completely restructured the whole class, much more robust
This commit is contained in:
parent
0a91defac8
commit
4fe40ecef5
|
@ -8,32 +8,11 @@
|
|||
#include <vcg/complex/algorithms/refine.h>
|
||||
#include <vcg/complex/algorithms/smooth.h>
|
||||
#include <vcg/complex/algorithms/clean.h>
|
||||
#include <vcg/complex/algorithms/update/bounding.h>
|
||||
#include <wrap/io_trimesh/export.h>
|
||||
#include <vcg/complex/algorithms/update/texture.h>
|
||||
|
||||
|
||||
template <class MeshType>
|
||||
inline void ExtractVertex(const MeshType & srcMesh,
|
||||
const typename MeshType::FaceType & f,
|
||||
int whichWedge,
|
||||
const MeshType &dstMesh,
|
||||
typename MeshType::VertexType & v)
|
||||
{
|
||||
(void)srcMesh;
|
||||
(void)dstMesh;
|
||||
|
||||
//v.P() = f.cP(whichWedge);
|
||||
v.ImportData(*f.cV(whichWedge));
|
||||
v.T() = f.cWT(whichWedge);
|
||||
}
|
||||
|
||||
template <class MeshType>
|
||||
inline bool CompareVertex(const MeshType & m,
|
||||
const typename MeshType::VertexType & vA,
|
||||
const typename MeshType::VertexType & vB)
|
||||
{
|
||||
(void)m;
|
||||
return ((vA.cT() == vB.cT())&&(vA.cP()==vB.cP()));
|
||||
}
|
||||
|
||||
#define precisionQ 0.0000000001
|
||||
|
||||
template <class TriMesh,class PolyMesh>
|
||||
class Quadrangulator
|
||||
|
@ -51,68 +30,265 @@ public:
|
|||
typedef typename PolyMesh::ScalarType PolyScalarType;
|
||||
|
||||
|
||||
///the set of all edges that belongs to integer lines
|
||||
std::set<std::pair<TriFaceType*,int> > IntegerEdges;
|
||||
struct InterpolationInfo
|
||||
{
|
||||
CoordType Pos3D;
|
||||
vcg::Point2<ScalarType> PosUV;
|
||||
ScalarType alpha;
|
||||
bool to_split;
|
||||
|
||||
///the set of all integer vertices and the other vertices on integer lines which is connectes to
|
||||
std::map<TriVertexType*,std::vector<TriVertexType*> > IntegerLineAdj;
|
||||
///the set of integer vertices
|
||||
std::set<TriVertexType*> IntegerVertices;
|
||||
///temporary polygons
|
||||
std::vector<std::vector<TriVertexType *> > polygons;
|
||||
InterpolationInfo()
|
||||
{
|
||||
Pos3D=CoordType(0,0,0);
|
||||
PosUV=vcg::Point2<ScalarType>(0,0);
|
||||
to_split=false;
|
||||
alpha=-1;
|
||||
}
|
||||
};
|
||||
|
||||
///drawing debug structures
|
||||
std::vector<std::pair<TriFaceType*,int> > IntegerLines;
|
||||
std::vector<TriVertexType*> IntegerVertex;
|
||||
//the interpolation map that is saved once to be univoque per edge
|
||||
typedef std::pair<CoordType,CoordType > KeyEdgeType;
|
||||
|
||||
std::map<KeyEdgeType,InterpolationInfo> InterpMap;
|
||||
|
||||
//ScalarType UVtolerance;
|
||||
|
||||
private:
|
||||
static bool ToSplit(const vcg::Point2<ScalarType> &uv0,
|
||||
const vcg::Point2<ScalarType> &uv1,
|
||||
int Dir,
|
||||
int IntegerLine,
|
||||
ScalarType &alpha,
|
||||
ScalarType tolerance=0.0001)
|
||||
|
||||
bool ToSplit(const vcg::Point2<ScalarType> &uv0,
|
||||
const vcg::Point2<ScalarType> &uv1,
|
||||
int Dir,
|
||||
ScalarType &alpha)
|
||||
{
|
||||
ScalarType lineF=(ScalarType)IntegerLine;
|
||||
ScalarType val0=std::min(uv0.V(Dir),uv1.V(Dir));
|
||||
ScalarType val1=std::max(uv0.V(Dir),uv1.V(Dir));
|
||||
if (lineF<(val0+tolerance))return false;
|
||||
if (lineF>(val1-tolerance))return false;
|
||||
ScalarType dist=fabs(uv0.V(Dir)-uv1.V(Dir));
|
||||
if (dist<tolerance) return false;
|
||||
alpha=(1.0-fabs(uv0.V(Dir)-lineF)/dist);
|
||||
ScalarType val0=uv0.V(Dir);
|
||||
ScalarType val1=uv1.V(Dir);
|
||||
int IntegerLine0=floor(val0);
|
||||
int IntegerLine1=floor(val1);
|
||||
if (IntegerLine0==IntegerLine1)
|
||||
return false;//no integer line pass throught the edge
|
||||
|
||||
bool swapped=false;
|
||||
if (IntegerLine0>IntegerLine1)
|
||||
{
|
||||
std::swap(IntegerLine0,IntegerLine1);
|
||||
std::swap(val0,val1);
|
||||
assert(val1>=val0);
|
||||
swapped=true;
|
||||
}
|
||||
|
||||
//then get the first if extist that overcome the threshold
|
||||
int IntegerSplit=IntegerLine0+1;
|
||||
bool found=false;
|
||||
ScalarType dist1,dist0;
|
||||
for (int i=IntegerSplit;i<=IntegerLine1;i++)
|
||||
{
|
||||
dist1=fabs(val1-IntegerSplit);
|
||||
dist0=fabs(val0-IntegerSplit);
|
||||
|
||||
// if ((dist0>=UVtolerance)&&
|
||||
// (dist1>=UVtolerance))
|
||||
if ((val0!=IntegerSplit)&&
|
||||
(val1!=IntegerSplit))
|
||||
{
|
||||
found=true;
|
||||
break;
|
||||
}
|
||||
IntegerSplit++;
|
||||
}
|
||||
if (!found)return false;
|
||||
|
||||
//have to check distance also in opposite direction
|
||||
ScalarType lenght=val1-val0;
|
||||
assert(lenght>=0);
|
||||
//alpha=1.0-(dist/lenght);
|
||||
alpha=(dist1/lenght);
|
||||
if (swapped)alpha=1-alpha;
|
||||
assert((alpha>0)&&(alpha<1));
|
||||
return true;
|
||||
}
|
||||
|
||||
///return true if the edge has to be splitted,
|
||||
///by considering the tolerance to the closest integer
|
||||
static bool ToSplit(const vcg::face::Pos<TriFaceType> &ep,
|
||||
ScalarType &alpha,
|
||||
ScalarType factor=1.0,
|
||||
ScalarType tolerance=0.0001)
|
||||
void RoundInitial(TriMesh &to_split)
|
||||
{
|
||||
//TriFaceType *f=ep.f;
|
||||
//int z=ep.z;
|
||||
TriVertexType* v0=ep.f->V(ep.z);
|
||||
TriVertexType* v1=ep.f->V1(ep.z);
|
||||
vcg::Point2<ScalarType> uv0=v0->T().P()*factor;
|
||||
vcg::Point2<ScalarType> uv1=v1->T().P()*factor;
|
||||
|
||||
///then test integer for each direction
|
||||
for (int dir=0;dir<2;dir++)
|
||||
ScalarType minTolerance=precisionQ;
|
||||
//first add all eddge
|
||||
for (int i=0;i<to_split.face.size();i++)
|
||||
{
|
||||
int Int0=std::min((int)uv0.V(dir),(int)uv1.V(dir));
|
||||
int Int1=std::max((int)uv0.V(dir),(int)uv1.V(dir));
|
||||
|
||||
for (int i=Int0;i<=Int1;i++)
|
||||
TriFaceType *f=&to_split.face[i];
|
||||
for (int j =0;j<3;j++)
|
||||
{
|
||||
bool to_split=ToSplit(uv0,uv1,dir,i,alpha,tolerance);
|
||||
if (to_split)return true;
|
||||
vcg::Point2<ScalarType> UV=f->WT(j).P();
|
||||
|
||||
int int0=floor(UV.X()+0.5);
|
||||
int int1=floor(UV.Y()+0.5);
|
||||
|
||||
ScalarType diff0=(fabs(UV.X()-(ScalarType)int0));
|
||||
ScalarType diff1=(fabs(UV.Y()-(ScalarType)int1));
|
||||
|
||||
if (diff0<minTolerance)
|
||||
UV.X()=(ScalarType)int0;
|
||||
if (diff1<minTolerance)
|
||||
UV.Y()=(ScalarType)int1;
|
||||
|
||||
f->WT(j).P()=UV;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void RoundSplits(TriMesh &to_split,int dir)
|
||||
{
|
||||
ScalarType minTolerance=precisionQ;
|
||||
//first add all eddge
|
||||
for (int i=0;i<to_split.face.size();i++)
|
||||
{
|
||||
TriFaceType *f=&to_split.face[i];
|
||||
for (int j =0;j<3;j++)
|
||||
{
|
||||
CoordType p0=f->P0(j);
|
||||
CoordType p1=f->P1(j);
|
||||
KeyEdgeType k(p0,p1);
|
||||
assert(InterpMap.count(k)==1);
|
||||
if (!InterpMap[k].to_split)continue;
|
||||
//then get the intepolated value
|
||||
vcg::Point2<ScalarType> UV=InterpMap[k].PosUV;
|
||||
|
||||
int int0=floor(UV.X()+0.5);
|
||||
int int1=floor(UV.Y()+0.5);
|
||||
|
||||
ScalarType diff0=(fabs(UV.X()-(ScalarType)int0));
|
||||
ScalarType diff1=(fabs(UV.Y()-(ScalarType)int1));
|
||||
|
||||
if (diff0<minTolerance)
|
||||
UV.X()=(ScalarType)int0;
|
||||
if (diff1<minTolerance)
|
||||
UV.Y()=(ScalarType)int1;
|
||||
|
||||
InterpMap[k].PosUV=UV;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void InitSplitMap(TriMesh &to_split,
|
||||
int dir)
|
||||
{
|
||||
assert((dir==0)||(dir==1));
|
||||
InterpMap.clear();
|
||||
//printf("direction %d\n",dir );
|
||||
//first add all eddge
|
||||
for (int i=0;i<to_split.face.size();i++)
|
||||
{
|
||||
TriFaceType *f=&to_split.face[i];
|
||||
for (int j =0;j<3;j++)
|
||||
{
|
||||
CoordType p0=f->P0(j);
|
||||
CoordType p1=f->P1(j);
|
||||
vcg::Point2<ScalarType> Uv0=f->V0(j)->T().P();
|
||||
vcg::Point2<ScalarType> Uv1=f->V1(j)->T().P();
|
||||
KeyEdgeType k(p0,p1);
|
||||
// printf("p0 (%5.5f,%5.5f,%5.5f) p1(%5.5f,%5.5f,%5.5f) \n",p0.X(),p0.Y(),p0.Z(),p1.X(),p1.Y(),p1.Z());
|
||||
// printf("uv0 (%5.5f,%5.5f) uv1(%5.5f,%5.5f) \n",Uv0.X(),Uv0.Y(),Uv1.X(),Uv1.Y());
|
||||
// fflush(stdout);
|
||||
assert(InterpMap.count(k)==0);
|
||||
InterpMap[k]=InterpolationInfo();
|
||||
}
|
||||
}
|
||||
|
||||
//then set the ones to be splitted
|
||||
for (int i=0;i<to_split.face.size();i++)
|
||||
{
|
||||
TriFaceType *f=&to_split.face[i];
|
||||
for (int j =0;j<3;j++)
|
||||
{
|
||||
CoordType p0=f->P0(j);
|
||||
CoordType p1=f->P1(j);
|
||||
vcg::Point2<ScalarType> uv0=f->V0(j)->T().P();
|
||||
vcg::Point2<ScalarType> uv1=f->V1(j)->T().P();
|
||||
|
||||
ScalarType alpha;
|
||||
if (!ToSplit(uv0,uv1,dir,alpha))continue;
|
||||
|
||||
KeyEdgeType k(p0,p1);
|
||||
assert(InterpMap.count(k)==1);
|
||||
InterpMap[k].Pos3D=p0*alpha+p1*(1-alpha);
|
||||
InterpMap[k].PosUV=uv0*alpha+uv1*(1-alpha);
|
||||
InterpMap[k].to_split=true;
|
||||
InterpMap[k].alpha=alpha;
|
||||
}
|
||||
}
|
||||
|
||||
//then make them coherent
|
||||
for (int i=0;i<to_split.face.size();i++)
|
||||
{
|
||||
TriFaceType *f=&to_split.face[i];
|
||||
for (int j =0;j<3;j++)
|
||||
{
|
||||
CoordType p0=f->P0(j);
|
||||
CoordType p1=f->P1(j);
|
||||
vcg::Point2<ScalarType> uv0=f->V0(j)->T().P();
|
||||
vcg::Point2<ScalarType> uv1=f->V1(j)->T().P();
|
||||
// if (p0>p1)continue; //only one verse of coherence
|
||||
|
||||
KeyEdgeType k0(p0,p1);
|
||||
assert(InterpMap.count(k0)==1);//there should be already in the
|
||||
//table and it should be coherent
|
||||
|
||||
KeyEdgeType k1(p1,p0);
|
||||
if(InterpMap.count(k1)==0)continue;//REAL border, no need for update
|
||||
|
||||
bool to_split0=InterpMap[k0].to_split;
|
||||
bool to_split1=InterpMap[k1].to_split;
|
||||
|
||||
//the find all possible cases
|
||||
if ((!to_split0)&&(!to_split1))continue;
|
||||
|
||||
if ((to_split0)&&(to_split1))
|
||||
{
|
||||
CoordType Pos3D=InterpMap[k1].Pos3D;
|
||||
InterpMap[k0].Pos3D=Pos3D;
|
||||
|
||||
//check if need to make coherent also the UV Position
|
||||
//skip the fake border and do the rest
|
||||
bool IsBorderFF=(f->FFp(j)==f);
|
||||
|
||||
if (!IsBorderFF) //in this case they should have same UVs
|
||||
InterpMap[k0].PosUV=InterpMap[k1].PosUV;
|
||||
else
|
||||
{
|
||||
ScalarType alpha=InterpMap[k1].alpha;
|
||||
assert((alpha>=0)&&(alpha<=1));
|
||||
alpha=1-alpha;
|
||||
InterpMap[k0].PosUV=alpha*uv0+(1-alpha)*uv1;
|
||||
InterpMap[k0].alpha=alpha;
|
||||
}
|
||||
|
||||
}
|
||||
else
|
||||
if ((!to_split0)&&(to_split1))
|
||||
{
|
||||
CoordType Pos3D=InterpMap[k1].Pos3D;
|
||||
InterpMap[k0].Pos3D=Pos3D;
|
||||
|
||||
//check if need to make coherent also the UV Position
|
||||
//skip the fake border and do the rest
|
||||
bool IsBorderFF=(f->FFp(j)==f);
|
||||
|
||||
InterpMap[k0].to_split=true;
|
||||
|
||||
if (!IsBorderFF) //in this case they should have same UVs
|
||||
InterpMap[k0].PosUV=InterpMap[k1].PosUV;
|
||||
else //recalculate , it pass across a seam
|
||||
{
|
||||
ScalarType alpha=InterpMap[k1].alpha;
|
||||
assert((alpha>=0)&&(alpha<=1));
|
||||
alpha=1-alpha;
|
||||
InterpMap[k0].PosUV=alpha*uv0+(1-alpha)*uv1;
|
||||
InterpMap[k0].alpha=alpha;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
RoundSplits(to_split,dir);
|
||||
}
|
||||
|
||||
// Basic subdivision class
|
||||
// This class must provide methods for finding the position of the newly created vertices
|
||||
|
@ -125,41 +301,38 @@ private:
|
|||
typedef typename MESH_TYPE::FaceType FaceType;
|
||||
typedef typename MESH_TYPE::CoordType CoordType;
|
||||
|
||||
ScalarType factor;
|
||||
ScalarType tolerance;
|
||||
ScalarType alpha;
|
||||
std::map<KeyEdgeType,InterpolationInfo> *MapEdge;
|
||||
|
||||
void operator()(typename MESH_TYPE::VertexType &nv,
|
||||
vcg::face::Pos<typename MESH_TYPE::FaceType> ep)
|
||||
{
|
||||
bool to_split=ToSplit(ep,alpha,factor,tolerance);
|
||||
VertexType* v0=ep.f->V0(ep.z);
|
||||
VertexType* v1=ep.f->V1(ep.z);
|
||||
assert(v0!=v1);
|
||||
|
||||
CoordType p0=v0->P();
|
||||
CoordType p1=v1->P();
|
||||
assert(p0!=p1);
|
||||
|
||||
KeyEdgeType k(p0,p1);
|
||||
bool found=(MapEdge->count(k)==1);
|
||||
assert(found);
|
||||
bool to_split=(*MapEdge)[k].to_split;
|
||||
assert(to_split);
|
||||
|
||||
///get the value on which the edge must be splitted
|
||||
VertexType* v0=ep.f->V(ep.z);
|
||||
VertexType* v1=ep.f->V1(ep.z);
|
||||
|
||||
nv.P()= v0->P()*alpha+v1->P()*(1.0-alpha);
|
||||
//get the value on which the edge must be splitted
|
||||
nv.P()= (*MapEdge)[k].Pos3D;
|
||||
//nv.N()= v0->N()*alpha+v1->N()*(1.0-alpha);
|
||||
nv.T().P()=v0->T().P()*alpha+v1->T().P()*(1.0-alpha);
|
||||
nv.T().P()=(*MapEdge)[k].PosUV;
|
||||
}
|
||||
|
||||
vcg::TexCoord2<ScalarType> WedgeInterp(vcg::TexCoord2<ScalarType> &t0,
|
||||
vcg::TexCoord2<ScalarType> &t1)
|
||||
{
|
||||
vcg::TexCoord2<ScalarType> tmp;
|
||||
// if (t0.n() != t1.n())
|
||||
// cerr << "Failed assertion: Quadrangulator::WedgeInterp1" << endl;
|
||||
// // assert(t0.n()== t1.n()); TODO put back
|
||||
tmp.n()=t0.n();
|
||||
// assert(alpha>=0); TODO put back
|
||||
if (alpha<0)
|
||||
cerr << "Failed assertion: Quadrangulator::WedgeInterp2" << endl;
|
||||
tmp.t()=(alpha*t0.t()+(1.0-alpha)*t1.t());
|
||||
return tmp;
|
||||
return (vcg::TexCoord2<ScalarType>(0,0));
|
||||
}
|
||||
|
||||
SplitMidPoint(){alpha=-1;}
|
||||
SplitMidPoint(std::map<KeyEdgeType,InterpolationInfo> *_MapEdge){MapEdge=_MapEdge;}
|
||||
};
|
||||
|
||||
template <class MESH_TYPE>
|
||||
|
@ -169,41 +342,56 @@ private:
|
|||
typedef typename MESH_TYPE::FaceType FaceType;
|
||||
typedef typename MESH_TYPE::ScalarType ScalarType;
|
||||
|
||||
std::map<KeyEdgeType,InterpolationInfo> *MapEdge;
|
||||
|
||||
public:
|
||||
ScalarType factor;
|
||||
ScalarType tolerance;
|
||||
|
||||
bool operator()(vcg::face::Pos<typename MESH_TYPE::FaceType> ep) const
|
||||
{
|
||||
ScalarType alpha;
|
||||
return(ToSplit(ep,alpha,factor,tolerance));
|
||||
VertexType* v0=ep.f->V0(ep.z);
|
||||
VertexType* v1=ep.f->V1(ep.z);
|
||||
assert(v0!=v1);
|
||||
|
||||
CoordType p0=v0->P();
|
||||
CoordType p1=v1->P();
|
||||
assert(p0!=p1);
|
||||
|
||||
KeyEdgeType k(p0,p1);
|
||||
bool found=(MapEdge->count(k)==1);
|
||||
assert(found);
|
||||
bool to_split=(*MapEdge)[k].to_split;
|
||||
return(to_split);
|
||||
}
|
||||
|
||||
EdgePredicate(std::map<KeyEdgeType,InterpolationInfo> *_MapEdge){MapEdge=_MapEdge;}
|
||||
};
|
||||
|
||||
void SplitTris(TriMesh &to_split,
|
||||
ScalarType factor=1.0,
|
||||
ScalarType tolerance=0.0001)
|
||||
void SplitTrisDir(TriMesh &to_split,
|
||||
int dir)
|
||||
{
|
||||
bool done=true;
|
||||
SplitMidPoint<TriMesh> splMd;
|
||||
EdgePredicate<TriMesh> eP;
|
||||
|
||||
splMd.tolerance=tolerance;
|
||||
splMd.factor=factor;
|
||||
eP.tolerance=tolerance;
|
||||
eP.factor=factor;
|
||||
|
||||
//int step=0;
|
||||
while (done)
|
||||
{
|
||||
printf("Number of Vertices %d \n",to_split.vn);
|
||||
fflush(stdout);
|
||||
|
||||
InitSplitMap(to_split,dir);
|
||||
|
||||
SplitMidPoint<TriMesh> splMd(&InterpMap);
|
||||
EdgePredicate<TriMesh> eP(&InterpMap);
|
||||
|
||||
done=vcg::tri::RefineE<TriMesh,SplitMidPoint<TriMesh>,EdgePredicate<TriMesh> >(to_split,splMd,eP);
|
||||
|
||||
for (unsigned int i=0;i<to_split.face.size();i++)
|
||||
for (int j=0;j<3;j++) to_split.face[i].WT(j).P()=to_split.face[i].V(j)->T().P();
|
||||
}
|
||||
printf("Number of Vertices %d \n",to_split.vn);
|
||||
fflush(stdout);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
|
||||
bool IsOnIntegerLine(vcg::Point2<ScalarType> uv0,
|
||||
vcg::Point2<ScalarType> uv1,
|
||||
ScalarType tolerance=0.0001)
|
||||
vcg::Point2<ScalarType> uv1)
|
||||
{
|
||||
for (int dir=0;dir<2;dir++)
|
||||
{
|
||||
|
@ -212,210 +400,208 @@ private:
|
|||
int integer0=floor(uv0.V(dir)+0.5);
|
||||
int integer1=floor(uv1.V(dir)+0.5);
|
||||
if (integer0!=integer1)continue;
|
||||
if ((fabs(val0-(ScalarType)integer0))>tolerance)continue;
|
||||
if ((fabs(val1-(ScalarType)integer1))>tolerance)continue;
|
||||
// if ((fabs(val0-(ScalarType)integer0))>=UVtolerance)continue;
|
||||
// if ((fabs(val1-(ScalarType)integer1))>=UVtolerance)continue;
|
||||
if (val0!=(ScalarType)floor(val0))continue;
|
||||
if (val1!=(ScalarType)floor(val1))continue;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool IsOnIntegerVertex(vcg::Point2<ScalarType> uv,
|
||||
ScalarType tolerance=0.0001)
|
||||
bool IsB)
|
||||
{
|
||||
int onIntegerL=0;
|
||||
for (int dir=0;dir<2;dir++)
|
||||
{
|
||||
ScalarType val0=uv.V(dir);
|
||||
int integer0=floor(val0+0.5);
|
||||
if ((fabs(val0-(ScalarType)integer0))>tolerance)return false;
|
||||
//if ((fabs(val0-(ScalarType)integer0))<UVtolerance)onIntegerL++;
|
||||
if (val0==(ScalarType)floor(val0))onIntegerL++;
|
||||
}
|
||||
return true;
|
||||
if ((IsB)&&(onIntegerL>0))return true;
|
||||
return (onIntegerL==2);
|
||||
}
|
||||
|
||||
void InitIntegerVectors()
|
||||
{
|
||||
IntegerLines=std::vector<std::pair<TriFaceType*,int> >(IntegerEdges.begin(),IntegerEdges.end());
|
||||
IntegerVertex=std::vector<TriVertexType* > (IntegerVertices.begin(),IntegerVertices.end());
|
||||
}
|
||||
|
||||
void EraseIntegerEdge(const vcg::face::Pos<TriFaceType> &ep)
|
||||
void InitIntegerEdgesVert(TriMesh &Tmesh)
|
||||
{
|
||||
std::pair<TriFaceType*,int> edge(ep.F(),ep.E());
|
||||
assert(IntegerEdges.count(edge)!=0);
|
||||
IntegerEdges.erase(edge);
|
||||
}
|
||||
//IntegerEdges.clear();
|
||||
vcg::tri::UpdateFlags<TriMesh>::FaceSetF(Tmesh);
|
||||
vcg::tri::UpdateFlags<TriMesh>::FaceClearS(Tmesh);
|
||||
vcg::tri::UpdateFlags<TriMesh>::VertexClearS(Tmesh);
|
||||
|
||||
void EraseIntegerEdge(const std::vector<std::pair<TriFaceType*,int> > &to_erase)
|
||||
{
|
||||
for (unsigned int i=0;i<to_erase.size();i++)
|
||||
IntegerEdges.erase(to_erase[i]);
|
||||
}
|
||||
|
||||
void TestIntegerEdges()
|
||||
{
|
||||
typedef typename std::pair<TriFaceType*,int> pair_type;
|
||||
typedef typename std::vector< pair_type > vect_type;
|
||||
typename vect_type::iterator IteIntl;
|
||||
for (IteIntl=IntegerLines.begin();
|
||||
IteIntl!=IntegerLines.end();
|
||||
IteIntl++)
|
||||
{
|
||||
int E=(*IteIntl).second;
|
||||
TriFaceType *F=(*IteIntl).first;
|
||||
TriFaceType *F1=F->FFp(E);
|
||||
if (F==F1) continue;
|
||||
int E1=F->FFi(E);
|
||||
std::pair<TriFaceType*,int> curr_edge(F1,E1);
|
||||
assert(IntegerEdges.count(curr_edge)!=0);
|
||||
}
|
||||
}
|
||||
|
||||
void InitIntegerEdgesVert(TriMesh &Tmesh,
|
||||
ScalarType factor=1.0,
|
||||
ScalarType tolerance=0.0001)
|
||||
{
|
||||
IntegerEdges.clear();
|
||||
for (unsigned int i=0;i<Tmesh.face.size();i++)
|
||||
{
|
||||
TriFaceType *f=&Tmesh.face[i];
|
||||
if (f->IsD())continue;
|
||||
for (int j=0;j<3;j++)
|
||||
{
|
||||
TriFaceType *f1=f->FFp(j);
|
||||
int e1=f->FFi(j);
|
||||
bool IsBorder=f->IsB(j);
|
||||
TriVertexType *v0=f->V0(j);
|
||||
TriVertexType *v1=f->V1(j);
|
||||
vcg::Point2<ScalarType> uv0=f->WT(j).P()*factor;
|
||||
vcg::Point2<ScalarType> uv1=f->WT((j+1)%3).P()*factor;
|
||||
if (IsOnIntegerLine(uv0,uv1,tolerance)||IsBorder)
|
||||
if (IsBorder)
|
||||
f->ClearF(j);
|
||||
else
|
||||
{
|
||||
//IntegerEdges.insert(std::pair<TriVertexType*,TriVertexType*>(v0,v1));
|
||||
IntegerEdges.insert(std::pair<TriFaceType*,int>(f,j));
|
||||
if (!IsBorder)
|
||||
IntegerEdges.insert(std::pair<TriFaceType*,int>(f1,e1));
|
||||
else
|
||||
vcg::Point2<ScalarType> uv0=f->WT(j).P();
|
||||
vcg::Point2<ScalarType> uv1=f->WT((j+1)%3).P();
|
||||
|
||||
if (IsOnIntegerLine(uv0,uv1))
|
||||
{
|
||||
IntegerVertices.insert(v0);
|
||||
IntegerVertices.insert(v1);
|
||||
f->ClearF(j);
|
||||
TriFaceType *f1=f->FFp(j);
|
||||
int z=f->FFi(j);
|
||||
assert(f1!=f);
|
||||
f1->ClearF(z);
|
||||
}
|
||||
}
|
||||
if (IsOnIntegerVertex(uv0))
|
||||
IntegerVertices.insert(v0);
|
||||
|
||||
if (IsOnIntegerVertex(uv1))
|
||||
IntegerVertices.insert(v1);
|
||||
bool BorderV=f->V(j)->IsB();
|
||||
|
||||
if (IsOnIntegerVertex(f->WT(j).P(),BorderV))
|
||||
f->V(j)->SetS();
|
||||
}
|
||||
}
|
||||
//InitIntegerNeigh(Tmesh);
|
||||
InitIntegerVectors();
|
||||
TestIntegerEdges();
|
||||
}
|
||||
|
||||
|
||||
///return the first and the last edge
|
||||
///following an integer line
|
||||
///until if reach anothe integer edge
|
||||
bool OneIntegerStep(vcg::face::Pos<TriFaceType> &ep)
|
||||
short int AlignmentEdge(TriFaceType *f,
|
||||
int edge_index)
|
||||
{
|
||||
TriFaceType *f_init=ep.f;
|
||||
TriFaceType *currF=f_init;
|
||||
//int edge_init=ep.z;
|
||||
//ep.V()=f_init->V(edge_init);
|
||||
TriVertexType* v_init=ep.V();
|
||||
bool complete_turn=false;
|
||||
do
|
||||
{
|
||||
ep.FlipE();
|
||||
///see if found an integer vert
|
||||
currF=ep.F();
|
||||
int currE=ep.E();
|
||||
assert((currE>=0)&&(currE<=4));
|
||||
|
||||
std::pair<TriFaceType*,int> curr_edge(currF,currE);
|
||||
|
||||
if (IntegerEdges.count(curr_edge)!=0)
|
||||
{
|
||||
///go to the other side
|
||||
ep.FlipV();
|
||||
assert(ep.V()!=v_init);
|
||||
return true;
|
||||
}
|
||||
ep.FlipF();
|
||||
///see if there's a border
|
||||
bool jumped=(currF==ep.F());
|
||||
if (jumped)
|
||||
return false;
|
||||
///test the complete turn
|
||||
complete_turn=(ep.F()==f_init);
|
||||
}while (!complete_turn);
|
||||
return false;
|
||||
vcg::Point2<ScalarType> uv0=f->WT(edge_index).P();
|
||||
vcg::Point2<ScalarType> uv1=f->WT((edge_index+1)%3).P();
|
||||
if (uv0.X()==uv1.X())return 0;
|
||||
if (uv0.Y()==uv1.Y())return 1;
|
||||
return -1;
|
||||
}
|
||||
|
||||
///find a polygon starting from half edge ep, return true if found
|
||||
bool FindPolygon(vcg::face::Pos<TriFaceType> &ep,
|
||||
std::vector<TriVertexType*> &poly)
|
||||
void FindPolygon(vcg::face::Pos<TriFaceType> &currPos,
|
||||
std::vector<TriVertexType *> &poly,
|
||||
std::vector<short int> &UVpoly)
|
||||
{
|
||||
|
||||
currPos.F()->SetV();
|
||||
currPos.F()->C()=vcg::Color4b(255,0,0,255);
|
||||
poly.clear();
|
||||
TriVertexType* v_init=ep.V();
|
||||
///it must start from an integer vert
|
||||
assert(IntegerVertices.count(v_init)!=0);
|
||||
poly.push_back(v_init);
|
||||
std::vector<std::pair<TriFaceType*,int> > to_erase;
|
||||
to_erase.push_back(std::pair<TriFaceType*,int>(ep.F(),ep.E()));
|
||||
assert(currPos.V()->IsS());
|
||||
TriVertexType *v_init=currPos.V();
|
||||
poly.push_back(currPos.V());
|
||||
|
||||
//retrieve UV
|
||||
int indexV0=currPos.E();
|
||||
|
||||
short int Align=AlignmentEdge(currPos.F(),currPos.E());
|
||||
|
||||
std::vector<short int> TempUVpoly;
|
||||
TempUVpoly.push_back(Align);
|
||||
|
||||
do
|
||||
{
|
||||
bool done=OneIntegerStep(ep);
|
||||
if (!done)
|
||||
currPos.NextNotFaux();
|
||||
currPos.F()->SetV();
|
||||
currPos.F()->C()=vcg::Color4b(255,0,0,255);
|
||||
|
||||
if ((currPos.V()->IsS())&&(currPos.V()!=v_init))
|
||||
{
|
||||
EraseIntegerEdge(to_erase);
|
||||
return false;
|
||||
poly.push_back(currPos.V());
|
||||
|
||||
short int Align=AlignmentEdge(currPos.F(),currPos.E());
|
||||
|
||||
TempUVpoly.push_back(Align);
|
||||
}
|
||||
to_erase.push_back(std::pair<TriFaceType*,int>(ep.F(),ep.E()));
|
||||
TriVertexType* v_curr=ep.V();
|
||||
if ((IntegerVertices.count(v_curr)!=0)&&
|
||||
(v_curr!=v_init))
|
||||
poly.push_back(v_curr);
|
||||
}while(ep.V()!=v_init);
|
||||
EraseIntegerEdge(to_erase);
|
||||
return true;
|
||||
|
||||
}while (currPos.V()!=v_init);
|
||||
|
||||
//then shift the order of UV by one
|
||||
//to be consistent with edge ordering
|
||||
int size=TempUVpoly.size();
|
||||
for (int i=0;i<size;i++)
|
||||
UVpoly.push_back(TempUVpoly[(i+1)%size]);
|
||||
}
|
||||
|
||||
void FindPolygons(TriMesh &Tmesh,
|
||||
std::vector<std::vector<TriVertexType *> > &polygons)
|
||||
std::vector<std::vector<TriVertexType *> > &polygons,
|
||||
std::vector<std::vector<short int> > &UV)
|
||||
{
|
||||
//int limit=2;
|
||||
vcg::tri::UpdateFlags<TriMesh>::FaceClearV(Tmesh);
|
||||
for (unsigned int i=0;i<Tmesh.face.size();i++)
|
||||
{
|
||||
TriFaceType * f=&Tmesh.face[i];
|
||||
if (f->IsV())continue;
|
||||
|
||||
for (int j=0;j<3;j++)
|
||||
{
|
||||
TriVertexType* v0=f->V0(j);
|
||||
//TriVertexType* v1=f->V1(j);
|
||||
if (!v0->IsS())continue;
|
||||
if (f->IsF(j))continue;
|
||||
|
||||
vcg::face::Pos<TriFaceType> startPos(f,j);
|
||||
|
||||
//std::pair<TriVertexType*,TriVertexType*> edge(v0,v1);*/
|
||||
std::pair<TriFaceType*,int> edge(f,j);
|
||||
if (IntegerEdges.count(edge)==0)continue;///edge already used or not integer
|
||||
if (IntegerVertices.count(v0)==0)continue; ///must start from integer vert
|
||||
///create the pos
|
||||
vcg::face::Pos<TriFaceType> ep(f,j);
|
||||
std::vector<TriVertexType *> poly;
|
||||
std::vector< short int> UVpoly;
|
||||
|
||||
bool found=FindPolygon(ep,poly);
|
||||
if (found)
|
||||
FindPolygon(startPos,poly,UVpoly);
|
||||
|
||||
if (poly.size()>2)
|
||||
{
|
||||
std::reverse(poly.begin(),poly.end());///REVERSE ORDER
|
||||
assert(poly.size()==UVpoly.size());
|
||||
polygons.push_back(poly);
|
||||
UV.push_back(UVpoly);
|
||||
}
|
||||
//only one polygon per initial face
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void InitVertexQuadMesh(TriMesh &Tmesh)
|
||||
//FUNCTIONS NEEDED BY "UV WEDGE TO VERTEX" FILTER
|
||||
static void ExtractVertex(const TriMesh & srcMesh,
|
||||
const TriFaceType & f,
|
||||
int whichWedge,
|
||||
const TriMesh & dstMesh,
|
||||
TriVertexType & v)
|
||||
{
|
||||
FindPolygons(Tmesh,polygons);
|
||||
(void)srcMesh;
|
||||
(void)dstMesh;
|
||||
// This is done to preserve every single perVertex property
|
||||
// perVextex Texture Coordinate is instead obtained from perWedge one.
|
||||
v.ImportData(*f.cV(whichWedge));
|
||||
v.T() = f.cWT(whichWedge);
|
||||
}
|
||||
|
||||
static bool CompareVertex(const TriMesh & m,
|
||||
TriVertexType & vA,
|
||||
TriVertexType & vB)
|
||||
{
|
||||
(void)m;
|
||||
return (vA.cT() == vB.cT());
|
||||
}
|
||||
|
||||
void ConvertWTtoVT(TriMesh &Tmesh)
|
||||
{
|
||||
int vn = Tmesh.vn;
|
||||
vcg::tri::AttributeSeam::SplitVertex(Tmesh, ExtractVertex, CompareVertex);
|
||||
vcg::tri::UpdateTopology<TriMesh>::FaceFace(Tmesh);
|
||||
// vcg::tri::UpdateFlags<TriMesh>::FaceBorderFromFF(Tmesh);
|
||||
}
|
||||
|
||||
void ConvertVTtoWT(TriMesh &Tmesh)
|
||||
{
|
||||
vcg::tri::UpdateTexture<TriMesh>::WedgeTexFromVertexTex(Tmesh);
|
||||
vcg::tri::Clean<TriMesh>::RemoveDuplicateVertex(Tmesh);
|
||||
}
|
||||
|
||||
void ReupdateMesh(TriMesh &Tmesh)
|
||||
{
|
||||
vcg::tri::UpdateNormal<TriMesh>::PerFaceNormalized(Tmesh); // update Normals
|
||||
vcg::tri::UpdateNormal<TriMesh>::PerVertexNormalized(Tmesh);// update Normals
|
||||
//compact the mesh
|
||||
vcg::tri::Allocator<TriMesh>::CompactVertexVector(Tmesh);
|
||||
vcg::tri::Allocator<TriMesh>::CompactFaceVector(Tmesh);
|
||||
vcg::tri::UpdateTopology<TriMesh>::FaceFace(Tmesh); // update Topology
|
||||
vcg::tri::UpdateTopology<TriMesh>::TestFaceFace(Tmesh); //and test it
|
||||
//set flags
|
||||
vcg::tri::UpdateFlags<TriMesh>::VertexClearV(Tmesh);
|
||||
vcg::tri::UpdateFlags<TriMesh>::FaceBorderFromFF(Tmesh);
|
||||
vcg::tri::UpdateFlags<TriMesh>::VertexBorderFromFace(Tmesh);
|
||||
}
|
||||
|
||||
public:
|
||||
|
@ -423,7 +609,9 @@ public:
|
|||
|
||||
void TestIsProper(TriMesh &Tmesh)
|
||||
{
|
||||
///test manifoldness
|
||||
|
||||
|
||||
//test manifoldness
|
||||
int test=vcg::tri::Clean<TriMesh>::CountNonManifoldVertexFF(Tmesh);
|
||||
//assert(test==0);
|
||||
if (test != 0)
|
||||
|
@ -450,59 +638,80 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void Quadrangulate(TriMesh &Tmesh,
|
||||
PolyMesh &Pmesh,
|
||||
ScalarType factor=1.0,
|
||||
ScalarType tolerance=0.000001)
|
||||
std::vector< std::vector< short int> > &UV)
|
||||
{
|
||||
TestIsProper(Tmesh);
|
||||
vcg::tri::AttributeSeam::SplitVertex(Tmesh, ExtractVertex<TriMesh>, CompareVertex<TriMesh>);
|
||||
|
||||
RoundInitial(Tmesh);
|
||||
|
||||
//UVtolerance=tolerance;
|
||||
|
||||
//split to per vert
|
||||
ConvertWTtoVT(Tmesh);
|
||||
|
||||
|
||||
vcg::tri::Allocator<TriMesh>::CompactVertexVector(Tmesh);
|
||||
vcg::tri::Allocator<TriMesh>::CompactFaceVector(Tmesh);
|
||||
vcg::tri::UpdateTopology<TriMesh>::FaceFace(Tmesh);
|
||||
(void)Pmesh;
|
||||
//TestIsProper(Tmesh);
|
||||
|
||||
//then split the tris along X
|
||||
SplitTrisDir(Tmesh,0);
|
||||
SplitTrisDir(Tmesh,1);
|
||||
|
||||
//merge back the mesh and WT coords
|
||||
ConvertVTtoWT(Tmesh);
|
||||
|
||||
//CleanMesh(Pmesh);
|
||||
|
||||
//update properties of the mesh
|
||||
ReupdateMesh(Tmesh);
|
||||
|
||||
//test manifoldness
|
||||
TestIsProper(Tmesh);
|
||||
|
||||
///then split the tris
|
||||
SplitTris(Tmesh,factor,tolerance);
|
||||
///join the vertices back!
|
||||
//ScalarType EPS=(ScalarType)0.00000001;
|
||||
ScalarType EPS=(ScalarType)0.000001;
|
||||
vcg::tri::Clean<TriMesh>::MergeCloseVertex(Tmesh,EPS);
|
||||
InitIntegerEdgesVert(Tmesh);
|
||||
|
||||
vcg::tri::UpdateNormal<TriMesh>::PerFaceNormalized(Tmesh); // update Normals
|
||||
vcg::tri::UpdateNormal<TriMesh>::PerVertexNormalized(Tmesh);// update Normals
|
||||
///compact the mesh
|
||||
vcg::tri::Allocator<TriMesh>::CompactVertexVector(Tmesh);
|
||||
vcg::tri::Allocator<TriMesh>::CompactFaceVector(Tmesh);
|
||||
vcg::tri::UpdateTopology<TriMesh>::FaceFace(Tmesh); // update Topology
|
||||
vcg::tri::UpdateTopology<TriMesh>::TestFaceFace(Tmesh); //and test it
|
||||
///set flags
|
||||
vcg::tri::UpdateFlags<TriMesh>::VertexClearV(Tmesh);
|
||||
vcg::tri::UpdateFlags<TriMesh>::FaceBorderFromFF(Tmesh);
|
||||
vcg::tri::UpdateFlags<TriMesh>::VertexBorderFromFace(Tmesh);
|
||||
///test manifoldness
|
||||
TestIsProper(Tmesh);
|
||||
// int E3=vcg::tri::io::ExporterPLY<TriMesh>::Save(Tmesh,"./maremma_hane.ply",
|
||||
// vcg::tri::io::Mask::IOM_FACEFLAGS|
|
||||
// vcg::tri::io::Mask::IOM_VERTFLAGS);
|
||||
|
||||
vcg::tri::UpdateFlags<TriMesh>::VertexClearV(Tmesh);
|
||||
for (int i=0;i<Tmesh.face.size();i++)
|
||||
Tmesh.face[i].C()=vcg::Color4b(255,255,255,255);
|
||||
|
||||
InitIntegerEdgesVert(Tmesh,factor,tolerance);
|
||||
InitVertexQuadMesh(Tmesh);
|
||||
std::vector<std::vector<TriVertexType *> > polygons;
|
||||
FindPolygons(Tmesh,polygons,UV);
|
||||
|
||||
///then add to the polygonal mesh
|
||||
//then add to the polygonal mesh
|
||||
Pmesh.Clear();
|
||||
///first create vertices
|
||||
vcg::tri::Allocator<PolyMesh>::AddVertices(Pmesh,IntegerVertex.size());
|
||||
std::map<TriVertexType*,int> VertMap;
|
||||
for(unsigned int i=0;i<IntegerVertex.size();i++)
|
||||
|
||||
int numV=vcg::tri::UpdateSelection<TriMesh>::VertexCount(Tmesh);
|
||||
|
||||
//first create vertices
|
||||
vcg::tri::Allocator<PolyMesh>::AddVertices(Pmesh,numV);
|
||||
|
||||
std::map<CoordType,int> VertMap;
|
||||
int index=0;
|
||||
for(unsigned int i=0;i<Tmesh.vert.size();i++)
|
||||
{
|
||||
CoordType pos=IntegerVertex[i]->P();
|
||||
CoordType norm=IntegerVertex[i]->N();
|
||||
Pmesh.vert[i].P()=typename PolyMesh::CoordType(pos.X(),pos.Y(),pos.Z());
|
||||
Pmesh.vert[i].N()=typename PolyMesh::CoordType(norm.X(),norm.Y(),norm.Z());
|
||||
VertMap[IntegerVertex[i]]=i;
|
||||
if (!Tmesh.vert[i].IsS())continue;
|
||||
|
||||
CoordType pos=Tmesh.vert[i].P();
|
||||
CoordType norm=Tmesh.vert[i].N();
|
||||
vcg::Point2<ScalarType> UV=Tmesh.vert[i].T().P();
|
||||
Pmesh.vert[index].P()=typename PolyMesh::CoordType(pos.X(),pos.Y(),pos.Z());
|
||||
Pmesh.vert[index].N()=typename PolyMesh::CoordType(norm.X(),norm.Y(),norm.Z());
|
||||
Pmesh.vert[index].T().P()=UV;
|
||||
VertMap[pos]=index;
|
||||
index++;
|
||||
}
|
||||
///then add polygonal mesh
|
||||
|
||||
//then add polygonal mesh
|
||||
vcg::tri::Allocator<PolyMesh>::AddFaces(Pmesh,polygons.size());
|
||||
for (unsigned int i=0;i<polygons.size();i++)
|
||||
{
|
||||
|
@ -510,11 +719,14 @@ public:
|
|||
Pmesh.face[i].Alloc(size);
|
||||
for (int j=0;j<size;j++)
|
||||
{
|
||||
TriVertexType* v=polygons[i][j];
|
||||
int index=VertMap[v];
|
||||
CoordType pos=(polygons[i][j])->P();
|
||||
assert(VertMap.count(pos)==1);
|
||||
int index=VertMap[pos];
|
||||
Pmesh.face[i].V(j)=&(Pmesh.vert[index]);
|
||||
}
|
||||
}
|
||||
|
||||
//E3=vcg::tri::io::ExporterOBJ<PolyMesh>::Save(Pmesh,"./maremma_hane.obj",0);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in New Issue