class that provides an estimation of the overlap of two meshes. It works as follow: it samples N points in a normal equalized manner on the Mov mesh, then count how many points of the Fix mesh are in consensus with the sampled points. To be in consensus means: distance between points is <= param.consensusDistance AND the angle between points normals is <= param.normalAngle. This works for point clouds too. comments will be added in next commit.

This commit is contained in:
Paolo Cignoni 2009-07-28 23:07:26 +00:00
parent 44fd7bb2ba
commit 4e1b6897b1
1 changed files with 264 additions and 0 deletions

View File

@ -0,0 +1,264 @@
#ifndef OVERLAP_ESTIMATION_H
#define OVERLAP_ESTIMATION_H
#include <vcg/math/gen_normal.h>
#include <vcg/math/random_generator.h>
//#include <vcg/math/point_matching.h>
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/complex/trimesh/closest.h>
#include <vcg/complex/trimesh/point_sampling.h>
//#include <meshlabplugins/edit_pickpoints/pickedPoints.h>
#include <qdatetime.h>
using namespace std;
using namespace vcg;
template<class MESH_TYPE> class OverlapEstimation
{
public:
typedef MESH_TYPE MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename vector<VertexPointer>::iterator VertexPointerIterator;
typedef GridStaticPtr<VertexType, ScalarType > MeshGrid;
typedef tri::VertTmark<MeshType> MarkerVertex;
private:
class VertexPointerSampler
{
public:
MeshType* m; //this is needed for advanced sampling (i.e poisson sampling)
VertexPointerSampler(){ m = new MeshType(); m->Tr.SetIdentity(); m->sfn=0; }
~VertexPointerSampler(){ if(m) delete m; }
vector<VertexType*> sampleVec;
void AddVert(VertexType &p){ sampleVec.push_back(&p); }
void AddFace(const FaceType &f, const CoordType &p){}
void AddTextureSample(const FaceType &, const CoordType &, const Point2i &){}
};
public:
class Parameters
{
public:
int samples; //number of samples
int bestScore; //used to paint mMove: paint only if is a best score
float consensusDist; //consensus distance
float consensusNormalsAngle; //holds the the consensus angle for normals, in gradients.
float threshold; //consensus % to win consensus;
bool normalEqualization; //to use normal equalization in consensus
bool paint; //to paint mMov according to consensus
void (*log)(int level, const char * f, ... ); //pointer to log function
Parameters()
{
samples = 2500;
bestScore = 0;
consensusDist = 2.0f;
consensusNormalsAngle = 0.965f; //15 degrees.
threshold = 0.0f;
normalEqualization = true;
paint = false;
log = NULL;
}
};
MeshType* mFix, *mMov;
vector<vector<int> >* normBuckets; //structure to hold normals bucketing. Needed for normal equalized sampling during consensus
MeshGrid* gridFix; //variable to manage uniform grid
MarkerVertex markerFunctorFix; //variable to manage uniform grid
OverlapEstimation() : normBuckets(NULL), gridFix(NULL){}
~OverlapEstimation(){
if(normBuckets) delete normBuckets;
if(gridFix) delete gridFix;
}
void SetFix(MeshType& m){ mFix = &m; }
void SetMove(MeshType& m){ mMov = &m; }
void Paint()
{
for(VertexIterator vi=mMov->vert.begin(); vi!=mMov->vert.end(); vi++){
if(!(*vi).IsD()){
if((*vi).Q()==0.0) (*vi).C() = Color4b::Red;
if((*vi).Q()==1.0) (*vi).C() = Color4b::Yellow;
if((*vi).Q()==2.0) (*vi).C() = Color4b::Blue;
}
}
}
bool Init(Parameters& param){
//builds the uniform grid with mFix vertices
gridFix = new MeshGrid();
SetupGrid();
//if requested, group normals of mMov into 30 buckets. Buckets are used for Vertex Normal Equalization
//in consensus. Bucketing is done here once for all to speed up consensus.
if(normBuckets) {normBuckets->clear(); delete normBuckets; }
if(param.normalEqualization){
normBuckets = BucketVertexNormal(mMov->vert, 30);
assert(normBuckets);
}
return true;
}
float Compute(Parameters& param)
{
return Check(param)/float(param.samples);
}
//compute the randomized consensus beetween m1 e m2 (without taking in account any additional transformation)
//IMPORTANT: per vertex normals of m1 and m2 MUST BE PROVIDED JET NORMALIZED!!!
int Check(Parameters& param)
{
//pointer to a function to compute distance beetween points
vertex::PointDistanceFunctor<ScalarType> PDistFunct;
//if no buckets are provided get a vector of vertex pointers sampled uniformly
//else, get a vector of vertex pointers sampled in a normal equalized manner; used as query points
vector<VertexPointer> queryVert;
if(param.normalEqualization){
assert(normBuckets);
for(unsigned int i=0; i<mMov->vert.size(); i++) queryVert.push_back(&(mMov->vert[i]));//do a copy of pointers to vertexes
SampleVertNormalEqualized(queryVert, param.samples);
}
else{
SampleVertUniform(*mMov, queryVert, param.samples);
}
assert(queryVert.size()!=0);
//init variables for consensus
float consDist = param.consensusDist*(mMov->bbox.Diag()/100.0f); //consensus distance
int cons_succ = int(param.threshold*(param.samples/100.0f)); //score needed to pass consensus
int consensus = 0; //counts vertices in consensus
float dist; //holds the distance of the closest vertex found
VertexType* closestVertex = NULL; //pointer to the closest vertex
Point3<ScalarType> queryNrm; //the query point normal for consensus
CoordType queryPnt; //the query point for consensus
CoordType closestPnt; //the closest point found in consensus
Matrix33<ScalarType> inv33_matMov(mMov->Tr,3); //3x3 matrix needed to transform normals
Matrix33<ScalarType> inv33_matFix(Inverse(mFix->Tr),3); //3x3 matrix needed to transform normals
//consensus loop
VertexPointerIterator vi; int i;
for(i=0, vi=queryVert.begin(); vi!=queryVert.end(); vi++, i++)
{
dist = -1.0f;
//set query point; vertex coord is transformed properly in fix mesh coordinates space; the same for normals
queryPnt = Inverse(mFix->Tr) * (mMov->Tr * (*vi)->P());
queryNrm = inv33_matFix * (inv33_matMov * (*vi)->N());
//if query point is bbox, the look for a vertex in cDist from the query point
if(mFix->bbox.IsIn(queryPnt)) closestVertex = gridFix->GetClosest(PDistFunct,markerFunctorFix,queryPnt,consDist,dist,closestPnt);
else closestVertex=NULL; //out of bbox, we consider the point not in consensus...
if(closestVertex!=NULL && dist < consDist){
assert(closestVertex->P()==closestPnt); //coord and vertex pointer returned by getClosest must be the same
//point is in consensus distance, now we check if normals are near
if(queryNrm.dot(closestVertex->N())>param.consensusNormalsAngle) //15 degrees
{
consensus++; //got consensus
if(param.paint) (*vi)->Q() = 0.0f; //store 0 as quality
}
else{
if(param.paint) (*vi)->Q() = 1.0f; //store 1 as quality
}
}
else{
if(param.paint) (*vi)->Q() = 2.0f; //store 2 as quality
}
}
//apply colors if consensus is the best ever found.
//NOTE: we got to do this here becouse we need a handle to sampler. This is becouse vertex have been shuffled
//and so colors have been stored not in order in the buffer!
if(param.paint){
if(consensus>=param.bestScore && consensus>=cons_succ) Paint();
}
return consensus;
}
private:
void SampleVertUniform(MESH_TYPE& m, vector<typename MESH_TYPE::VertexPointer>& vert, int sampleNum)
{
VertexPointerSampler sampler;
tri::SurfaceSampling<MeshType, VertexPointerSampler>::VertexUniform(m, sampler, sampleNum);
for(unsigned int i=0; i<sampler.sampleVec.size(); i++) vert.push_back(sampler.sampleVec[i]);
}
vector<vector<int> >* BucketVertexNormal(typename MESH_TYPE::VertContainer& vert, int bucketDim = 30)
{
static vector<Point3f> NV;
if(NV.size()==0) GenNormal<float>::Uniform(bucketDim,NV);
// Bucket vector dove, per ogni normale metto gli indici
// dei vertici ad essa corrispondenti
vector<vector<int> >* BKT = new vector<vector<int> >(NV.size()); //NV size is greater then bucketDim, so don't change this!
int ind;
for(int i=0;i<vert.size();++i){
ind=GenNormal<float>::BestMatchingNormal(vert[i].N(),NV);
(*BKT)[ind].push_back(i);
}
return BKT;
}
bool SampleVertNormalEqualized(vector<typename MESH_TYPE::VertexPointer>& vert, int SampleNum)
{
assert(normBuckets);
// vettore di contatori per sapere quanti punti ho gia' preso per ogni bucket
vector<int> BKTpos(normBuckets->size(),0);
if(SampleNum >= int(vert.size())) SampleNum= int(vert.size()-1);
int ind;
for(int i=0;i<SampleNum;){
ind=LocRnd(normBuckets->size()); // Scelgo un Bucket
int &CURpos = BKTpos[ind];
vector<int> &CUR = (*normBuckets)[ind];
if(CURpos<int(CUR.size())){
swap(CUR[CURpos], CUR[ CURpos + LocRnd((*normBuckets)[ind].size()-CURpos)]);
swap(vert[i],vert[CUR[CURpos]]);
++BKTpos[ind];
++i;
}
}
vert.resize(SampleNum);
return true;
}
static math::SubtractiveRingRNG &LocRnd(){
static math::SubtractiveRingRNG myrnd(time(NULL));
return myrnd;
}
static int LocRnd(int n){
return LocRnd().generate(n);
}
inline void SetupGrid()
{
gridFix->Set(mFix->vert.begin(),mFix->vert.end());
markerFunctorFix.SetMesh(mFix);
}
};
#endif // OVERLAP_ESTIMATION_H