Matrix<TYPE> operator+(const TYPE k)
{
Matrix<TYPE> result(_rows, _columns);
for (unsigned int i=0; i<_rows*_columns; i++)
result._data[i] = _data[i]+k;
return result;
};
/*!
* Scalar difference.
* \param k
* \return the resultant matrix
*/
Matrix<TYPE> operator-(const TYPE k)
{
Matrix<TYPE> result(_rows, _columns);
for (unsigned int i=0; i<_rows*_columns; i++)
result._data[i] = _data[i]-k;
return result;
};
/*!
* Negate all matrix elements
* \return the modified matrix
*/
Matrix<TYPE> operator-() const
{
Matrix<TYPE> result(_rows, _columns, _data);
for (unsigned int i=0; i<_columns*_rows; i++)
result._data[i] = -1*_data[i];
return result;
};
/*!
* Scalar multiplication.
* \param k value to multiply every member by
* \return the resultant matrix
*/
Matrix<TYPE> operator*(const TYPE k) const
{
Matrix<TYPE> result(_rows, _columns);
for (unsigned int i=0; i<_rows*_columns; i++)
result._data[i] = _data[i]*k;
return result;
};
/*!
* Scalar division.
* \param k value to divide every member by
* \return the resultant matrix
*/
Matrix<TYPE> operator/(const TYPE k)
{
Matrix<TYPE> result(_rows, _columns);
for (unsigned int i=0; i<_rows*_columns; i++)
result._data[i] = _data[i]/k;
return result;
};
/*!
* Set all the matrix elements to zero.
*/
void SetZero()
{
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] = ScalarType(0.0);
};
/*!
* Set the matrix to identity.
*/
void SetIdentity()
{
assert(_rows==_columns);
for (unsigned int i=0; i<_rows; i++)
for (unsigned int j=0; j<_columns; j++)
_data[i] = (i==j) ? ScalarType(1.0) : ScalarType(0.0f);
};
/*!
* Set the values of <I>j</I>-th column to v[j]
* \param j the column index
* \param v ...
*/
void SetColumn(const unsigned int j, TYPE* v)
{
assert(j>=0 && j<_columns);
unsigned int i, p;
for (i=0, p=j; i<_rows; i++, p+=_columns)
_data[p] = v[i];
};
/*!
* Set the elements of the <I>i</I>-th row to v[j]
* \param i the row index
* \param v ...
*/
void SetRow(const unsigned int i, TYPE* v)
{
assert(i>=0 && i<_rows);
unsigned int j, p;
for (j=0, p=i*_rows; j<_columns; j++, p++)
_data[p] = v[j];
};
/*!
* Set the diagonal elements <I>v<SUB>i,i</SUB></I> to v[i]
* \param v
*/
void SetDiagonal(TYPE *v)
{
assert(_rows == _columns);
for (unsigned int i=0, p=0; i<_rows; i++, p+=_rows)
_data[p+i] = v[i];
};
/*!
* Resize the current matrix.
* \param m the number of matrix rows.
* \param n the number of matrix columns.
*/
void Resize(const unsigned int m, const unsigned int n)
{
assert(m>=2);
assert(n>=2);
_rows = m;
_columns = n;
delete []_data;
_data = new ScalarType[m*n];
for (unsigned int i=0; i<m*n; i++)
_data[i] = 0;
};
/*!
* Matrix transposition operation: set the current matrix to its transpose
*/
void Transpose()
{
ScalarType *temp = new ScalarType[_rows*_columns];
unsigned int i, j, p, q;
for (i=0, p=0; i<_rows; i++, p+=_columns)
for (j=0, q=0; j<_columns; j++, q+=_rows)
temp[q+i] = _data[p+j];
std::swap(_columns, _rows);
std::swap(_data, temp);
delete []temp;
};
/*!
* Print all matrix elements
*/
void Dump()
{
unsigned int i, j, p;
for (i=0, p=0; i<_rows; i++, p+=_columns)
{
printf("[\t");
for (j=0; j<_columns; j++)
printf("%f\t", _data[p+j]);
printf("]\n");
}
printf("\n");
};
protected:
/// the number of matrix rows
unsigned int _rows;
/// the number of matrix rows
unsigned int _columns;
/// the matrix elements
ScalarType *_data;
};
typedef vcg::ndim::Matrix<double> MatrixMNd;
typedef vcg::ndim::Matrix<float> MatrixMNf;
/*! @} */
template <class MatrixType>
void Invert(MatrixType & m){
typedef typename MatrixType::ScalarType X;
X *diag;
diag = new X [m.ColumnsNumber()];
MatrixType res(m.RowsNumber(),m.ColumnsNumber());
vcg::SingularValueDecomposition<MatrixType > (m,&diag[0],res,LeaveUnsorted,50 );
m.Transpose();
// prodotto per la diagonale
unsigned int i,j;
for (i=0; i<m.RowsNumber(); i++)
for (j=0; j<m.ColumnsNumber(); j++)
res[i][j]/= diag[j];
m = res *m;
}
class MatrixDiagBase{public:
virtual const int & Dimension()const =0;
virtual const float operator[](const int & i) const = 0;
};
template<int N, class S>
class MatrixDiag: public Point<N,S>, public MatrixDiagBase{
public:
const int & Dimension() const {return N;}
MatrixDiag(const Point<N,S>&p):Point<N,S>(p){}
};
/*!
* This class represent a generic <I>m</I><EFBFBD><I>n</I> matrix. The class is templated over the scalar type field.
* @param Scalar (Templete Parameter) Specifies the ScalarType field.
*/
template<class _Scalar>
class Matrix : public Eigen::Matrix<_Scalar,Eigen::Dynamic,Eigen::Dynamic> // FIXME col or row major ?
{
typedef Eigen::Matrix<_Scalar,Eigen::Dynamic,Eigen::Dynamic> _Base;
public:
_EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix,_Base);
typedef _Scalar ScalarType;
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Matrix)
/*!
* Default constructor
* All the elements are initialized to zero.
* \param m the number of matrix rows
* \param n the number of matrix columns
*/
Matrix(unsigned int m, unsigned int n)
: Base(m,n)
{
memset(Base::data(), 0, m*n*sizeof(Scalar));
}
}; // end of namespace
/*!
* Constructor
* The matrix elements are initialized with the values of the elements in \i values.
* \param m the number of matrix rows
* \param n the number of matrix columns
* \param values the values of the matrix elements
*/
Matrix(unsigned int m, unsigned int n, Scalar *values)
: Base(m.n)
{
*this = Eigen::Map<Eigen::Matrix<Scalar,Dynamic,Dynamic,RowMajor> >(values, m , n);
}
/*!
* Empty constructor
* Just create the object
*/
Matrix() : Base() {}
/*!
* Copy constructor
* The matrix elements are initialized with the value of the corresponding element in \i m
* \param m the matrix to be copied
*/
Matrix(const Matrix<Scalar> &m) : Base(m) {}
template<typename OtherDerived>
Matrix(const Eigen::MatrixBase<OtherDerived> &m) : Base(m) {}
/*!
* Default destructor
*/
~Matrix() {}
/*!
* \deprecated use *this.row(i)
* Subscript operator:
* \param i the index of the row
* \return a reference to the <I>i</I>-th matrix row
*/
inline typename Base::RowXpr operator[](const unsigned int i)
{ return Base::row(i); }
/*!
* \deprecated use *this.row(i)
* Const subscript operator
* \param i the index of the row
* \return a reference to the <I>i</I>-th matrix row
*/
inline const typename Base::RowXpr operator[](const unsigned int i) const
{ return Base::row(i); }
/*!
* Matrix multiplication: calculates the cross product.
* \param reference to the matrix to multiply by
* \return the matrix product
*/
/*template <int N,int M>
void DotProduct(Point<N,Scalar> &m,Point<M,Scalar> &result)
{
unsigned int i, j, p, r;
for (i=0, p=0, r=0; i<M; i++)
{ result[i]=0;
for (j=0; j<N; j++)
result[i]+=(*this)[i][j]*m[j];
}
};*/
/*!
* \deprecated use *this.resize()
* Resize the current matrix.
* \param m the number of matrix rows.
* \param n the number of matrix columns.
*/
void Resize(const unsigned int m, const unsigned int n)
{
assert(m>=2);
assert(n>=2);
Base::resize(m,n);
memset(Base::data(), 0, m*n*sizeof(Scalar));
};
// EIGEN_DEPRECATED void Transpose()
// {
// assert(0 && "dangerous use of deprecated Transpose function, please use: m = m.transpose();");
// }
};
typedef vcg::ndim::Matrix<double> MatrixMNd;
typedef vcg::ndim::Matrix<float> MatrixMNf;
/*! @} */
template <class MatrixType>
void Invert(MatrixType & m)
{
m = m.inverse();
}
}
} // end of namespace
#endif

View File

@ -19,622 +19,212 @@
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.18 2007/04/19 14:30:26 pietroni
added RotationMatrix method to calculate rotation matrix along an axis
Revision 1.17 2007/04/07 23:06:47 pietroni
Added function RotationMatrix
Revision 1.16 2007/01/29 00:20:25 pietroni
-Used scalar type passed as template argument istead of double to prevent warnings.. in Rotate function
Revision 1.15 2006/09/25 23:05:29 ganovelli
added constructor from matrix44 excluding a row and colum
Revision 1.14 2006/06/22 08:00:05 ganovelli
bug in operator + with MatrixxDig
Revision 1.13 2006/01/20 16:41:44 pietroni
added operators:
operator -= ( const Matrix33Diag<S> &p )
Matrix33 operator - ( const Matrix33Diag<S> &p )
Matrix33 operator + ( const Matrix33 &m )
Matrix33 operator + ( const Matrix33Diag<S> &p )
Revision 1.12 2005/11/14 10:28:25 cignoni
Changed Invert -> FastInvert for the function based on the maple expansion
Revision 1.11 2005/10/13 15:45:23 ponchio
Changed a Zero in SetZero in WeightedCrossCovariance() (again)
Revision 1.10 2005/10/05 17:06:12 pietroni
corrected sintax error on singular value decomposition
Revision 1.9 2005/09/29 09:53:58 ganovelli
added inverse by SVD
Revision 1.8 2005/06/10 14:51:54 cignoni
Changed a Zero in SetZero in WeightedCrossCovariance()
Revision 1.7 2005/06/10 11:46:49 pietroni
Added Norm Function
Revision 1.6 2005/06/07 14:29:56 ganovelli
changed from Matrix33Ide to MatrixeeDiag
Revision 1.5 2005/05/23 15:05:26 ganovelli
Matrix33Diag Added: it implements diagonal matrix. Added only operator += in Matrix33
Revision 1.4 2005/04/11 14:11:22 pietroni
changed swap to math::Swap in Traspose Function
Revision 1.3 2004/10/18 15:03:02 fiorin
Updated interface: all Matrix classes have now the same interface
Revision 1.2 2004/07/13 06:48:26 cignoni
removed uppercase references in include
Revision 1.1 2004/05/28 13:09:05 ganovelli
created
Revision 1.1 2004/05/28 13:00:39 ganovelli
created
****************************************************************************/
// #ifndef VCG_USE_EIGEN
#include "deprecated_matrix33.h"
// #endif
#ifndef __VCGLIB_MATRIX33_H
#define __VCGLIB_MATRIX33_H
#include <stdio.h>
#include <vcg/math/lin_algebra.h>
#include <vcg/math/matrix44.h>
#include <vcg/space/point3.h>
#include <vector>
#include "eigen.h"
namespace vcg{
template<class Scalar> class Matrix33;
}
namespace Eigen{
template<typename Scalar>
struct ei_traits<vcg::Matrix33<Scalar> > : ei_traits<Eigen::Matrix<Scalar,3,3,RowMajor> > {};
}
namespace vcg {
template <class S>
class Matrix33Diag:public Point3<S>{
public:
/** @name Matrix33
Class Matrix33Diag.
This is the class for definition of a diagonal matrix 3x3.
@param S (Templete Parameter) Specifies the ScalarType field.
*/
Matrix33Diag(const S & p0,const S & p1,const S & p2):Point3<S>(p0,p1,p2){};
Matrix33Diag(const Point3<S>&p ):Point3<S>(p){};
};
template<class S>
/** @name Matrix33
Class Matrix33.
This is the class for definition of a matrix 3x3.
@param S (Templete Parameter) Specifies the ScalarType field.
*/
class Matrix33
template<class _Scalar>
class Matrix33 : public Eigen::Matrix<_Scalar,3,3,RowMajor> // FIXME col or row major ?
{
typedef Eigen::Matrix<_Scalar,Eigen::Dynamic,Eigen::Dynamic> _Base;
public:
typedef S ScalarType;
_EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix,_Base);
typedef _Scalar ScalarType;
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Matrix)
/// Default constructor
inline Matrix33() {}
inline Matrix33() : Base() {}
/// Copy constructor
Matrix33( const Matrix33 & m )
{
for(int i=0;i<9;++i)
a[i] = m.a[i];
}
Matrix33(const Matrix33& m ) : Base(m) {}
/// create from array
Matrix33( const S * v )
{
for(int i=0;i<9;++i) a[i] = v[i];
}
/// create from a \b row-major array
Matrix33(const Scalar * v ) : Base(Map<Matrix<Scalar,3,3,RowMajor>(v)) {}
/// create from Matrix44 excluding row and column k
Matrix33 (const Matrix44<S> & m, const int & k)
{
int i,j, r=0, c=0;
for(i = 0; i< 4;++i)if(i!=k){c=0;
for(j=0; j < 4;++j)if(j!=k)
{ (*this)[r][c] = m[i][j]; ++c;}
++r;
}
}
Matrix33(const Matrix44<S> & m, const int & k) : Base(m.minor(k,k)) {}
/// Number of columns
inline unsigned int ColumnsNumber() const
{
return 3;
};
/// Number of rows
inline unsigned int RowsNumber() const
{
return 3;
};
/// Assignment operator
Matrix33 & operator = ( const Matrix33 & m )
{
for(int i=0;i<9;++i)
a[i] = m.a[i];
return *this;
}
/// Operatore di indicizzazione
inline S * operator [] ( const int i )
{
return a+i*3;
}
/// Operatore const di indicizzazione
inline const S * operator [] ( const int i ) const
{
return a+i*3;
}
/// Modificatore somma per matrici 3x3
Matrix33 & operator += ( const Matrix33 &m )
{
for(int i=0;i<9;++i)
a[i] += m.a[i];
return *this;
}
/// Modificatore somma per matrici 3x3
Matrix33 & operator += ( const Matrix33Diag<S> &p )
{
a[0] += p[0];
a[4] += p[1];
a[8] += p[2];
return *this;
}
/// Modificatore sottrazione per matrici 3x3
Matrix33 & operator -= ( const Matrix33 &m )
{
for(int i=0;i<9;++i)
a[i] -= m.a[i];
return *this;
}
/// Modificatore somma per matrici 3x3
Matrix33 & operator -= ( const Matrix33Diag<S> &p )
{
a[0] -= p[0];
a[4] -= p[1];
a[8] -= p[2];
return *this;
}
/// Modificatore divisione per scalare
Matrix33 & operator /= ( const S &s )
{
for(int i=0;i<9;++i)
a[i] /= s;
return *this;
}
/// Modificatore prodotto per matrice
Matrix33 operator * ( const Matrix33< S> & t ) const
{
Matrix33<S> r;
int i,j;
for(i=0;i<3;++i)
for(j=0;j<3;++j)
r[i][j] = (*this)[i][0]*t[0][j] + (*this)[i][1]*t[1][j] + (*this)[i][2]*t[2][j];
return r;
}
/// Modificatore prodotto per matrice
void operator *=( const Matrix33< S> & t )
{
int i,j;
for(i=0;i<3;++i)
for(j=0;j<3;++j)
(*this)[i][j] = (*this)[i][0]*t[0][j] + (*this)[i][1]*t[1][j] + (*this)[i][2]*t[2][j];
}
/// Dot product with a diagonal matrix
Matrix33 operator * ( const Matrix33Diag< S> & t ) const
{
Matrix33<S> r;
int i,j;
for(i=0;i<3;++i)
for(j=0;j<3;++j)
r[i][j] = (*this)[i][j]*t[j];
return r;
}
/// Dot product modifier with a diagonal matrix
void operator *=( const Matrix33Diag< S> & t )
{
int i,j;
for(i=0;i<3;++i)
for(j=0;j<3;++j)
(*this)[i][j] = (*this)[i][j]*t[j];
}
/// Modificatore prodotto per costante
Matrix33 & operator *= ( const S t )
{
for(int i=0;i<9;++i)
a[i] *= t;
return *this;
}
/// Operatore prodotto per costante
Matrix33 operator * ( const S t ) const
{
Matrix33<S> r;
for(int i=0;i<9;++i)
r.a[i] = a[i]* t;
return r;
}
/// Operatore sottrazione per matrici 3x3
Matrix33 operator - ( const Matrix33 &m ) const
{
Matrix33<S> r;
for(int i=0;i<9;++i)
r.a[i] = a[i] - m.a[i];
return r;
}
/// Operatore sottrazione di matrici 3x3 con matrici diagonali
Matrix33 operator - ( const Matrix33Diag<S> &p ) const
{
Matrix33<S> r=a;
r[0][0] -= p[0];
r[1][1] -= p[1];
r[2][2] -= p[2];
return r;
}
/// Operatore sottrazione per matrici 3x3
Matrix33 operator + ( const Matrix33 &m ) const
{
Matrix33<S> r;
for(int i=0;i<9;++i)
r.a[i] = a[i] + m.a[i];
return r;
}
/// Operatore addizione di matrici 3x3 con matrici diagonali
Matrix33 operator + ( const Matrix33Diag<S> &p ) const
{
Matrix33<S> r=(*this);
r[0][0] += p[0];
r[1][1] += p[1];
r[2][2] += p[2];
return r;
}
/** Operatore per il prodotto matrice-vettore.
@param v A point in $R^{3}$
@return Il vettore risultante in $R^{3}$
/*!
* \deprecated use *this.row(i)
*/
Point3<S> operator * ( const Point3<S> & v ) const
{
Point3<S> t;
inline typename Base::RowXpr operator[](const unsigned int i)
{ return Base::row(i); }
t[0] = a[0]*v[0] + a[1]*v[1] + a[2]*v[2];
t[1] = a[3]*v[0] + a[4]*v[1] + a[5]*v[2];
t[2] = a[6]*v[0] + a[7]*v[1] + a[8]*v[2];
return t;
}
/*!
* \deprecated use *this.row(i)
*/
inline const typename Base::RowXpr operator[](const unsigned int i) const
{ return Base::row(i); }
void OuterProduct(Point3<S> const &p0, Point3<S> const &p1) {
Point3<S> row;
row = p1*p0[0];
a[0] = row[0];a[1] = row[1];a[2] = row[2];
row = p1*p0[1];
a[3] = row[0]; a[4] = row[1]; a[5] = row[2];
row = p1*p0[2];
a[6] = row[0];a[7] = row[1];a[8] = row[2];
}
Matrix33 & SetZero() {
for(int i=0;i<9;++i) a[i] =0;
return (*this);
}
Matrix33 & SetIdentity() {
for(int i=0;i<9;++i) a[i] =0;
a[0]=a[4]=a[8]=1.0;
return (*this);
}
/** \deprecated */
Matrix33 & SetRotateRad(S angle, const Point3<S> & axis )
{
S c = cos(angle);
S s = sin(angle);
S q = 1-c;
Point3<S> t = axis;
t.Normalize();
a[0] = t[0]*t[0]*q + c;
a[1] = t[0]*t[1]*q - t[2]*s;
a[2] = t[0]*t[2]*q + t[1]*s;
a[3] = t[1]*t[0]*q + t[2]*s;
a[4] = t[1]*t[1]*q + c;
a[5] = t[1]*t[2]*q - t[0]*s;
a[6] = t[2]*t[0]*q -t[1]*s;
a[7] = t[2]*t[1]*q +t[0]*s;
a[8] = t[2]*t[2]*q +c;
*this = Eigen::AngleAxis<Scalar>(angle,axis).toRotationMatrix();
return (*this);
}
/** \deprecated */
Matrix33 & SetRotateDeg(S angle, const Point3<S> & axis ){
return SetRotateRad(math::ToRad(angle),axis);
}
/// Funzione per eseguire la trasposta della matrice
Matrix33 & Transpose()
{
math::Swap(a[1],a[3]);
math::Swap(a[2],a[6]);
math::Swap(a[5],a[7]);
return *this;
}
/// Funzione per costruire una matrice diagonale dati i tre elem.
Matrix33 & SetDiagonal(S *v)
{int i,j;
for(i=0;i<3;i++)
for(j=0;j<3;j++)
if(i==j) (*this)[i][j] = v[i];
else (*this)[i][j] = 0;
return *this;
}
/// Assegna l'n-simo vettore colonna
void SetColumn(const int n, S* v){
assert( (n>=0) && (n<3) );
a[n]=v[0]; a[n+3]=v[1]; a[n+6]=v[2];
};
/// Assegna l'n-simo vettore riga
void SetRow(const int n, S* v){
assert( (n>=0) && (n<3) );
int m=n*3;
a[m]=v[0]; a[m+1]=v[1]; a[m+2]=v[2];
};
/// Assegna l'n-simo vettore colonna
void SetColumn(const int n, const Point3<S> v){
assert( (n>=0) && (n<3) );
a[n]=v[0]; a[n+3]=v[1]; a[n+6]=v[2];
};
/// Assegna l'n-simo vettore riga
void SetRow(const int n, const Point3<S> v){
assert( (n>=0) && (n<3) );
int m=n*3;
a[m]=v[0]; a[m+1]=v[1]; a[m+2]=v[2];
};
/// Restituisce l'n-simo vettore colonna
Point3<S> GetColumn(const int n) const {
assert( (n>=0) && (n<3) );
Point3<S> t;
t[0]=a[n]; t[1]=a[n+3]; t[2]=a[n+6];
return t;
};
/// Restituisce l'n-simo vettore riga
Point3<S> GetRow(const int n) const {
assert( (n>=0) && (n<3) );
Point3<S> t;
int m=n*3;
t[0]=a[m]; t[1]=a[m+1]; t[2]=a[m+2];
return t;
};
/// Funzione per il calcolo del determinante
S Determinant() const
{
return a[0]*(a[4]*a[8]-a[5]*a[7]) -
a[1]*(a[3]*a[8]-a[5]*a[6]) +
a[2]*(a[3]*a[7]-a[4]*a[6]) ;
}
// Warning, this Inversion code can be HIGHLY NUMERICALLY UNSTABLE!
// In most case you are advised to use the Invert() method based on SVD decomposition.
Matrix33 & FastInvert()
{
// Maple produsse:
S t4 = a[0]*a[4];
S t6 = a[0]*a[5];
S t8 = a[1]*a[3];
S t10 = a[2]*a[3];
S t12 = a[1]*a[6];
S t14 = a[2]*a[6];
S t17 = 1/(t4*a[8]-t6*a[7]-t8*a[8]+t10*a[7]+t12*a[5]-t14*a[4]);
S a0 = a[0];
S a1 = a[1];
S a3 = a[3];
S a4 = a[4];
a[0] = (a[4]*a[8]-a[5]*a[7])*t17;
a[1] = -(a[1]*a[8]-a[2]*a[7])*t17;
a[2] = (a1 *a[5]-a[2]*a[4])*t17;
a[3] = -(a[3]*a[8]-a[5]*a[6])*t17;
a[4] = (a0 *a[8]-t14 )*t17;
a[5] = -(t6 - t10)*t17;
a[6] = (a3 *a[7]-a[4]*a[6])*t17;
a[7] = -(a[0]*a[7]-t12)*t17;
a[8] = (t4-t8)*t17;
return *this;
}
/** \deprecated */
Matrix33 & FastInvert() { return *this = inverse(); }
void show(FILE * fp)
{
for(int i=0;i<3;++i)
printf("| %g \t%g \t%g |\n",a[3*i+0],a[3*i+1],a[3*i+2]);
printf("| %g \t%g \t%g |\n",coeff(i,0),coeff(i,1),coeff(i,2));
}
// return the Trace of the matrix i.e. the sum of the diagonal elements
S Trace() const
{
return a[0]+a[4]+a[8];
}
/*
compute the matrix generated by the product of a * b^T
*/
void ExternalProduct(const Point3<S> &a, const Point3<S> &b)
{
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
(*this)[i][j] = a[i]*b[j];
}
/* Compute the Frobenius Norm of the Matrix
*/
ScalarType Norm()
{
ScalarType SQsum=0;
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
SQsum += a[i]*a[i];
return (math::Sqrt(SQsum));
}
/*
It compute the covariance matrix of a set of 3d points. Returns the barycenter
*/
template <class STLPOINTCONTAINER >
void Covariance(const STLPOINTCONTAINER &points, Point3<S> &bp) {
assert(!points.empty());
typedef typename STLPOINTCONTAINER::const_iterator PointIte;
// first cycle: compute the barycenter
bp.Zero();
for( PointIte pi = points.begin(); pi != points.end(); ++pi) bp+= (*pi);
bp/=points.size();
// second cycle: compute the covariance matrix
this->SetZero();
vcg::Matrix33<ScalarType> A;
for( PointIte pi = points.begin(); pi != points.end(); ++pi) {
Point3<S> p = (*pi)-bp;
A.OuterProduct(p,p);
(*this)+= A;
/*
compute the matrix generated by the product of a * b^T
*/
void ExternalProduct(const Point3<S> &a, const Point3<S> &b)
{
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
(*this)[i][j] = a[i]*b[j];
}
}
/*
It compute the cross covariance matrix of two set of 3d points P and X;
it returns also the barycenters of P and X.
fonte:
Besl, McKay
A method for registration o f 3d Shapes
IEEE TPAMI Vol 14, No 2 1992
*/
template <class STLPOINTCONTAINER >
void CrossCovariance(const STLPOINTCONTAINER &P, const STLPOINTCONTAINER &X,
Point3<S> &bp, Point3<S> &bx)
{
SetZero();
assert(P.size()==X.size());
bx.Zero();
bp.Zero();
Matrix33<S> tmp;
typename std::vector <Point3<S> >::const_iterator pi,xi;
for(pi=P.begin(),xi=X.begin();pi!=P.end();++pi,++xi){
bp+=*pi;
bx+=*xi;
tmp.ExternalProduct(*pi,*xi);
(*this)+=tmp;
/* Compute the Frobenius Norm of the Matrix
*/
ScalarType Norm()
{
// FIXME looks like there is a bug: j is not used !!!
ScalarType SQsum=0;
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
SQsum += a[i]*a[i];
return (math::Sqrt(SQsum));
}
bp/=P.size();
bx/=X.size();
(*this)/=P.size();
tmp.ExternalProduct(bp,bx);
(*this)-=tmp;
}
template <class STLPOINTCONTAINER, class STLREALCONTAINER>
void WeightedCrossCovariance(const STLREALCONTAINER & weights,
const STLPOINTCONTAINER &P,
const STLPOINTCONTAINER &X,
Point3<S> &bp,
Point3<S> &bx)
{
SetZero();
assert(P.size()==X.size());
bx.Zero();
bp.Zero();
Matrix33<S> tmp;
typename std::vector <Point3<S> >::const_iterator pi,xi;
typename STLREALCONTAINER::const_iterator pw;
for(pi=P.begin(),xi=X.begin();pi!=P.end();++pi,++xi){
bp+=(*pi);
bx+=(*xi);
/**
It computes the covariance matrix of a set of 3d points. Returns the barycenter
*/
// FIXME should be outside Matrix
template <class STLPOINTCONTAINER >
void Covariance(const STLPOINTCONTAINER &points, Point3<S> &bp) {
assert(!points.empty());
typedef typename STLPOINTCONTAINER::const_iterator PointIte;
// first cycle: compute the barycenter
bp.setZero();
for( PointIte pi = points.begin(); pi != points.end(); ++pi) bp+= (*pi);
bp/=points.size();
// second cycle: compute the covariance matrix
this->setZero();
vcg::Matrix33<ScalarType> A;
for( PointIte pi = points.begin(); pi != points.end(); ++pi) {
Point3<S> p = (*pi)-bp;
A.OuterProduct(p,p);
(*this)+= A;
}
}
bp/=P.size();
bx/=X.size();
for(pi=P.begin(),xi=X.begin(),pw = weights.begin();pi!=P.end();++pi,++xi,++pw){
tmp.ExternalProduct(((*pi)-(bp)),((*xi)-(bp)));
(*this)+=tmp*(*pw);
/**
It computes the cross covariance matrix of two set of 3d points P and X;
it returns also the barycenters of P and X.
fonte:
Besl, McKay
A method for registration o f 3d Shapes
IEEE TPAMI Vol 14, No 2 1992
*/
// FIXME should be outside Matrix
template <class STLPOINTCONTAINER >
void CrossCovariance(const STLPOINTCONTAINER &P, const STLPOINTCONTAINER &X,
Point3<S> &bp, Point3<S> &bx)
{
setZero();
assert(P.size()==X.size());
bx.setZero();
bp.setZero();
Matrix33<S> tmp;
typename std::vector <Point3<S> >::const_iterator pi,xi;
for(pi=P.begin(),xi=X.begin();pi!=P.end();++pi,++xi){
bp+=*pi;
bx+=*xi;
tmp.ExternalProduct(*pi,*xi);
(*this)+=tmp;
}
bp/=P.size();
bx/=X.size();
(*this)/=P.size();
tmp.ExternalProduct(bp,bx);
(*this)-=tmp;
}
}
private:
S a[9];
template <class STLPOINTCONTAINER, class STLREALCONTAINER>
void WeightedCrossCovariance(const STLREALCONTAINER & weights,
const STLPOINTCONTAINER &P,
const STLPOINTCONTAINER &X,
Point3<S> &bp,
Point3<S> &bx)
{
SetZero();
assert(P.size()==X.size());
bx.SetZero();
bp.SetZero();
Matrix33<S> tmp;
typename std::vector <Point3<S> >::const_iterator pi,xi;
typename STLREALCONTAINER::const_iterator pw;
for(pi=P.begin(),xi=X.begin();pi!=P.end();++pi,++xi){
bp+=(*pi);
bx+=(*xi);
}
bp/=P.size();
bx/=X.size();
for(pi=P.begin(),xi=X.begin(),pw = weights.begin();pi!=P.end();++pi,++xi,++pw){
tmp.ExternalProduct(((*pi)-(bp)),((*xi)-(bp)));
(*this)+=tmp*(*pw);
}
}
};
template <class S>
void Invert(Matrix33<S> &m)
{
Matrix33<S> v;
Point3<typename Matrix33<S>::ScalarType> e;
SingularValueDecomposition(m,&e[0],v);
e[0]=1/e[0];e[1]=1/e[1];e[2]=1/e[2];
m.Transpose();
m = v * Matrix33Diag<S>(e) * m;
}
void Invert(Matrix33<S> &m) { m = m.lu().inverse(); }
template <class S>
Matrix33<S> Inverse(const Matrix33<S>&m)
{
Matrix33<S> v,m_copy=m;
Point3<S> e;
SingularValueDecomposition(m_copy,&e[0],v);
m_copy.Transpose();
e[0]=1/e[0];e[1]=1/e[1];e[2]=1/e[2];
return v * Matrix33Diag<S>(e) * m_copy;
}
Matrix33<S> Inverse(const Matrix33<S>&m) { return m.lu().inverse(); }
///given 2 vector centered into origin calculate the rotation matrix from first to the second
template <class S>

View File

@ -20,94 +20,28 @@
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.34 2007/07/12 06:42:01 cignoni
added the missing static Construct() member
Revision 1.33 2007/07/03 16:06:48 corsini
add DCM to Euler Angles conversion
Revision 1.32 2007/03/08 14:39:27 corsini
final fix to euler angles transformation
Revision 1.31 2007/02/06 09:57:40 corsini
fix euler angles computation
Revision 1.30 2007/02/05 14:16:33 corsini
add from euler angles to rotation matrix conversion
Revision 1.29 2005/12/02 09:46:49 croccia
Corrected bug in == and != Matrix44 operators
Revision 1.28 2005/06/28 17:42:47 ganovelli
added Matrix44Diag
Revision 1.27 2005/06/17 05:28:47 cignoni
Completed Shear Matrix code and comments,
Added use of swap inside Transpose
Added more complete comments on the usage of Decompose
Revision 1.26 2005/06/10 15:04:12 cignoni
Added Various missing functions: SetShearXY, SetShearXZ, SetShearYZ, SetScale for point3 and Decompose
Completed *=(scalar); made uniform GetRow and GetColumn
Revision 1.25 2005/04/14 11:35:09 ponchio
*** empty log message ***
Revision 1.24 2005/03/18 00:14:39 cignoni
removed small gcc compiling issues
Revision 1.23 2005/03/15 11:40:56 cignoni
Added operator*=( std::vector<PointType> ...) to apply a matrix to a vector of vertexes (replacement of the old style mesh.Apply(tr).
Revision 1.22 2004/12/15 18:45:50 tommyfranken
*** empty log message ***
Revision 1.21 2004/10/22 14:41:30 ponchio
return in operator+ added.
Revision 1.20 2004/10/18 15:03:14 fiorin
Updated interface: all Matrix classes have now the same interface
Revision 1.19 2004/10/07 14:23:57 ganovelli
added function to take rows and comlumns. Added toMatrix and fromMatrix to comply
RotationTYpe prototype in Similarity.h
Revision 1.18 2004/05/28 13:01:50 ganovelli
changed scalar to ScalarType
Revision 1.17 2004/05/26 15:09:32 cignoni
better comments in set rotate
Revision 1.16 2004/05/07 10:05:50 cignoni
Corrected abuse of for index variable scope
Revision 1.15 2004/05/04 23:19:41 cignoni
Clarified initial comment, removed vector*matrix operator (confusing!)
Corrected translate and Rotate, removed gl stuff.
Revision 1.14 2004/05/04 02:34:03 ganovelli
wrong use of operator [] corrected
Revision 1.13 2004/04/07 10:45:54 cignoni
Added: [i][j] access, V() for the raw float values, constructor from T[16]
Revision 1.12 2004/03/25 14:57:49 ponchio
****************************************************************************/
// #ifndef VCG_USE_EIGEN
#include "deprecated_matrix44.h"
// #endif
#ifndef __VCGLIB_MATRIX44
#define __VCGLIB_MATRIX44
#include <memory.h>
#include <vcg/math/base.h>
#include "eigen.h"
#include <vcg/space/point3.h>
#include <vcg/space/point4.h>
#include <memory.h>
#include <vector>
namespace vcg{
template<class Scalar> class Matrix44;
}
namespace Eigen{
template<typename Scalar>
struct ei_traits<vcg::Matrix44<Scalar> > : ei_traits<Eigen::Matrix<Scalar,4,4,RowMajor> > {};
}
namespace vcg {
@ -145,110 +79,49 @@ for 'column' vectors.
*/
template <class S>
class Matrix44Diag:public Point4<S>{
/** This class represents a 4x4 matrix. T is the kind of element in the matrix.
*/
template<typename _Scalar>
class Matrix44 : public Eigen::Matrix<_Scalar,4,4,RowMajor> // FIXME col or row major !
{
typedef Eigen::Matrix<_Scalar,Eigen::Dynamic,Eigen::Dynamic> _Base;
public:
/** @name Matrix33
Class Matrix33Diag.
This is the class for definition of a diagonal matrix 4x4.
@param S (Templete Parameter) Specifies the ScalarType field.
*/
Matrix44Diag(const S & p0,const S & p1,const S & p2,const S & p3):Point4<S>(p0,p1,p2,p3){};
Matrix44Diag( const Point4<S> & p ):Point4<S>(p){};
};
_EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix,_Base);
typedef _Scalar ScalarType;
/** This class represent a 4x4 matrix. T is the kind of element in the matrix.
*/
template <class T> class Matrix44 {
protected:
T _a[16];
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Matrix)
public:
typedef T ScalarType;
///@{
/** $name Constructors
/** \name Constructors
* No automatic casting and default constructor is empty
*/
Matrix44() {};
~Matrix44() {};
Matrix44(const Matrix44 &m);
Matrix44(const T v[]);
Matrix44() : Base() {}
~Matrix44() {}
Matrix44(const Matrix44 &m) : Base(m) {}
Matrix33(const Scalar * v ) : Base(Map<Matrix<Scalar,4,4,RowMajor>(v)) {}
/// Number of columns
inline unsigned int ColumnsNumber() const
{
return 4;
};
/// Number of rows
inline unsigned int RowsNumber() const
{
return 4;
};
T &ElementAt(const int row, const int col);
T ElementAt(const int row, const int col) const;
//T &operator[](const int i);
//const T &operator[](const int i) const;
T *V();
const T *V() const ;
T *operator[](const int i);
const T *operator[](const int i) const;
Scalar *V() { return Base::data(); }
const Scalar *V() const { return Base::data(); }
// return a copy of the i-th column
Point4<T> GetColumn4(const int& i)const{
assert(i>=0 && i<4);
return Point4<T>(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i),ElementAt(3,i));
//return Point4<T>(_a[i],_a[i+4],_a[i+8],_a[i+12]);
}
typename Base::ColXpr GetColumn4(const int& i) const { return col(i); }
Block<Matrix,3,1> GetColumn3(const int& i) const { return block<3,1>(0,i); }
Point3<T> GetColumn3(const int& i)const{
assert(i>=0 && i<4);
return Point3<T>(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i));
}
Point4<T> GetRow4(const int& i)const{
assert(i>=0 && i<4);
return Point4<T>(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2),ElementAt(i,3));
// return *((Point4<T>*)(&_a[i<<2])); alternativa forse + efficiente
}
Point3<T> GetRow3(const int& i)const{
assert(i>=0 && i<4);
return Point3<T>(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2));
// return *((Point4<T>*)(&_a[i<<2])); alternativa forse + efficiente
}
Matrix44 operator+(const Matrix44 &m) const;
Matrix44 operator-(const Matrix44 &m) const;
Matrix44 operator*(const Matrix44 &m) const;
Matrix44 operator*(const Matrix44Diag<T> &m) const;
Point4<T> operator*(const Point4<T> &v) const;
bool operator==(const Matrix44 &m) const;
bool operator!= (const Matrix44 &m) const;
Matrix44 operator-() const;
Matrix44 operator*(const T k) const;
void operator+=(const Matrix44 &m);
void operator-=(const Matrix44 &m);
void operator*=( const Matrix44 & m );
void operator*=( const T k );
typename Base::RowXpr GetRow4(const int& i) const { return col(i); }
Block<Matrix,1,3> GetRow3(const int& i) const { return block<1,3>(i,0); }
template <class Matrix44Type>
void ToMatrix(Matrix44Type & m) const {for(int i = 0; i < 16; i++) m.V()[i]=V()[i];}
void ToMatrix(Matrix44Type & m) const { m = (*this).cast<typename Matrix44Type::Scalar>(); }
void ToEulerAngles(T &alpha, T &beta, T &gamma);
void ToEulerAngles(Scalar &alpha, Scalar &beta, Scalar &gamma);
template <class Matrix44Type>
void FromMatrix(const Matrix44Type & m){for(int i = 0; i < 16; i++) V()[i]=m.V()[i];}
void FromMatrix(const Matrix44Type & m) { for(int i = 0; i < 16; i++) data()[i] = m.data()[i]; }
void FromEulerAngles(T alpha, T beta, T gamma);
void SetZero();
void SetIdentity();
void SetDiagonal(const T k);
Matrix44 &SetScale(const T sx, const T sy, const T sz);
Matrix44 &SetScale(const Point3<T> &t);
@ -274,12 +147,6 @@ public:
Matrix44<T> tmp; tmp.FromMatrix(b);
return tmp;
}
static inline const Matrix44 &Identity( )
{
static Matrix44<T> tmp; tmp.SetIdentity();
return tmp;
}
};
@ -289,7 +156,7 @@ public:
template <class T> class LinearSolve: public Matrix44<T> {
public:
LinearSolve(const Matrix44<T> &m);
Point4<T> Solve(const Point4<T> &b); // solve A · x = b
Point4<T> Solve(const Point4<T> &b); // solve A <EFBFBD> x = b
///If you need to solve some equation you can use this function instead of Matrix44 one for speed.
T Determinant() const;
protected:

View File

@ -62,7 +62,11 @@ void RotationalPartByPolarDecomposition( const vcg::Matrix33<S> & m, vcg::Matrix
e[0]=math::Sqrt(e[0]);
e[1]=math::Sqrt(e[1]);
e[2]=math::Sqrt(e[2]);
#ifdef VCG_USE_EIGEN
tmp = tmp*e.asDiagonal()*res;
#else
tmp = tmp*Matrix33Diag<S>(e)*res;
#endif
bool s1 = SingularValueDecomposition<vcg::Matrix33<S> >(tmp,&e[0],res);
tmp.Transpose();
@ -70,7 +74,11 @@ void RotationalPartByPolarDecomposition( const vcg::Matrix33<S> & m, vcg::Matrix
e[1]=1/e[1];
e[2]=1/e[2];
#ifdef VCG_USE_EIGEN
tmp = res*e.asDiagonal()*tmp;
#else
tmp = res*Matrix33Diag<S>(e)*tmp;
#endif
r = m*tmp;
}

View File

@ -311,8 +311,8 @@ public:
/// sets a point to Zero
inline void Zero()
{
_min.Zero();
_max.Zero();
_min.SetZero();
_max.SetZero();
}
inline Box operator + ( Box const & p) const
{

View File

@ -52,7 +52,7 @@ Point3<S> PlaneFittingPoints( std::vector< Point3<S> > & samples,Plane3<S> &p){
Matrix44<S> m;m.SetZero();
typename std::vector< Point3<S> > ::iterator i;
Point3<S> c; c.Zero();
Point3<S> c; c.SetZero();
for(i = samples.begin(); i != samples.end(); ++i)
c+=*i;
c/=samples.size();
@ -147,7 +147,7 @@ bool PlaneFittingPointsOld( std::vector< Point3<S> > & samples, Plane3<S> & p )
m[i][j]=P[i][j];
// Point4<S> s;s.Zero();
// Point4<S> s;s.SetZero();
//
// s.Normalize();
// printf("\n RES %f %f %f %f \n",s[0],s[1],s[2],s[3]);

View File

@ -1038,7 +1038,7 @@ namespace vcg
{
object = NULL;
distance = ScalarType(-1.0);
nearest_point.Zero();
nearest_point.SetZero();
}

View File

@ -82,7 +82,7 @@ namespace vcg
// Plane structure: identify a plain as a <center, normal> pair
struct Plane
{
Plane() { center.Zero(); normal.Zero();};
Plane() { center.SetZero(); normal.SetZero();};
// Object functor: return the bounding-box enclosing a given plane
inline void GetBBox(BoundingBoxType &bb) { bb.Set(center); };

View File

@ -974,7 +974,7 @@ static void SetSubView(vcg::Camera<S> & camera,vcg::Point2<S> p0,S nearDist, S f
//
// // prendi la matrice di proiezione
// Matrix44d P;
// P.Zero();
// P.SetZero();
//
// if(!IsOrtho())// prospettica
// {
@ -1047,7 +1047,7 @@ static void SetSubView(vcg::Camera<S> & camera,vcg::Point2<S> p0,S nearDist, S f
//
// // prendi la matrice di proiezione
// Matrix44d P;
// P.Zero();
// P.SetZero();
//
// if(!IsOrtho())// prospettica
// {