extended support to dump vertex and face Ocf components (compiled only .net)

This commit is contained in:
ganovelli 2009-10-08 15:44:59 +00:00
parent a1bc068e34
commit 4ea077e7c2
2 changed files with 406 additions and 91 deletions

View File

@ -48,6 +48,11 @@
import_vmi must be updated to reflect changes in vcg/complex/trimesh/base.h import_vmi must be updated to reflect changes in vcg/complex/trimesh/base.h
*/ */
#include <vcg/simplex/face/component.h>
#include <vcg/simplex/face/component_ocf.h>
#include <vcg/simplex/vertex/component.h>
#include <vcg/simplex/vertex/component_ocf.h>
namespace vcg { namespace vcg {
namespace tri { namespace tri {
namespace io { namespace io {
@ -58,20 +63,150 @@ namespace io {
class ExporterVMI class ExporterVMI
{ {
public: public:
struct WriteString{ WriteString(FILE * f,const char * in){ unsigned int l = strlen(in); fwrite(&l,4,1,f); fwrite(in,1,l,f);}}; static FILE *& F(){static FILE * f; return f;}
struct WriteInt{ WriteInt(FILE *f, unsigned int i){ fwrite(&i,1,4,f);}}; struct WriteString { WriteString (const char * in) { unsigned int l = strlen(in); fwrite(&l,4,1,F()); fwrite(in,1,l,F());}};
struct WriteInt { WriteInt (const unsigned int i) { fwrite(&i,1,4,F());} };
typedef typename SaveMeshType::FaceContainer FaceContainer;
typedef typename SaveMeshType::FaceIterator FaceIterator; typedef typename SaveMeshType::FaceIterator FaceIterator;
typedef typename SaveMeshType::VertContainer VertContainer;
typedef typename SaveMeshType::VertexIterator VertexIterator; typedef typename SaveMeshType::VertexIterator VertexIterator;
typedef typename SaveMeshType::VertexType VertexType; typedef typename SaveMeshType::VertexType VertexType;
typedef typename SaveMeshType::FaceType FaceType;
typedef SimpleTempDataBase<typename SaveMeshType::VertContainer> STDBv; typedef SimpleTempDataBase<typename SaveMeshType::VertContainer> STDBv;
typedef SimpleTempDataBase<typename SaveMeshType::FaceContainer> STDBf; typedef SimpleTempDataBase<typename SaveMeshType::FaceContainer> STDBf;
// typedef typename SaveMeshType::Attribute <SaveMeshType::FaceContainer> STDBm; // typedef typename SaveMeshType::Attribute <SaveMeshType::FaceContainer> STDBm;
/* save Ocf Components */
/* save Ocf Vertex Components */
template <typename CONT>
struct SaveVertexOcf{
SaveVertexOcf(const CONT & vert){
// do nothing, it is a std::vector
}
};
/* partial specialization for vector_ocf */
template <>
struct SaveVertexOcf< vertex::vector_ocf<VertexType> >{
SaveVertexOcf(const vertex::vector_ocf<VertexType> & vert){
if( VertexType::HasVertexQualityOcf() && vert.IsQualityEnabled()){
WriteString("HAS_VERTEX_QUALITY_OCF");
fwrite(&vert.QV[0],sizeof(VertexType::QualityType),vert.size(),F());
}else WriteString("NOT_HAS_VERTEX_QUALITY_OCF");
if( VertexType::HasVertexColorOcf() && vert.IsColorEnabled()){
WriteString("HAS_VERTEX_COLOR_OCF");
fwrite(&vert.CV[0],sizeof(VertexType::ColorType),vert.size(),F());
}else WriteString("NOT_HAS_VERTEX_COLOR_OCF");
if( VertexType::HasVertexNormalOcf() && vert.IsNormalEnabled()){
WriteString("HAS_VERTEX_NORMAL_OCF");
fwrite(&vert.NV[0],sizeof(VertexType::NormalType),vert.size(),F());
}else WriteString("NOT_HAS_VERTEX_NORMAL_OCF");
if( VertexType::HasVertexMarkOcf() && vert.IsMarkEnabled()){
WriteString("HAS_VERTEX_MARK_OCF");
fwrite(&vert.MV[0],sizeof(VertexType::MarkType),vert.size(),F());
}else WriteString("NOT_HAS_VERTEX_MARK_OCF");
if( VertexType::HasTexCoordOcf() && vert.IsTexCoordEnabled()){
WriteString("HAS_VERTEX_TEXCOORD_OCF");
fwrite(&vert.TV[0],sizeof(vertex::vector_ocf<VertexType>::TexCoordType),vert.size(),F());
}else WriteString("NOT_HAS_VERTEX_TEXCOORD_OCF");
if( VertexType::HasVFAdjacencyOcf() && vert.IsVFAdjacencyEnabled()){
WriteString("HAS_VERTEX_VFADJACENCY_OCF");
fwrite(&vert.AV[0],sizeof(vertex::vector_ocf<VertexType>::VFAdjType),vert.size(),F());
}else WriteString("NOT_HAS_VERTEX_VFADJACENCY_OCF");
if( VertexType::HasCurvatureOcf() && vert.IsCurvatureEnabled()){
WriteString("HAS_VERTEX_CURVATURE_OCF");
fwrite(&vert.CuV[0],sizeof(VertexType::CurvatureType),vert.size(),F());
}else WriteString("NOT_HAS_VERTEX_CURVATURE_OCF");
if( VertexType::HasCurvatureDirOcf() && vert.IsCurvatureDirEnabled()){
WriteString("HAS_VERTEX_CURVATUREDIR_OCF");
fwrite(&vert.CuDV[0],sizeof(VertexType::CurvatureDirType),vert.size(),F());
}else WriteString("NOT_HAS_VERTEX_CURVATUREDIR_OCF");
if( VertexType::HasRadiusOcf() && vert.IsRadiusEnabled()){
WriteString("HAS_VERTEX_RADIUS_OCF");
fwrite(&vert.RadiusV[0],sizeof(vertex::vector_ocf<VertexType>::RadiusType),vert.size(),F());
}else WriteString("NOT_HAS_VERTEX_RADIUS_OCF");
}
};
/* save Ocf Face Components */
template <typename CONT>
struct SaveFaceOcf{
SaveFaceOcf(const CONT & face){
// do nothing, it is a std::vector
}
};
/* partial specialization for vector_ocf */
template <>
struct SaveFaceOcf< face::vector_ocf<FaceType> >{
SaveFaceOcf(const face::vector_ocf<FaceType> & face){
if( FaceType::HasFaceQualityOcf() && face.IsQualityEnabled()){
WriteString("HAS_FACE_QUALITY_OCF");
fwrite(&face.QV[0],sizeof(FaceType::QualityType),face.size(),F());
}else WriteString("NOT_HAS_FACE_QUALITY_OCF");
if( FaceType::HasFaceColorOcf() && face.IsColorEnabled()){
WriteString("HAS_FACE_COLOR_OCF");
fwrite(&face.CV[0],sizeof(FaceType::ColorType),face.size(),F());
}else WriteString("NOT_HAS_FACE_COLOR_OCF");
if( FaceType::HasFaceNormalOcf() && face.IsNormalEnabled()){
WriteString("HAS_FACE_NORMAL_OCF");
fwrite(&face.NV[0],sizeof(FaceType::NormalType),face.size(),F());
}else WriteString("NOT_HAS_FACE_NORMAL_OCF");
if( FaceType::HasFaceMarkOcf() && face.IsMarkEnabled()){
WriteString("HAS_FACE_MARK_OCF");
fwrite(&face.MV[0],sizeof(FaceType::MarkType),face.size(),F());
}else WriteString("NOT_HAS_FACE_MARK_OCF");
if( FaceType::HasWedgeTexCoordOcf() && face.IsWedgeTexEnabled()){
WriteString("HAS_FACE_WEDGETEXCOORD_OCF");
fwrite(&face.WTV[0],sizeof(FaceType::WedgeTexCoordType),face.size(),F());
}else WriteString("NOT_HAS_FACE_WEDGETEXCOORD_OCF");
if( FaceType::HasFFAdjacencyOcf() && face.IsFFAdjacencyEnabled()){
WriteString("HAS_FACE_FFADJACENCY_OCF");
fwrite(&face.AF[0],sizeof(face::vector_ocf<FaceType>::AdjTypePack),face.size(),F());
}else WriteString("NOT_HAS_FACE_FFADJACENCY_OCF");
if( FaceType::HasVFAdjacencyOcf() && face.IsVFAdjacencyEnabled()){
WriteString("HAS_FACE_VFADJACENCY_OCF");
fwrite(&face.AV[0],sizeof(face::vector_ocf<FaceType>::AdjTypePack),face.size(),F());
}else WriteString("NOT_HAS_FACE_VFADJACENCY_OCF");
if( FaceType::HasWedgeColorOcf() && face.IsWedgeColorEnabled()){
WriteString("HAS_FACE_WEDGECOLOR_OCF");
fwrite(&face.WCV[0],sizeof(face::vector_ocf<FaceType>::WedgeColorTypePack),face.size(),F());
}else WriteString("NOT_HAS_FACE_WEDGECOLOR_OCF");
if( FaceType::HasWedgeNormalOcf() && face.IsWedgeNormalEnabled()){
WriteString("HAS_FACE_WEDGENORMAL_OCF");
fwrite(&face.WNV[0],sizeof(face::vector_ocf<FaceType>::WedgeNormalTypePack),face.size(),F());
}else WriteString("NOT_HAS_FACE_WEDGENORMAL_OCF");
}
};
static void Save(const SaveMeshType &m,char * filename){ static void Save(const SaveMeshType &m,char * filename){
unsigned int i; unsigned int i;
int vertSize,faceSize; unsigned int vertSize,faceSize;
FILE * f = fopen(filename,"wb"); F() = fopen(filename,"wb");
std::vector<std::string> nameF,nameV; std::vector<std::string> nameF,nameV;
SaveMeshType::FaceType::Name(nameF); SaveMeshType::FaceType::Name(nameF);
SaveMeshType::VertexType::Name(nameV); SaveMeshType::VertexType::Name(nameV);
@ -79,58 +214,64 @@ namespace io {
faceSize = m.face.size(); faceSize = m.face.size();
/* write header */ /* write header */
WriteString(f,"FACE_TYPE"); WriteString("FACE_TYPE");
WriteInt(f,nameF.size()); WriteInt(nameF.size());
for(i=0; i < nameF.size(); ++i) WriteString(f,nameF[i].c_str()); for(i=0; i < nameF.size(); ++i) WriteString(nameF[i].c_str());
WriteString(f,"SIZE_VECTOR_FACES"); WriteString("SIZE_VECTOR_FACES");
WriteInt(f,faceSize); WriteInt A0( faceSize );
WriteString(f,"VERTEX_TYPE"); WriteString("VERTEX_TYPE");
WriteInt(f,nameV.size()); WriteInt(nameV.size());
for(i=0; i < nameV.size(); ++i) WriteString(f,nameV[i].c_str()); for(i=0; i < nameV.size(); ++i) WriteString(nameV[i].c_str());
WriteString(f,"SIZE_VECTOR_VERTS"); WriteString("SIZE_VECTOR_VERTS");
WriteInt(f,vertSize); WriteInt A1(vertSize);
WriteString(f,"end_header"); WriteString("end_header");
if(vertSize!=0){ if(vertSize!=0){
unsigned int offsetV = (unsigned int) &m.vert[0]; unsigned int offsetV = (unsigned int) &m.vert[0];
/* write the address of the first vertex */ /* write the address of the first vertex */
fwrite(&offsetV,sizeof(unsigned int),1,f); fwrite(&offsetV,sizeof(unsigned int),1,F());
} }
if(faceSize!=0){ if(faceSize!=0){
int offsetF= ( int) &m.face[0]; int offsetF= ( int) &m.face[0];
/* write the address of the first face */ /* write the address of the first face */
fwrite(&offsetF,sizeof( int),1,f); fwrite(&offsetF,sizeof( int),1,F());
} }
/* save the object mesh */ /* save the object mesh */
fwrite(&m.shot,sizeof(Shot<typename SaveMeshType::ScalarType>),1,f); fwrite(&m.shot,sizeof(Shot<typename SaveMeshType::ScalarType>),1,F());
fwrite(&m.vn,sizeof(int),1,f); fwrite(&m.vn,sizeof(int),1,F());
fwrite(&m.fn,sizeof(int),1,f); fwrite(&m.fn,sizeof(int),1,F());
fwrite(&m.imark,sizeof(int),1,f); fwrite(&m.imark,sizeof(int),1,F());
fwrite(&m.bbox,sizeof(Box3<typename SaveMeshType::ScalarType>),1,f); fwrite(&m.bbox,sizeof(Box3<typename SaveMeshType::ScalarType>),1,F());
fwrite(&m.C(),sizeof(Color4b),1,f); fwrite(&m.C(),sizeof(Color4b),1,F());
unsigned int written; unsigned int written;
if(vertSize!=0){ if(vertSize!=0){
/* save the vertices */ /* save the vertices */
written = fwrite((void*)&m.vert[0],sizeof(typename SaveMeshType::VertexType),m.vert.size(),f); written = fwrite((void*)&m.vert[0],sizeof(typename SaveMeshType::VertexType),m.vert.size(),F());
assert(written==m.vert.size()); assert(written==m.vert.size());
SaveVertexOcf<VertContainer>(m.vert);
} }
if(faceSize!=0){ if(faceSize!=0){
/* save the faces */ /* save the faces */
written = fwrite((void*)&m.face[0],sizeof(typename SaveMeshType::FaceType),m.face.size(),f); written = fwrite((void*)&m.face[0],sizeof(typename SaveMeshType::FaceType),faceSize,F());
assert(written==m.face.size()); assert(written==m.face.size());
SaveFaceOcf<FaceContainer>(m.face);
} }
/* save the attribtues */
/* save the attributes */
typename std::set< typename SaveMeshType::PointerToAttribute>::const_iterator ai; typename std::set< typename SaveMeshType::PointerToAttribute>::const_iterator ai;
@ -140,19 +281,19 @@ namespace io {
unsigned int n_named_attr = 0; unsigned int n_named_attr = 0;
for(ai = m.vert_attr.begin(); ai != m.vert_attr.end(); ++ai) n_named_attr+=!(*ai)._name.empty(); for(ai = m.vert_attr.begin(); ai != m.vert_attr.end(); ++ai) n_named_attr+=!(*ai)._name.empty();
WriteString(f,"N_PER_VERTEX_ATTRIBUTES"); WriteInt(f,n_named_attr); WriteString("N_PER_VERTEX_ATTRIBUTES"); WriteInt A2(n_named_attr);
for(ai = m.vert_attr.begin(); ai != m.vert_attr.end(); ++ai) for(ai = m.vert_attr.begin(); ai != m.vert_attr.end(); ++ai)
if(!(*ai)._name.empty()) if(!(*ai)._name.empty())
{ {
STDBv * stdb = (STDBv *) (*ai)._handle; STDBv * stdb = (STDBv *) (*ai)._handle;
WriteString(f,"PER_VERTEX_ATTR_NAME"); WriteString("PER_VERTEX_ATTR_NAME");
WriteString(f,(*ai)._name.c_str() ); WriteString((*ai)._name.c_str() );
WriteString(f,"PER_VERTEX_ATTR_SIZE"); WriteString("PER_VERTEX_ATTR_SIZE");
WriteInt(f,stdb->SizeOf()); WriteInt(stdb->SizeOf());
fwrite(stdb->DataBegin(),m.vert.size(),stdb->SizeOf(),f); fwrite(stdb->DataBegin(),m.vert.size(),stdb->SizeOf(),F());
} }
} }
@ -162,21 +303,21 @@ namespace io {
unsigned int n_named_attr = 0; unsigned int n_named_attr = 0;
for(ai = m.face_attr.begin(); ai != m.face_attr.end(); ++ai) n_named_attr+=!(*ai)._name.empty(); for(ai = m.face_attr.begin(); ai != m.face_attr.end(); ++ai) n_named_attr+=!(*ai)._name.empty();
WriteString(f,"N_PER_FACE_ATTRIBUTES"); WriteString("N_PER_FACE_ATTRIBUTES");
WriteInt(f,n_named_attr); WriteInt A3(n_named_attr);
for(ai = m.face_attr.begin(); ai != m.face_attr.end(); ++ai) for(ai = m.face_attr.begin(); ai != m.face_attr.end(); ++ai)
if(!(*ai)._name.empty()) if(!(*ai)._name.empty())
{ {
STDBf * stdb = (STDBf *) (*ai)._handle; STDBf * stdb = (STDBf *) (*ai)._handle;
WriteString(f,"PER_FACE_ATTR_NAME"); WriteString("PER_FACE_ATTR_NAME");
WriteString(f,(*ai)._name.c_str()); WriteString((*ai)._name.c_str());
WriteString(f,"PER_FACE_ATTR_SIZE"); WriteString("PER_FACE_ATTR_SIZE");
WriteInt(f,stdb->SizeOf()); WriteInt(stdb->SizeOf());
fwrite(stdb->DataBegin(),m.face.size(),stdb->SizeOf(),f); fwrite(stdb->DataBegin(),m.face.size(),stdb->SizeOf(),F());
} }
} }
@ -185,24 +326,24 @@ namespace io {
typename std::set< typename SaveMeshType::PointerToAttribute>::const_iterator ai; typename std::set< typename SaveMeshType::PointerToAttribute>::const_iterator ai;
unsigned int n_named_attr = 0; unsigned int n_named_attr = 0;
for(ai = m.mesh_attr.begin(); ai != m.mesh_attr.end(); ++ai) n_named_attr+=!(*ai)._name.empty(); for(ai = m.mesh_attr.begin(); ai != m.mesh_attr.end(); ++ai) n_named_attr+=!(*ai)._name.empty();
WriteString(f,"N_PER_MESH_ATTRIBUTES"); WriteInt(f,n_named_attr); WriteString("N_PER_MESH_ATTRIBUTES"); WriteInt A4(n_named_attr);
for(ai = m.mesh_attr.begin(); ai != m.mesh_attr.end(); ++ai) for(ai = m.mesh_attr.begin(); ai != m.mesh_attr.end(); ++ai)
if(!(*ai)._name.empty()) if(!(*ai)._name.empty())
{ {
AttributeBase * handle = (AttributeBase *) (*ai)._handle ; AttributeBase * handle = (AttributeBase *) (*ai)._handle ;
WriteString(f,"PER_MESH_ATTR_NAME"); WriteString("PER_MESH_ATTR_NAME");
WriteString(f,(*ai)._name.c_str()); WriteString((*ai)._name.c_str());
WriteString(f,"PER_MESH_ATTR_SIZE"); WriteString("PER_MESH_ATTR_SIZE");
WriteInt(f,handle->SizeOf()); WriteInt(handle->SizeOf());
fwrite(handle->DataBegin(),1,handle->SizeOf(),f); fwrite(handle->DataBegin(),1,handle->SizeOf(),F());
} }
} }
// fflush(f); // fflush(F());
fclose(f); fclose(F());
} }
}; // end class }; // end class

View File

@ -243,10 +243,12 @@ namespace io {
class ImporterVMI: public AttrAll<OpenMeshType,A0,A1,A2,A3,A4> class ImporterVMI: public AttrAll<OpenMeshType,A0,A1,A2,A3,A4>
{ {
public: public:
static FILE *& F(){static FILE * f; return f;}
struct ReadString{ ReadString(FILE * f,std::string & out){ struct ReadString{ ReadString(FILE * f,std::string & out){
unsigned int l; fread(&l,4,1,f); unsigned int l; fread(&l,4,1,f);
char * buf = new char[l+1]; char * buf = new char[l+1];
fread(buf,1,l,f);buf[l]='\0'; fread(buf,1,l,F());buf[l]='\0';
out = std::string(buf); out = std::string(buf);
delete [] buf; delete [] buf;
} }
@ -257,48 +259,216 @@ namespace io {
static void Free(void * ptr){ if(ptr) free (ptr);} static void Free(void * ptr){ if(ptr) free (ptr);}
typedef typename OpenMeshType::FaceType FaceType;
typedef typename OpenMeshType::FaceContainer FaceContainer;
typedef typename OpenMeshType::FaceIterator FaceIterator; typedef typename OpenMeshType::FaceIterator FaceIterator;
typedef typename OpenMeshType::VertContainer VertContainer;
typedef typename OpenMeshType::VertexIterator VertexIterator; typedef typename OpenMeshType::VertexIterator VertexIterator;
typedef typename OpenMeshType::VertexType VertexType; typedef typename OpenMeshType::VertexType VertexType;
static bool GetHeader(FILE * f,std::vector<std::string>& fnameV, std::vector<std::string>& fnameF, unsigned int & vertSize, unsigned int &faceSize){ static bool GetHeader(std::vector<std::string>& fnameV, std::vector<std::string>& fnameF, unsigned int & vertSize, unsigned int &faceSize){
std::string name; std::string name;
unsigned int nameFsize,nameVsize,i; unsigned int nameFsize,nameVsize,i;
ReadString(f,name); ReadInt(f,nameFsize); ReadString(F(),name); ReadInt(F(),nameFsize);
for(i=0; i < nameFsize; ++i) for(i=0; i < nameFsize; ++i)
{ReadString(f, name);fnameF.push_back( name );} {ReadString(F(), name);fnameF.push_back( name );}
ReadString(f,name); ReadInt(f , faceSize); ReadString(F(),name); ReadInt(F() , faceSize);
ReadString(f, name); ReadInt(f,nameVsize); ReadString(F(), name); ReadInt(F(),nameVsize);
for(i=0; i < nameVsize; ++i) for(i=0; i < nameVsize; ++i)
{ReadString(f, name) ;fnameV.push_back( name);} {ReadString(F(), name) ;fnameV.push_back( name);}
ReadString(f,name); ReadInt(f,vertSize); ReadString(F(),name); ReadInt(F(),vertSize);
ReadString(f,name); ReadString(F(),name);
assert(strstr( name.c_str(),"end_header")!=NULL); assert(strstr( name.c_str(),"end_header")!=NULL);
return true; return true;
} }
static bool GetHeader(char * filename,std::vector<std::string>& nameV, std::vector<std::string>& nameF, int & vertSize, int &faceSize){ static bool GetHeader(char * filename,std::vector<std::string>& nameV, std::vector<std::string>& nameF, int & vertSize, int &faceSize){
FILE * f = fopen(filename,"rb"); FILE * F() = fopen(filename,"rb");
return GetHeader(f,nameV, nameF, vertSize, faceSize); return GetHeader(F(),nameV, nameF, vertSize, faceSize);
fclose(f); fclose(F());
} }
template <typename CONT>
struct LoadVertexOcf{
LoadVertexOcf(const CONT & vert){
// do nothing, it is a std::vector
}
};
/* partial specialization for vector_ocf */
template <>
struct LoadVertexOcf< vertex::vector_ocf<VertexType> >{
LoadVertexOcf( vertex::vector_ocf<VertexType> & vert){
std::string s;
// vertex quality
ReadString(F(),s);
if( s == std::string("HAS_VERTEX_QUALITY_OCF")) {
vert.EnableQuality();
fread((void*)&vert.QV[0],sizeof(VertexType::QualityType),vert.size(),F());
}
// vertex color
ReadString(F(),s);
if( s == std::string("HAS_VERTEX_COLOR_OCF")) {
vert.EnableColor();
fread((void*)&vert.CV[0],sizeof(VertexType::ColorType),vert.size(),F());
}
// vertex normal
ReadString(F(),s);
if( s == std::string("HAS_VERTEX_NORMAL_OCF")) {
vert.EnableNormal();
fread((void*)&vert.NV[0],sizeof(VertexType::NormalType),vert.size(),F());
}
// vertex mark
ReadString(F(),s);
if( s == std::string("HAS_VERTEX_MARK_OCF")) {
vert.EnableMark();
fread((void*)&vert.MV[0],sizeof(VertexType::MarkType),vert.size(),F());
}
// vertex texcoord
ReadString(F(),s);
if( s == std::string("HAS_VERTEX_TEXCOORD_OCF")) {
vert.EnableTexCoord();
fread((void*)&vert.TV[0],sizeof(vertex::vector_ocf<VertexType>::TexCoordType),vert.size(),F());
}
// vertex-face adjacency
ReadString(F(),s);
if( s == std::string("HAS_VERTEX_VFADJACENCY_OCF")) {
vert.EnableVFAdjacency();
fread((void*)&vert.AV[0],sizeof(vertex::vector_ocf<VertexType>::VFAdjType),vert.size(),F());
}
// vertex curvature
ReadString(F(),s);
if( s == std::string("HAS_VERTEX_CURVATURE_OCF")) {
vert.EnableCurvature();
fread((void*)&vert.CuV[0],sizeof(VertexType::CurvatureType),vert.size(),F());
}
// vertex curvature dir
ReadString(F(),s);
if( s == std::string("HAS_VERTEX_CURVATUREDIR_OCF")) {
vert.EnableCurvatureDir();
fread((void*)&vert.CuDV[0],sizeof(VertexType::CurvatureDirType),vert.size(),F());
}
// vertex radius
ReadString(F(),s);
if( s == std::string("HAS_VERTEX_RADIUS_OCF")) {
vert.EnableRadius();
fread((void*)&vert.RadiusV[0],sizeof(vertex::vector_ocf<VertexType>::RadiusType),vert.size(),F());
}
}
};
template <typename CONT>
struct LoadFaceOcf{
LoadFaceOcf(const CONT & face){
// do nothing, it is a std::vector
}
};
/* partial specialization for vector_ocf */
template <>
struct LoadFaceOcf< face::vector_ocf<FaceType> >{
LoadFaceOcf( face::vector_ocf<FaceType> & face){
std::string s;
// face quality
ReadString(F(),s);
if( s == std::string("HAS_FACE_QUALITY_OCF")) {
face.EnableQuality();
fread((void*)&face.QV[0],sizeof(FaceType::QualityType),face.size(),F());
}
// face color
ReadString(F(),s);
if( s == std::string("HAS_FACE_COLOR_OCF")) {
face.EnableColor();
fread((void*)&face.CV[0],sizeof(FaceType::ColorType),face.size(),F());
}
// face normal
ReadString(F(),s);
if( s == std::string("HAS_FACE_NORMAL_OCF")) {
face.EnableNormal();
fread((void*)&face.NV[0],sizeof(FaceType::NormalType),face.size(),F());
}
// face mark
ReadString(F(),s);
if( s == std::string("HAS_FACE_MARK_OCF")) {
face.EnableMark();
fread((void*)&face.MV[0],sizeof(FaceType::MarkType),face.size(),F());
}
// face wedgetexcoord
ReadString(F(),s);
if( s == std::string("HAS_FACE_WEDGETEXCOORD_OCF")) {
face.EnableWedgeTex();
fread((void*)&face.WTV[0],sizeof(FaceType::WedgeTexCoordType),face.size(),F());
}
// face-face adjacency
ReadString(F(),s);
if( s == std::string("HAS_FACE_FFADJACENCY_OCF")) {
face.EnableFFAdjacency();
fread((void*)&face.AF[0],sizeof(face::vector_ocf<FaceType>::AdjTypePack),face.size(),F());
}
// vertex-face adjacency
ReadString(F(),s);
if( s == std::string("HAS_FACE_VFADJACENCY_OCF")) {
face.EnableVFAdjacency();
fread((void*)&face.AV[0],sizeof(face::vector_ocf<FaceType>::AdjTypePack),face.size(),F());
}
// face WedgeColor
ReadString(F(),s);
if( s == std::string("HAS_FACE_WEDGECOLOR_OCF")) {
face.EnableWedgeColor();
fread((void*)&face.WCV[0],sizeof(face::vector_ocf<FaceType>::WedgeColorTypePack),face.size(),F());
}
// face WedgeNormal
ReadString(F(),s);
if( s == std::string("HAS_FACE_WEDGENORMAL_OCF")) {
face.EnableWedgeNormal();
fread((void*)&face.WNV[0],sizeof(face::vector_ocf<FaceType>::WedgeNormalTypePack),face.size(),F());
}
}
};
static bool Open(OpenMeshType &m,char * filename){ static bool Open(OpenMeshType &m,char * filename){
typedef typename OpenMeshType::VertexType VertexType; typedef typename OpenMeshType::VertexType VertexType;
typedef typename OpenMeshType::FaceType FaceType; typedef typename OpenMeshType::FaceType FaceType;
typename OpenMeshType::FaceIterator fi; typename OpenMeshType::FaceIterator fi;
typename OpenMeshType::VertexIterator vi; typename OpenMeshType::VertexIterator vi;
FILE * f = fopen(filename,"rb"); F() = fopen(filename,"rb");
std::vector<std::string> nameF,nameV,fnameF,fnameV; std::vector<std::string> nameF,nameV,fnameF,fnameV;
unsigned int vertSize,faceSize; unsigned int vertSize,faceSize;
/* read the header */ /* read the header */
GetHeader(f,fnameV, fnameF, vertSize, faceSize); GetHeader(fnameV, fnameF, vertSize, faceSize);
/* read the mesh type */ /* read the mesh type */
OpenMeshType::FaceType::Name(nameF); OpenMeshType::FaceType::Name(nameF);
@ -312,19 +482,19 @@ namespace io {
if(vertSize!=0) if(vertSize!=0)
/* read the address of the first vertex */ /* read the address of the first vertex */
fread(&offsetV,sizeof( int),1,f); fread(&offsetV,sizeof( int),1,F());
if(faceSize!=0) if(faceSize!=0)
/* read the address of the first face */ /* read the address of the first face */
fread(&offsetF,sizeof( int),1,f); fread(&offsetF,sizeof( int),1,F());
/* read the object mesh */ /* read the object mesh */
fread(&m.shot,sizeof(Shot<typename OpenMeshType::ScalarType>),1,f); fread(&m.shot,sizeof(Shot<typename OpenMeshType::ScalarType>),1,F());
fread(&m.vn,sizeof(int),1,f); fread(&m.vn,sizeof(int),1,F());
fread(&m.fn,sizeof(int),1,f); fread(&m.fn,sizeof(int),1,F());
fread(&m.imark,sizeof(int),1,f); fread(&m.imark,sizeof(int),1,F());
fread(&m.bbox,sizeof(Box3<typename OpenMeshType::ScalarType>),1,f); fread(&m.bbox,sizeof(Box3<typename OpenMeshType::ScalarType>),1,F());
fread(&m.C(),sizeof(Color4b),1,f); fread(&m.C(),sizeof(Color4b),1,F());
/* resize the vector of vertices */ /* resize the vector of vertices */
@ -333,55 +503,59 @@ namespace io {
int read = 0; int read = 0;
/* load the vertices */ /* load the vertices */
if(vertSize>0) if(vertSize>0){
read=fread((void*)& m.vert[0],sizeof(VertexType),vertSize,f); read=fread((void*)& m.vert[0],sizeof(VertexType),vertSize,F());
assert(ferror(f)==0); assert(ferror(F())==0);
assert(read==vertSize); assert(read==vertSize);
LoadVertexOcf<VertContainer>(m.vert);
}
read = 0; read = 0;
m.face.resize(faceSize); m.face.resize(faceSize);
if(faceSize>0) if(faceSize>0){
/* load the faces */ /* load the faces */
read = fread((void*)& m.face[0],sizeof(FaceType),faceSize,f); read = fread((void*)& m.face[0],sizeof(FaceType),faceSize,F());
assert(ferror(f)==0); assert(ferror(F())==0);
assert(!feof(f)); assert(!feof(F()));
assert(read==faceSize); assert(read==faceSize);
LoadFaceOcf<FaceContainer>(m.face);
}
/* load the per vertex attributes */ /* load the per vertex attributes */
std::string _string,_trash; std::string _string,_trash;
unsigned int n,sz; unsigned int n,sz;
ReadString(f,_trash); ReadInt(f,n); ReadString(F(),_trash); ReadInt(F(),n);
for(int ia = 0 ; ia < n; ++ia){ for(int ia = 0 ; ia < n; ++ia){
ReadString(f,_trash); ReadString(f,_string); ReadString(F(),_trash); ReadString(F(),_string);
ReadString(f,_trash); ReadInt(f,sz); ReadString(F(),_trash); ReadInt(F(),sz);
void * data = Malloc(sz*m.vert.size()); void * data = Malloc(sz*m.vert.size());
fread(data,sz,m.vert.size(),f); fread(data,sz,m.vert.size(),F());
AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<0>(m,_string.c_str(),sz,data); AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<0>(m,_string.c_str(),sz,data);
Free(data); Free(data);
} }
/* load the per face attributes */ /* load the per face attributes */
ReadString(f,_trash); ReadInt(f,n); ReadString(F(),_trash); ReadInt(F(),n);
for(int ia = 0 ; ia < n; ++ia){ for(int ia = 0 ; ia < n; ++ia){
ReadString(f,_trash); ReadString(f,_string); ReadString(F(),_trash); ReadString(F(),_string);
ReadString(f,_trash); ReadInt(f,sz); ReadString(F(),_trash); ReadInt(F(),sz);
void * data = Malloc(sz*m.face.size()); void * data = Malloc(sz*m.face.size());
fread(data,sz,m.face.size(),f); fread(data,sz,m.face.size(),F());
AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<1>(m,_string.c_str(),sz,data); AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<1>(m,_string.c_str(),sz,data);
Free(data); Free(data);
} }
/* load the per mesh attributes */ /* load the per mesh attributes */
ReadString(f,_trash); ReadInt(f,n); ReadString(F(),_trash); ReadInt(F(),n);
for(int ia = 0 ; ia < n; ++ia){ for(int ia = 0 ; ia < n; ++ia){
ReadString(f,_trash); ReadString(f,_string); ReadString(F(),_trash); ReadString(F(),_string);
ReadString(f,_trash); ReadInt(f,sz); ReadString(F(),_trash); ReadInt(F(),sz);
void * data = Malloc(sz); void * data = Malloc(sz);
fread(data,1,sz,f); fread(data,1,sz,F());
AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<2>(m,_string.c_str(),sz,data); AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<2>(m,_string.c_str(),sz,data);
Free(data); Free(data);
} }
@ -414,7 +588,7 @@ namespace io {
(*fi).VFp(2) = (*fi).VFp(2)-(FaceType*)offsetF+ &m.face[0]; (*fi).VFp(2) = (*fi).VFp(2)-(FaceType*)offsetF+ &m.face[0];
} }
fclose(f); fclose(F());
return true; return true;
} }