Updated Eigen library to the 3.2.2 stable version.
This commit is contained in:
parent
af0f42fedf
commit
54875ffa0a
|
@ -95,7 +95,7 @@
|
|||
extern "C" {
|
||||
// In theory we should only include immintrin.h and not the other *mmintrin.h header files directly.
|
||||
// Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus:
|
||||
#ifdef __INTEL_COMPILER
|
||||
#if defined(__INTEL_COMPILER) && __INTEL_COMPILER >= 1110
|
||||
#include <immintrin.h>
|
||||
#else
|
||||
#include <emmintrin.h>
|
||||
|
@ -165,7 +165,7 @@
|
|||
#endif
|
||||
|
||||
// required for __cpuid, needs to be included after cmath
|
||||
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64))
|
||||
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64)) && (!defined(_WIN32_WCE))
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
|
|
|
@ -274,30 +274,13 @@ template<> struct ldlt_inplace<Lower>
|
|||
return true;
|
||||
}
|
||||
|
||||
RealScalar cutoff(0), biggest_in_corner;
|
||||
|
||||
for (Index k = 0; k < size; ++k)
|
||||
{
|
||||
// Find largest diagonal element
|
||||
Index index_of_biggest_in_corner;
|
||||
biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
|
||||
mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
|
||||
index_of_biggest_in_corner += k;
|
||||
|
||||
if(k == 0)
|
||||
{
|
||||
// The biggest overall is the point of reference to which further diagonals
|
||||
// are compared; if any diagonal is negligible compared
|
||||
// to the largest overall, the algorithm bails.
|
||||
cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
|
||||
}
|
||||
|
||||
// Finish early if the matrix is not full rank.
|
||||
if(biggest_in_corner < cutoff)
|
||||
{
|
||||
for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i;
|
||||
break;
|
||||
}
|
||||
|
||||
transpositions.coeffRef(k) = index_of_biggest_in_corner;
|
||||
if(k != index_of_biggest_in_corner)
|
||||
{
|
||||
|
@ -328,15 +311,20 @@ template<> struct ldlt_inplace<Lower>
|
|||
|
||||
if(k>0)
|
||||
{
|
||||
temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint();
|
||||
temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
|
||||
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
|
||||
if(rs>0)
|
||||
A21.noalias() -= A20 * temp.head(k);
|
||||
}
|
||||
if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff))
|
||||
A21 /= mat.coeffRef(k,k);
|
||||
|
||||
|
||||
// In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
|
||||
// was smaller than the cutoff value. However, soince LDLT is not rank-revealing
|
||||
// we should only make sure we do not introduce INF or NaN values.
|
||||
// LAPACK also uses 0 as the cutoff value.
|
||||
RealScalar realAkk = numext::real(mat.coeffRef(k,k));
|
||||
if((rs>0) && (abs(realAkk) > RealScalar(0)))
|
||||
A21 /= realAkk;
|
||||
|
||||
if (sign == PositiveSemiDef) {
|
||||
if (realAkk < 0) sign = Indefinite;
|
||||
} else if (sign == NegativeSemiDef) {
|
||||
|
@ -516,14 +504,20 @@ struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
|
|||
typedef typename LDLTType::MatrixType MatrixType;
|
||||
typedef typename LDLTType::Scalar Scalar;
|
||||
typedef typename LDLTType::RealScalar RealScalar;
|
||||
const Diagonal<const MatrixType> vectorD = dec().vectorD();
|
||||
RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() * NumTraits<Scalar>::epsilon(),
|
||||
RealScalar(1) / NumTraits<RealScalar>::highest()); // motivated by LAPACK's xGELSS
|
||||
const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
|
||||
// In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
|
||||
// as motivated by LAPACK's xGELSS:
|
||||
// RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
|
||||
// However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
|
||||
// diagonal element is not well justified and to numerical issues in some cases.
|
||||
// Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
|
||||
RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
|
||||
|
||||
for (Index i = 0; i < vectorD.size(); ++i) {
|
||||
if(abs(vectorD(i)) > tolerance)
|
||||
dst.row(i) /= vectorD(i);
|
||||
dst.row(i) /= vectorD(i);
|
||||
else
|
||||
dst.row(i).setZero();
|
||||
dst.row(i).setZero();
|
||||
}
|
||||
|
||||
// dst = L^-T (D^-1 L^-1 P b)
|
||||
|
@ -576,7 +570,7 @@ MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
|
|||
// L^* P
|
||||
res = matrixU() * res;
|
||||
// D(L^*P)
|
||||
res = vectorD().asDiagonal() * res;
|
||||
res = vectorD().real().asDiagonal() * res;
|
||||
// L(DL^*P)
|
||||
res = matrixL() * res;
|
||||
// P^T (LDL^*P)
|
||||
|
|
|
@ -81,7 +81,7 @@ struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprTyp
|
|||
&& (InnerStrideAtCompileTime == 1)
|
||||
? PacketAccessBit : 0,
|
||||
MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % 16) == 0)) ? AlignedBit : 0,
|
||||
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1) ? LinearAccessBit : 0,
|
||||
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (traits<XprType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
|
||||
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
|
||||
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
|
||||
Flags0 = traits<XprType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
|
||||
|
|
|
@ -43,6 +43,17 @@ struct CommaInitializer
|
|||
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
|
||||
}
|
||||
|
||||
/* Copy/Move constructor which transfers ownership. This is crucial in
|
||||
* absence of return value optimization to avoid assertions during destruction. */
|
||||
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
|
||||
inline CommaInitializer(const CommaInitializer& o)
|
||||
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
|
||||
// Mark original object as finished. In absence of R-value references we need to const_cast:
|
||||
const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
|
||||
const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
|
||||
const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
|
||||
}
|
||||
|
||||
/* inserts a scalar value in the target matrix */
|
||||
CommaInitializer& operator,(const Scalar& s)
|
||||
{
|
||||
|
|
|
@ -24,6 +24,14 @@ namespace internal {
|
|||
|
||||
struct constructor_without_unaligned_array_assert {};
|
||||
|
||||
template<typename T, int Size> void check_static_allocation_size()
|
||||
{
|
||||
// if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit
|
||||
#if EIGEN_STACK_ALLOCATION_LIMIT
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
|
||||
* to 16 bytes boundary if the total size is a multiple of 16 bytes.
|
||||
|
@ -38,12 +46,12 @@ struct plain_array
|
|||
|
||||
plain_array()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -76,12 +84,12 @@ struct plain_array<T, Size, MatrixOrArrayOptions, 16>
|
|||
plain_array()
|
||||
{
|
||||
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0xf);
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -589,7 +589,7 @@ struct linspaced_op_impl<Scalar,true>
|
|||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
|
||||
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }
|
||||
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); }
|
||||
|
||||
const Scalar m_low;
|
||||
const Scalar m_step;
|
||||
|
@ -609,7 +609,7 @@ template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_o
|
|||
template <typename Scalar, bool RandomAccess> struct linspaced_op
|
||||
{
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/(num_steps-1))) {}
|
||||
linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {}
|
||||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
|
||||
|
|
|
@ -237,6 +237,8 @@ template<typename Derived> class MapBase<Derived, WriteAccessors>
|
|||
using Base::Base::operator=;
|
||||
};
|
||||
|
||||
#undef EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MAPBASE_H
|
||||
|
|
|
@ -101,7 +101,7 @@ struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
|
|||
template<typename Derived> struct match {
|
||||
enum {
|
||||
HasDirectAccess = internal::has_direct_access<Derived>::ret,
|
||||
StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
|
||||
StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
|
||||
InnerStrideMatch = int(StrideType::InnerStrideAtCompileTime)==int(Dynamic)
|
||||
|| int(StrideType::InnerStrideAtCompileTime)==int(Derived::InnerStrideAtCompileTime)
|
||||
|| (int(StrideType::InnerStrideAtCompileTime)==0 && int(Derived::InnerStrideAtCompileTime)==1),
|
||||
|
@ -172,8 +172,12 @@ protected:
|
|||
}
|
||||
else
|
||||
::new (static_cast<Base*>(this)) Base(expr.data(), expr.rows(), expr.cols());
|
||||
::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(),
|
||||
StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride());
|
||||
|
||||
if(Expression::IsVectorAtCompileTime && (!PlainObjectType::IsVectorAtCompileTime) && ((Expression::Flags&RowMajorBit)!=(PlainObjectType::Flags&RowMajorBit)))
|
||||
::new (&m_stride) StrideBase(expr.innerStride(), StrideType::InnerStrideAtCompileTime==0?0:1);
|
||||
else
|
||||
::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(),
|
||||
StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride());
|
||||
}
|
||||
|
||||
StrideBase m_stride;
|
||||
|
|
|
@ -278,21 +278,21 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
|||
|
||||
/** Efficient triangular matrix times vector/matrix product */
|
||||
template<typename OtherDerived>
|
||||
TriangularProduct<Mode,true,MatrixType,false,OtherDerived, OtherDerived::IsVectorAtCompileTime>
|
||||
TriangularProduct<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
|
||||
operator*(const MatrixBase<OtherDerived>& rhs) const
|
||||
{
|
||||
return TriangularProduct
|
||||
<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
|
||||
<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
|
||||
(m_matrix, rhs.derived());
|
||||
}
|
||||
|
||||
/** Efficient vector/matrix times triangular matrix product */
|
||||
template<typename OtherDerived> friend
|
||||
TriangularProduct<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
|
||||
TriangularProduct<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
|
||||
operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
|
||||
{
|
||||
return TriangularProduct
|
||||
<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
|
||||
<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
|
||||
(lhs.derived(),rhs.m_matrix);
|
||||
}
|
||||
|
||||
|
|
|
@ -54,8 +54,25 @@
|
|||
#endif
|
||||
|
||||
#if defined EIGEN_USE_MKL
|
||||
# include <mkl.h>
|
||||
/*Check IMKL version for compatibility: < 10.3 is not usable with Eigen*/
|
||||
# ifndef INTEL_MKL_VERSION
|
||||
# undef EIGEN_USE_MKL /* INTEL_MKL_VERSION is not even defined on older versions */
|
||||
# elif INTEL_MKL_VERSION < 100305 /* the intel-mkl-103-release-notes say this was when the lapacke.h interface was added*/
|
||||
# undef EIGEN_USE_MKL
|
||||
# endif
|
||||
# ifndef EIGEN_USE_MKL
|
||||
/*If the MKL version is too old, undef everything*/
|
||||
# undef EIGEN_USE_MKL_ALL
|
||||
# undef EIGEN_USE_BLAS
|
||||
# undef EIGEN_USE_LAPACKE
|
||||
# undef EIGEN_USE_MKL_VML
|
||||
# undef EIGEN_USE_LAPACKE_STRICT
|
||||
# undef EIGEN_USE_LAPACKE
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#include <mkl.h>
|
||||
#if defined EIGEN_USE_MKL
|
||||
#include <mkl_lapacke.h>
|
||||
#define EIGEN_MKL_VML_THRESHOLD 128
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
|
||||
#define EIGEN_WORLD_VERSION 3
|
||||
#define EIGEN_MAJOR_VERSION 2
|
||||
#define EIGEN_MINOR_VERSION 1
|
||||
#define EIGEN_MINOR_VERSION 2
|
||||
|
||||
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
|
||||
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
|
||||
|
@ -289,7 +289,8 @@ namespace Eigen {
|
|||
#endif
|
||||
|
||||
#ifndef EIGEN_STACK_ALLOCATION_LIMIT
|
||||
#define EIGEN_STACK_ALLOCATION_LIMIT 20000
|
||||
// 131072 == 128 KB
|
||||
#define EIGEN_STACK_ALLOCATION_LIMIT 131072
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_DEFAULT_IO_FORMAT
|
||||
|
|
|
@ -272,12 +272,12 @@ inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
|
|||
// The defined(_mm_free) is just here to verify that this MSVC version
|
||||
// implements _mm_malloc/_mm_free based on the corresponding _aligned_
|
||||
// functions. This may not always be the case and we just try to be safe.
|
||||
#if defined(_MSC_VER) && defined(_mm_free)
|
||||
#if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free)
|
||||
result = _aligned_realloc(ptr,new_size,16);
|
||||
#else
|
||||
result = generic_aligned_realloc(ptr,new_size,old_size);
|
||||
#endif
|
||||
#elif defined(_MSC_VER)
|
||||
#elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
|
||||
result = _aligned_realloc(ptr,new_size,16);
|
||||
#else
|
||||
result = handmade_aligned_realloc(ptr,new_size,old_size);
|
||||
|
@ -777,9 +777,9 @@ namespace internal {
|
|||
|
||||
#ifdef EIGEN_CPUID
|
||||
|
||||
inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
|
||||
inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
|
||||
{
|
||||
return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
|
||||
return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
|
||||
}
|
||||
|
||||
inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
|
||||
|
@ -921,13 +921,16 @@ inline void queryCacheSizes(int& l1, int& l2, int& l3)
|
|||
{
|
||||
#ifdef EIGEN_CPUID
|
||||
int abcd[4];
|
||||
const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
|
||||
const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
|
||||
const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
|
||||
|
||||
// identify the CPU vendor
|
||||
EIGEN_CPUID(abcd,0x0,0);
|
||||
int max_std_funcs = abcd[1];
|
||||
if(cpuid_is_vendor(abcd,"GenuineIntel"))
|
||||
if(cpuid_is_vendor(abcd,GenuineIntel))
|
||||
queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
|
||||
else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
|
||||
else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
|
||||
queryCacheSizes_amd(l1,l2,l3);
|
||||
else
|
||||
// by default let's use Intel's API
|
||||
|
|
|
@ -203,6 +203,8 @@ public:
|
|||
* \li \c Quaternionf for \c float
|
||||
* \li \c Quaterniond for \c double
|
||||
*
|
||||
* \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
|
||||
*
|
||||
* \sa class AngleAxis, class Transform
|
||||
*/
|
||||
|
||||
|
@ -344,7 +346,7 @@ class Map<const Quaternion<_Scalar>, _Options >
|
|||
|
||||
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
||||
*
|
||||
* The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
|
||||
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
|
||||
* \code *coeffs == {x, y, z, w} \endcode
|
||||
*
|
||||
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
|
||||
|
@ -464,7 +466,7 @@ QuaternionBase<Derived>::_transformVector(Vector3 v) const
|
|||
// Note that this algorithm comes from the optimization by hand
|
||||
// of the conversion to a Matrix followed by a Matrix/Vector product.
|
||||
// It appears to be much faster than the common algorithm found
|
||||
// in the litterature (30 versus 39 flops). It also requires two
|
||||
// in the literature (30 versus 39 flops). It also requires two
|
||||
// Vector3 as temporaries.
|
||||
Vector3 uv = this->vec().cross(v);
|
||||
uv += uv;
|
||||
|
@ -584,7 +586,7 @@ inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Deri
|
|||
// which yields a singular value problem
|
||||
if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
|
||||
{
|
||||
c = max<Scalar>(c,-1);
|
||||
c = (max)(c,Scalar(-1));
|
||||
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
|
||||
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
|
||||
Vector3 axis = svd.matrixV().col(2);
|
||||
|
@ -667,10 +669,10 @@ QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& oth
|
|||
{
|
||||
using std::acos;
|
||||
using std::abs;
|
||||
double d = abs(this->dot(other));
|
||||
if (d>=1.0)
|
||||
Scalar d = abs(this->dot(other));
|
||||
if (d>=Scalar(1))
|
||||
return Scalar(0);
|
||||
return static_cast<Scalar>(2 * acos(d));
|
||||
return Scalar(2) * acos(d);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -194,9 +194,9 @@ public:
|
|||
/** type of the matrix used to represent the linear part of the transformation */
|
||||
typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
|
||||
/** type of read/write reference to the linear part of the transformation */
|
||||
typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact)> LinearPart;
|
||||
typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart;
|
||||
/** type of read reference to the linear part of the transformation */
|
||||
typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact)> ConstLinearPart;
|
||||
typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart;
|
||||
/** type of read/write reference to the affine part of the transformation */
|
||||
typedef typename internal::conditional<int(Mode)==int(AffineCompact),
|
||||
MatrixType&,
|
||||
|
|
|
@ -113,7 +113,7 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
|||
const Index n = src.cols(); // number of measurements
|
||||
|
||||
// required for demeaning ...
|
||||
const RealScalar one_over_n = 1 / static_cast<RealScalar>(n);
|
||||
const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n);
|
||||
|
||||
// computation of mean
|
||||
const VectorType src_mean = src.rowwise().sum() * one_over_n;
|
||||
|
@ -136,16 +136,16 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
|||
|
||||
// Eq. (39)
|
||||
VectorType S = VectorType::Ones(m);
|
||||
if (sigma.determinant()<0) S(m-1) = -1;
|
||||
if (sigma.determinant()<Scalar(0)) S(m-1) = Scalar(-1);
|
||||
|
||||
// Eq. (40) and (43)
|
||||
const VectorType& d = svd.singularValues();
|
||||
Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
|
||||
if (rank == m-1) {
|
||||
if ( svd.matrixU().determinant() * svd.matrixV().determinant() > 0 ) {
|
||||
if ( svd.matrixU().determinant() * svd.matrixV().determinant() > Scalar(0) ) {
|
||||
Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose();
|
||||
} else {
|
||||
const Scalar s = S(m-1); S(m-1) = -1;
|
||||
const Scalar s = S(m-1); S(m-1) = Scalar(-1);
|
||||
Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
|
||||
S(m-1) = s;
|
||||
}
|
||||
|
@ -156,7 +156,7 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
|||
if (with_scaling)
|
||||
{
|
||||
// Eq. (42)
|
||||
const Scalar c = 1/src_var * svd.singularValues().dot(S);
|
||||
const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S);
|
||||
|
||||
// Eq. (41)
|
||||
Rt.col(m).head(m) = dst_mean;
|
||||
|
|
|
@ -48,7 +48,7 @@ void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vec
|
|||
typedef typename MatrixType::Index Index;
|
||||
enum { TFactorSize = MatrixType::ColsAtCompileTime };
|
||||
Index nbVecs = vectors.cols();
|
||||
Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize> T(nbVecs,nbVecs);
|
||||
Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize, ColMajor> T(nbVecs,nbVecs);
|
||||
make_block_householder_triangular_factor(T, vectors, hCoeffs);
|
||||
|
||||
const TriangularView<const VectorsType, UnitLower>& V(vectors);
|
||||
|
|
|
@ -61,6 +61,7 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|||
VectorType s(n), t(n);
|
||||
|
||||
RealScalar tol2 = tol*tol;
|
||||
RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
|
||||
int i = 0;
|
||||
int restarts = 0;
|
||||
|
||||
|
@ -69,7 +70,7 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|||
Scalar rho_old = rho;
|
||||
|
||||
rho = r0.dot(r);
|
||||
if (internal::isMuchSmallerThan(rho,r0_sqnorm))
|
||||
if (abs(rho) < eps2*r0_sqnorm)
|
||||
{
|
||||
// The new residual vector became too orthogonal to the arbitrarily choosen direction r0
|
||||
// Let's restart with a new r0:
|
||||
|
|
|
@ -20,10 +20,11 @@ namespace Eigen {
|
|||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
|
||||
*
|
||||
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A
|
||||
* is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q
|
||||
* are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal
|
||||
* coefficients) of U are sorted in such a way that any zeros are at the end.
|
||||
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
|
||||
* decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
|
||||
* upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
|
||||
* decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
|
||||
* zeros are at the end.
|
||||
*
|
||||
* This decomposition provides the generic approach to solving systems of linear equations, computing
|
||||
* the rank, invertibility, inverse, kernel, and determinant.
|
||||
|
@ -511,8 +512,8 @@ typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant
|
|||
}
|
||||
|
||||
/** \returns the matrix represented by the decomposition,
|
||||
* i.e., it returns the product: P^{-1} L U Q^{-1}.
|
||||
* This function is provided for debug purpose. */
|
||||
* i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
|
||||
* This function is provided for debug purposes. */
|
||||
template<typename MatrixType>
|
||||
MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
|
||||
{
|
||||
|
|
|
@ -109,7 +109,7 @@ class NaturalOrdering
|
|||
* \class COLAMDOrdering
|
||||
*
|
||||
* Functor computing the \em column \em approximate \em minimum \em degree ordering
|
||||
* The matrix should be in column-major format
|
||||
* The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
|
||||
*/
|
||||
template<typename Index>
|
||||
class COLAMDOrdering
|
||||
|
@ -118,10 +118,14 @@ class COLAMDOrdering
|
|||
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||||
typedef Matrix<Index, Dynamic, 1> IndexVector;
|
||||
|
||||
/** Compute the permutation vector form a sparse matrix */
|
||||
/** Compute the permutation vector \a perm form the sparse matrix \a mat
|
||||
* \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
void operator() (const MatrixType& mat, PermutationType& perm)
|
||||
{
|
||||
eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
|
||||
|
||||
Index m = mat.rows();
|
||||
Index n = mat.cols();
|
||||
Index nnz = mat.nonZeros();
|
||||
|
@ -132,12 +136,12 @@ class COLAMDOrdering
|
|||
Index stats [COLAMD_STATS];
|
||||
internal::colamd_set_defaults(knobs);
|
||||
|
||||
Index info;
|
||||
IndexVector p(n+1), A(Alen);
|
||||
for(Index i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
|
||||
for(Index i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
|
||||
// Call Colamd routine to compute the ordering
|
||||
info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
|
||||
Index info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
|
||||
EIGEN_UNUSED_VARIABLE(info);
|
||||
eigen_assert( info && "COLAMD failed " );
|
||||
|
||||
perm.resize(n);
|
||||
|
|
|
@ -76,7 +76,8 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
|||
m_colsTranspositions(),
|
||||
m_temp(),
|
||||
m_colSqNorms(),
|
||||
m_isInitialized(false) {}
|
||||
m_isInitialized(false),
|
||||
m_usePrescribedThreshold(false) {}
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
|
|
|
@ -375,17 +375,19 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
|||
Scalar z;
|
||||
JacobiRotation<Scalar> rot;
|
||||
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
|
||||
|
||||
if(n==0)
|
||||
{
|
||||
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.row(p) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
|
||||
if(work_matrix.coeff(q,q)!=Scalar(0))
|
||||
{
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
else
|
||||
z = Scalar(0);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
}
|
||||
// otherwise the second row is already zero, so we have nothing to do.
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -415,6 +417,7 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
|||
JacobiRotation<RealScalar> *j_right)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
Matrix<RealScalar,2,2> m;
|
||||
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
|
||||
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
|
||||
|
@ -428,9 +431,11 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
|||
}
|
||||
else
|
||||
{
|
||||
RealScalar u = d / t;
|
||||
rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
|
||||
rot1.s() = rot1.c() * u;
|
||||
RealScalar t2d2 = numext::hypot(t,d);
|
||||
rot1.c() = abs(t)/t2d2;
|
||||
rot1.s() = d/t2d2;
|
||||
if(t<RealScalar(0))
|
||||
rot1.s() = -rot1.s();
|
||||
}
|
||||
m.applyOnTheLeft(0,1,rot1);
|
||||
j_right->makeJacobi(m,0,1);
|
||||
|
@ -531,8 +536,9 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
JacobiSVD()
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
m_rows(-1), m_cols(-1), m_diagSize(0)
|
||||
{}
|
||||
|
||||
|
||||
|
@ -545,6 +551,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
{
|
||||
|
@ -564,6 +571,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
{
|
||||
|
@ -665,6 +673,69 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
return m_nonzeroSingularValues;
|
||||
}
|
||||
|
||||
/** \returns the rank of the matrix of which \c *this is the SVD.
|
||||
*
|
||||
* \note This method has to determine which singular values should be considered nonzero.
|
||||
* For that, it uses the threshold value that you can control by calling
|
||||
* setThreshold(const RealScalar&).
|
||||
*/
|
||||
inline Index rank() const
|
||||
{
|
||||
using std::abs;
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
if(m_singularValues.size()==0) return 0;
|
||||
RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold();
|
||||
Index i = m_nonzeroSingularValues-1;
|
||||
while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
|
||||
return i+1;
|
||||
}
|
||||
|
||||
/** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
|
||||
* which need to determine when singular values are to be considered nonzero.
|
||||
* This is not used for the SVD decomposition itself.
|
||||
*
|
||||
* When it needs to get the threshold value, Eigen calls threshold().
|
||||
* The default is \c NumTraits<Scalar>::epsilon()
|
||||
*
|
||||
* \param threshold The new value to use as the threshold.
|
||||
*
|
||||
* A singular value will be considered nonzero if its value is strictly greater than
|
||||
* \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
|
||||
*
|
||||
* If you want to come back to the default behavior, call setThreshold(Default_t)
|
||||
*/
|
||||
JacobiSVD& setThreshold(const RealScalar& threshold)
|
||||
{
|
||||
m_usePrescribedThreshold = true;
|
||||
m_prescribedThreshold = threshold;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Allows to come back to the default behavior, letting Eigen use its default formula for
|
||||
* determining the threshold.
|
||||
*
|
||||
* You should pass the special object Eigen::Default as parameter here.
|
||||
* \code svd.setThreshold(Eigen::Default); \endcode
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
JacobiSVD& setThreshold(Default_t)
|
||||
{
|
||||
m_usePrescribedThreshold = false;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Returns the threshold that will be used by certain methods such as rank().
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
RealScalar threshold() const
|
||||
{
|
||||
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
|
||||
return m_usePrescribedThreshold ? m_prescribedThreshold
|
||||
: (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
|
||||
}
|
||||
|
||||
inline Index rows() const { return m_rows; }
|
||||
inline Index cols() const { return m_cols; }
|
||||
|
@ -677,11 +748,12 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
MatrixVType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
WorkMatrixType m_workMatrix;
|
||||
bool m_isInitialized, m_isAllocated;
|
||||
bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
|
||||
bool m_computeFullU, m_computeThinU;
|
||||
bool m_computeFullV, m_computeThinV;
|
||||
unsigned int m_computationOptions;
|
||||
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
|
||||
RealScalar m_prescribedThreshold;
|
||||
|
||||
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
|
||||
friend struct internal::svd_precondition_2x2_block_to_be_real;
|
||||
|
@ -764,6 +836,11 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
|
||||
if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
|
||||
}
|
||||
|
||||
// Scaling factor to reduce over/under-flows
|
||||
RealScalar scale = m_workMatrix.cwiseAbs().maxCoeff();
|
||||
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||||
m_workMatrix /= scale;
|
||||
|
||||
/*** step 2. The main Jacobi SVD iteration. ***/
|
||||
|
||||
|
@ -833,6 +910,8 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
|
||||
}
|
||||
}
|
||||
|
||||
m_singularValues *= scale;
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
|
@ -854,11 +933,11 @@ struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
|||
// So A^{-1} = V S^{-1} U^*
|
||||
|
||||
Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp;
|
||||
Index nonzeroSingVals = dec().nonzeroSingularValues();
|
||||
Index rank = dec().rank();
|
||||
|
||||
tmp.noalias() = dec().matrixU().leftCols(nonzeroSingVals).adjoint() * rhs();
|
||||
tmp = dec().singularValues().head(nonzeroSingVals).asDiagonal().inverse() * tmp;
|
||||
dst = dec().matrixV().leftCols(nonzeroSingVals) * tmp;
|
||||
tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs();
|
||||
tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp;
|
||||
dst = dec().matrixV().leftCols(rank) * tmp;
|
||||
}
|
||||
};
|
||||
} // end namespace internal
|
||||
|
|
|
@ -37,6 +37,7 @@ class SimplicialCholeskyBase : internal::noncopyable
|
|||
{
|
||||
public:
|
||||
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
||||
typedef typename internal::traits<Derived>::OrderingType OrderingType;
|
||||
enum { UpLo = internal::traits<Derived>::UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
|
@ -240,15 +241,16 @@ class SimplicialCholeskyBase : internal::noncopyable
|
|||
RealScalar m_shiftScale;
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int _UpLo = Lower> class SimplicialLLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower> class SimplicialLDLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower> class SimplicialCholesky;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLDLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialCholesky;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
@ -259,9 +261,10 @@ template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixTyp
|
|||
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
||||
};
|
||||
|
||||
template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
@ -272,9 +275,10 @@ template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixTyp
|
|||
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
};
|
||||
|
||||
|
@ -294,11 +298,12 @@ template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_Matr
|
|||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
|
||||
*
|
||||
* \sa class SimplicialLDLT
|
||||
* \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
@ -382,11 +387,12 @@ public:
|
|||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
|
||||
*
|
||||
* \sa class SimplicialLLT
|
||||
* \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
@ -467,8 +473,8 @@ public:
|
|||
*
|
||||
* \sa class SimplicialLDLT, class SimplicialLLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
@ -612,15 +618,13 @@ void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixTy
|
|||
{
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
// TODO allows to configure the permutation
|
||||
// Note that amd compute the inverse permutation
|
||||
{
|
||||
CholMatrixType C;
|
||||
C = a.template selfadjointView<UpLo>();
|
||||
// remove diagonal entries:
|
||||
// seems not to be needed
|
||||
// C.prune(keep_diag());
|
||||
internal::minimum_degree_ordering(C, m_Pinv);
|
||||
|
||||
OrderingType ordering;
|
||||
ordering(C,m_Pinv);
|
||||
}
|
||||
|
||||
if(m_Pinv.size()>0)
|
||||
|
|
|
@ -51,8 +51,8 @@ class CompressedStorage
|
|||
CompressedStorage& operator=(const CompressedStorage& other)
|
||||
{
|
||||
resize(other.size());
|
||||
memcpy(m_values, other.m_values, m_size * sizeof(Scalar));
|
||||
memcpy(m_indices, other.m_indices, m_size * sizeof(Index));
|
||||
internal::smart_copy(other.m_values, other.m_values + m_size, m_values);
|
||||
internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices);
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -83,10 +83,10 @@ class CompressedStorage
|
|||
reallocate(m_size);
|
||||
}
|
||||
|
||||
void resize(size_t size, float reserveSizeFactor = 0)
|
||||
void resize(size_t size, double reserveSizeFactor = 0)
|
||||
{
|
||||
if (m_allocatedSize<size)
|
||||
reallocate(size + size_t(reserveSizeFactor*size));
|
||||
reallocate(size + size_t(reserveSizeFactor*double(size)));
|
||||
m_size = size;
|
||||
}
|
||||
|
||||
|
|
|
@ -73,7 +73,8 @@ class CwiseBinaryOpImpl<BinaryOp,Lhs,Rhs,Sparse>::InnerIterator
|
|||
typedef internal::sparse_cwise_binary_op_inner_iterator_selector<
|
||||
BinaryOp,Lhs,Rhs, InnerIterator> Base;
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const CwiseBinaryOpImpl& binOp, Index outer)
|
||||
// NOTE: we have to prefix Index by "typename Lhs::" to avoid an ICE with VC11
|
||||
EIGEN_STRONG_INLINE InnerIterator(const CwiseBinaryOpImpl& binOp, typename Lhs::Index outer)
|
||||
: Base(binOp.derived(),outer)
|
||||
{}
|
||||
};
|
||||
|
|
|
@ -19,7 +19,10 @@ template<typename Lhs, typename Rhs, int InnerSize> struct SparseDenseProductRet
|
|||
|
||||
template<typename Lhs, typename Rhs> struct SparseDenseProductReturnType<Lhs,Rhs,1>
|
||||
{
|
||||
typedef SparseDenseOuterProduct<Lhs,Rhs,false> Type;
|
||||
typedef typename internal::conditional<
|
||||
Lhs::IsRowMajor,
|
||||
SparseDenseOuterProduct<Rhs,Lhs,true>,
|
||||
SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int InnerSize> struct DenseSparseProductReturnType
|
||||
|
@ -29,7 +32,10 @@ template<typename Lhs, typename Rhs, int InnerSize> struct DenseSparseProductRet
|
|||
|
||||
template<typename Lhs, typename Rhs> struct DenseSparseProductReturnType<Lhs,Rhs,1>
|
||||
{
|
||||
typedef SparseDenseOuterProduct<Rhs,Lhs,true> Type;
|
||||
typedef typename internal::conditional<
|
||||
Rhs::IsRowMajor,
|
||||
SparseDenseOuterProduct<Rhs,Lhs,true>,
|
||||
SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
@ -114,17 +120,30 @@ class SparseDenseOuterProduct<Lhs,Rhs,Transpose>::InnerIterator : public _LhsNes
|
|||
typedef typename SparseDenseOuterProduct::Index Index;
|
||||
public:
|
||||
EIGEN_STRONG_INLINE InnerIterator(const SparseDenseOuterProduct& prod, Index outer)
|
||||
: Base(prod.lhs(), 0), m_outer(outer), m_factor(prod.rhs().coeff(outer))
|
||||
{
|
||||
}
|
||||
: Base(prod.lhs(), 0), m_outer(outer), m_factor(get(prod.rhs(), outer, typename internal::traits<Rhs>::StorageKind() ))
|
||||
{ }
|
||||
|
||||
inline Index outer() const { return m_outer; }
|
||||
inline Index row() const { return Transpose ? Base::row() : m_outer; }
|
||||
inline Index col() const { return Transpose ? m_outer : Base::row(); }
|
||||
inline Index row() const { return Transpose ? m_outer : Base::index(); }
|
||||
inline Index col() const { return Transpose ? Base::index() : m_outer; }
|
||||
|
||||
inline Scalar value() const { return Base::value() * m_factor; }
|
||||
|
||||
protected:
|
||||
static Scalar get(const _RhsNested &rhs, Index outer, Dense = Dense())
|
||||
{
|
||||
return rhs.coeff(outer);
|
||||
}
|
||||
|
||||
static Scalar get(const _RhsNested &rhs, Index outer, Sparse = Sparse())
|
||||
{
|
||||
typename Traits::_RhsNested::InnerIterator it(rhs, outer);
|
||||
if (it && it.index()==0)
|
||||
return it.value();
|
||||
|
||||
return Scalar(0);
|
||||
}
|
||||
|
||||
Index m_outer;
|
||||
Scalar m_factor;
|
||||
};
|
||||
|
|
|
@ -940,7 +940,7 @@ void set_from_triplets(const InputIterator& begin, const InputIterator& end, Spa
|
|||
enum { IsRowMajor = SparseMatrixType::IsRowMajor };
|
||||
typedef typename SparseMatrixType::Scalar Scalar;
|
||||
typedef typename SparseMatrixType::Index Index;
|
||||
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor> trMat(mat.rows(),mat.cols());
|
||||
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,Index> trMat(mat.rows(),mat.cols());
|
||||
|
||||
if(begin!=end)
|
||||
{
|
||||
|
@ -1178,7 +1178,7 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& Sparse
|
|||
size_t p = m_outerIndex[outer+1];
|
||||
++m_outerIndex[outer+1];
|
||||
|
||||
float reallocRatio = 1;
|
||||
double reallocRatio = 1;
|
||||
if (m_data.allocatedSize()<=m_data.size())
|
||||
{
|
||||
// if there is no preallocated memory, let's reserve a minimum of 32 elements
|
||||
|
@ -1190,13 +1190,13 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& Sparse
|
|||
{
|
||||
// we need to reallocate the data, to reduce multiple reallocations
|
||||
// we use a smart resize algorithm based on the current filling ratio
|
||||
// in addition, we use float to avoid integers overflows
|
||||
float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
|
||||
reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
|
||||
// in addition, we use double to avoid integers overflows
|
||||
double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
|
||||
reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
|
||||
// furthermore we bound the realloc ratio to:
|
||||
// 1) reduce multiple minor realloc when the matrix is almost filled
|
||||
// 2) avoid to allocate too much memory when the matrix is almost empty
|
||||
reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f);
|
||||
reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
|
||||
}
|
||||
}
|
||||
m_data.resize(m_data.size()+1,reallocRatio);
|
||||
|
|
|
@ -26,7 +26,7 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>
|
|||
inline Index nonZeros() const { return derived().nestedExpression().nonZeros(); }
|
||||
};
|
||||
|
||||
// NOTE: VC10 trigger an ICE if don't put typename TransposeImpl<MatrixType,Sparse>:: in front of Index,
|
||||
// NOTE: VC10 and VC11 trigger an ICE if don't put typename TransposeImpl<MatrixType,Sparse>:: in front of Index,
|
||||
// a typedef typename TransposeImpl<MatrixType,Sparse>::Index Index;
|
||||
// does not fix the issue.
|
||||
// An alternative is to define the nested class in the parent class itself.
|
||||
|
@ -40,8 +40,8 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::InnerItera
|
|||
EIGEN_STRONG_INLINE InnerIterator(const TransposeImpl& trans, typename TransposeImpl<MatrixType,Sparse>::Index outer)
|
||||
: Base(trans.derived().nestedExpression(), outer)
|
||||
{}
|
||||
Index row() const { return Base::col(); }
|
||||
Index col() const { return Base::row(); }
|
||||
typename TransposeImpl<MatrixType,Sparse>::Index row() const { return Base::col(); }
|
||||
typename TransposeImpl<MatrixType,Sparse>::Index col() const { return Base::row(); }
|
||||
};
|
||||
|
||||
template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::ReverseInnerIterator
|
||||
|
@ -54,8 +54,8 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::ReverseInn
|
|||
EIGEN_STRONG_INLINE ReverseInnerIterator(const TransposeImpl& xpr, typename TransposeImpl<MatrixType,Sparse>::Index outer)
|
||||
: Base(xpr.derived().nestedExpression(), outer)
|
||||
{}
|
||||
Index row() const { return Base::col(); }
|
||||
Index col() const { return Base::row(); }
|
||||
typename TransposeImpl<MatrixType,Sparse>::Index row() const { return Base::col(); }
|
||||
typename TransposeImpl<MatrixType,Sparse>::Index col() const { return Base::row(); }
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
|
|
@ -84,8 +84,10 @@ template<typename Lhs, typename Rhs> class DenseTimeSparseProduct;
|
|||
template<typename Lhs, typename Rhs, bool Transpose> class SparseDenseOuterProduct;
|
||||
|
||||
template<typename Lhs, typename Rhs> struct SparseSparseProductReturnType;
|
||||
template<typename Lhs, typename Rhs, int InnerSize = internal::traits<Lhs>::ColsAtCompileTime> struct DenseSparseProductReturnType;
|
||||
template<typename Lhs, typename Rhs, int InnerSize = internal::traits<Lhs>::ColsAtCompileTime> struct SparseDenseProductReturnType;
|
||||
template<typename Lhs, typename Rhs,
|
||||
int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct DenseSparseProductReturnType;
|
||||
template<typename Lhs, typename Rhs,
|
||||
int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct SparseDenseProductReturnType;
|
||||
template<typename MatrixType,int UpLo> class SparseSymmetricPermutationProduct;
|
||||
|
||||
namespace internal {
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
||||
// Copyright (C) 2012-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
|
@ -58,6 +58,7 @@ namespace internal {
|
|||
* \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
|
||||
* OrderingMethods \endlink module for the list of built-in and external ordering methods.
|
||||
*
|
||||
* \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*
|
||||
*/
|
||||
template<typename _MatrixType, typename _OrderingType>
|
||||
|
@ -77,10 +78,23 @@ class SparseQR
|
|||
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
|
||||
{ }
|
||||
|
||||
/** Construct a QR factorization of the matrix \a mat.
|
||||
*
|
||||
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
|
||||
/** Computes the QR factorization of the sparse matrix \a mat.
|
||||
*
|
||||
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*
|
||||
* \sa analyzePattern(), factorize()
|
||||
*/
|
||||
void compute(const MatrixType& mat)
|
||||
{
|
||||
analyzePattern(mat);
|
||||
|
@ -166,7 +180,7 @@ class SparseQR
|
|||
y.bottomRows(y.rows()-rank).setZero();
|
||||
|
||||
// Apply the column permutation
|
||||
if (m_perm_c.size()) dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
|
||||
if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols());
|
||||
else dest = y.topRows(cols());
|
||||
|
||||
m_info = Success;
|
||||
|
@ -206,7 +220,7 @@ class SparseQR
|
|||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \returns \c Success if computation was successful,
|
||||
* \c NumericalIssue if the QR factorization reports a numerical problem
|
||||
* \c InvalidInput if the input matrix is invalid
|
||||
*
|
||||
|
@ -255,20 +269,24 @@ class SparseQR
|
|||
};
|
||||
|
||||
/** \brief Preprocessing step of a QR factorization
|
||||
*
|
||||
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*
|
||||
* In this step, the fill-reducing permutation is computed and applied to the columns of A
|
||||
* and the column elimination tree is computed as well. Only the sparcity pattern of \a mat is exploited.
|
||||
* and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited.
|
||||
*
|
||||
* \note In this step it is assumed that there is no empty row in the matrix \a mat.
|
||||
*/
|
||||
template <typename MatrixType, typename OrderingType>
|
||||
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
||||
{
|
||||
eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
|
||||
// Compute the column fill reducing ordering
|
||||
OrderingType ord;
|
||||
ord(mat, m_perm_c);
|
||||
Index n = mat.cols();
|
||||
Index m = mat.rows();
|
||||
Index diagSize = (std::min)(m,n);
|
||||
|
||||
if (!m_perm_c.size())
|
||||
{
|
||||
|
@ -280,20 +298,20 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
|||
m_outputPerm_c = m_perm_c.inverse();
|
||||
internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
|
||||
|
||||
m_R.resize(n, n);
|
||||
m_Q.resize(m, n);
|
||||
m_R.resize(m, n);
|
||||
m_Q.resize(m, diagSize);
|
||||
|
||||
// Allocate space for nonzero elements : rough estimation
|
||||
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
|
||||
m_Q.reserve(2*mat.nonZeros());
|
||||
m_hcoeffs.resize(n);
|
||||
m_hcoeffs.resize(diagSize);
|
||||
m_analysisIsok = true;
|
||||
}
|
||||
|
||||
/** \brief Performs the numerical QR factorization of the input matrix
|
||||
*
|
||||
* The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with
|
||||
* a matrix having the same sparcity pattern than \a mat.
|
||||
* a matrix having the same sparsity pattern than \a mat.
|
||||
*
|
||||
* \param mat The sparse column-major matrix
|
||||
*/
|
||||
|
@ -306,11 +324,12 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
|
||||
Index m = mat.rows();
|
||||
Index n = mat.cols();
|
||||
IndexVector mark(m); mark.setConstant(-1); // Record the visited nodes
|
||||
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
|
||||
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
|
||||
ScalarVector tval(m); // The dense vector used to compute the current column
|
||||
bool found_diag;
|
||||
Index diagSize = (std::min)(m,n);
|
||||
IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes
|
||||
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
|
||||
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
|
||||
ScalarVector tval(m); // The dense vector used to compute the current column
|
||||
RealScalar pivotThreshold = m_threshold;
|
||||
|
||||
m_pmat = mat;
|
||||
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
|
||||
|
@ -322,7 +341,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
m_pmat.innerNonZeroPtr()[p] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i];
|
||||
}
|
||||
|
||||
/* Compute the default threshold, see :
|
||||
/* Compute the default threshold as in MatLab, see:
|
||||
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
|
||||
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
|
||||
*/
|
||||
|
@ -330,24 +349,24 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
{
|
||||
RealScalar max2Norm = 0.0;
|
||||
for (int j = 0; j < n; j++) max2Norm = (max)(max2Norm, m_pmat.col(j).norm());
|
||||
m_threshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
|
||||
pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
|
||||
}
|
||||
|
||||
// Initialize the numerical permutation
|
||||
m_pivotperm.setIdentity(n);
|
||||
|
||||
Index nonzeroCol = 0; // Record the number of valid pivots
|
||||
m_Q.startVec(0);
|
||||
|
||||
// Left looking rank-revealing QR factorization: compute a column of R and Q at a time
|
||||
for (Index col = 0; col < (std::min)(n,m); ++col)
|
||||
for (Index col = 0; col < n; ++col)
|
||||
{
|
||||
mark.setConstant(-1);
|
||||
m_R.startVec(col);
|
||||
m_Q.startVec(col);
|
||||
mark(nonzeroCol) = col;
|
||||
Qidx(0) = nonzeroCol;
|
||||
nzcolR = 0; nzcolQ = 1;
|
||||
found_diag = col>=m;
|
||||
bool found_diag = nonzeroCol>=m;
|
||||
tval.setZero();
|
||||
|
||||
// Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
|
||||
|
@ -356,7 +375,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
// thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
|
||||
for (typename MatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
|
||||
{
|
||||
Index curIdx = nonzeroCol ;
|
||||
Index curIdx = nonzeroCol;
|
||||
if(itp) curIdx = itp.row();
|
||||
if(curIdx == nonzeroCol) found_diag = true;
|
||||
|
||||
|
@ -398,7 +417,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
// Browse all the indexes of R(:,col) in reverse order
|
||||
for (Index i = nzcolR-1; i >= 0; i--)
|
||||
{
|
||||
Index curIdx = m_pivotperm.indices()(Ridx(i));
|
||||
Index curIdx = Ridx(i);
|
||||
|
||||
// Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
|
||||
Scalar tdot(0);
|
||||
|
@ -427,33 +446,37 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
}
|
||||
}
|
||||
} // End update current column
|
||||
|
||||
// Compute the Householder reflection that eliminate the current column
|
||||
// FIXME this step should call the Householder module.
|
||||
|
||||
Scalar tau;
|
||||
RealScalar beta;
|
||||
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
|
||||
RealScalar beta = 0;
|
||||
|
||||
// First, the squared norm of Q((col+1):m, col)
|
||||
RealScalar sqrNorm = 0.;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
|
||||
|
||||
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
|
||||
if(nonzeroCol < diagSize)
|
||||
{
|
||||
tau = RealScalar(0);
|
||||
beta = numext::real(c0);
|
||||
tval(Qidx(0)) = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
beta = std::sqrt(numext::abs2(c0) + sqrNorm);
|
||||
if(numext::real(c0) >= RealScalar(0))
|
||||
beta = -beta;
|
||||
tval(Qidx(0)) = 1;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq)
|
||||
tval(Qidx(itq)) /= (c0 - beta);
|
||||
tau = numext::conj((beta-c0) / beta);
|
||||
|
||||
// Compute the Householder reflection that eliminate the current column
|
||||
// FIXME this step should call the Householder module.
|
||||
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
|
||||
|
||||
// First, the squared norm of Q((col+1):m, col)
|
||||
RealScalar sqrNorm = 0.;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
|
||||
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
|
||||
{
|
||||
tau = RealScalar(0);
|
||||
beta = numext::real(c0);
|
||||
tval(Qidx(0)) = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
using std::sqrt;
|
||||
beta = sqrt(numext::abs2(c0) + sqrNorm);
|
||||
if(numext::real(c0) >= RealScalar(0))
|
||||
beta = -beta;
|
||||
tval(Qidx(0)) = 1;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq)
|
||||
tval(Qidx(itq)) /= (c0 - beta);
|
||||
tau = numext::conj((beta-c0) / beta);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Insert values in R
|
||||
|
@ -467,24 +490,25 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
}
|
||||
}
|
||||
|
||||
if(abs(beta) >= m_threshold)
|
||||
if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold)
|
||||
{
|
||||
m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
|
||||
nonzeroCol++;
|
||||
// The householder coefficient
|
||||
m_hcoeffs(col) = tau;
|
||||
m_hcoeffs(nonzeroCol) = tau;
|
||||
// Record the householder reflections
|
||||
for (Index itq = 0; itq < nzcolQ; ++itq)
|
||||
{
|
||||
Index iQ = Qidx(itq);
|
||||
m_Q.insertBackByOuterInnerUnordered(col,iQ) = tval(iQ);
|
||||
m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ);
|
||||
tval(iQ) = Scalar(0.);
|
||||
}
|
||||
}
|
||||
nonzeroCol++;
|
||||
if(nonzeroCol<diagSize)
|
||||
m_Q.startVec(nonzeroCol);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Zero pivot found: move implicitly this column to the end
|
||||
m_hcoeffs(col) = Scalar(0);
|
||||
for (Index j = nonzeroCol; j < n-1; j++)
|
||||
std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
|
||||
|
||||
|
@ -493,6 +517,8 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
}
|
||||
}
|
||||
|
||||
m_hcoeffs.tail(diagSize-nonzeroCol).setZero();
|
||||
|
||||
// Finalize the column pointers of the sparse matrices R and Q
|
||||
m_Q.finalize();
|
||||
m_Q.makeCompressed();
|
||||
|
@ -561,14 +587,16 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
|
|||
template<typename DesType>
|
||||
void evalTo(DesType& res) const
|
||||
{
|
||||
Index m = m_qr.rows();
|
||||
Index n = m_qr.cols();
|
||||
Index diagSize = (std::min)(m,n);
|
||||
res = m_other;
|
||||
if (m_transpose)
|
||||
{
|
||||
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
|
||||
//Compute res = Q' * other column by column
|
||||
for(Index j = 0; j < res.cols(); j++){
|
||||
for (Index k = 0; k < n; k++)
|
||||
for (Index k = 0; k < diagSize; k++)
|
||||
{
|
||||
Scalar tau = Scalar(0);
|
||||
tau = m_qr.m_Q.col(k).dot(res.col(j));
|
||||
|
@ -581,10 +609,10 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
|
|||
else
|
||||
{
|
||||
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
|
||||
// Compute res = Q' * other column by column
|
||||
// Compute res = Q * other column by column
|
||||
for(Index j = 0; j < res.cols(); j++)
|
||||
{
|
||||
for (Index k = n-1; k >=0; k--)
|
||||
for (Index k = diagSize-1; k >=0; k--)
|
||||
{
|
||||
Scalar tau = Scalar(0);
|
||||
tau = m_qr.m_Q.col(k).dot(res.col(j));
|
||||
|
@ -618,7 +646,7 @@ struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<Sp
|
|||
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
|
||||
}
|
||||
inline Index rows() const { return m_qr.rows(); }
|
||||
inline Index cols() const { return m_qr.cols(); }
|
||||
inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
|
||||
// To use for operations with the transpose of Q
|
||||
SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
|
||||
{
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
#ifndef EIGEN_STDDEQUE_H
|
||||
#define EIGEN_STDDEQUE_H
|
||||
|
||||
#include "Eigen/src/StlSupport/details.h"
|
||||
#include "details.h"
|
||||
|
||||
// Define the explicit instantiation (e.g. necessary for the Intel compiler)
|
||||
#if defined(__INTEL_COMPILER) || defined(__GNUC__)
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
#ifndef EIGEN_STDLIST_H
|
||||
#define EIGEN_STDLIST_H
|
||||
|
||||
#include "Eigen/src/StlSupport/details.h"
|
||||
#include "details.h"
|
||||
|
||||
// Define the explicit instantiation (e.g. necessary for the Intel compiler)
|
||||
#if defined(__INTEL_COMPILER) || defined(__GNUC__)
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
#ifndef EIGEN_STDVECTOR_H
|
||||
#define EIGEN_STDVECTOR_H
|
||||
|
||||
#include "Eigen/src/StlSupport/details.h"
|
||||
#include "details.h"
|
||||
|
||||
/**
|
||||
* This section contains a convenience MACRO which allows an easy specialization of
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
Current Eigen Version 3.1.2 (05.11.2012)
|
||||
Current Eigen Version 3.2.1 (26.02.2014) updated on 14/05/2014
|
||||
Current Eigen Version 3.2.2 (04.08.2014) updated on 21/10/2014
|
||||
|
||||
To update the lib:
|
||||
- download Eigen
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2012 Kolja Brix <brix@igpm.rwth-aaachen.de>
|
||||
// Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
|
@ -72,16 +72,20 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
|||
|
||||
VectorType p0 = rhs - mat*x;
|
||||
VectorType r0 = precond.solve(p0);
|
||||
// RealScalar r0_sqnorm = r0.squaredNorm();
|
||||
|
||||
// is initial guess already good enough?
|
||||
if(abs(r0.norm()) < tol) {
|
||||
return true;
|
||||
}
|
||||
|
||||
VectorType w = VectorType::Zero(restart + 1);
|
||||
|
||||
FMatrixType H = FMatrixType::Zero(m, restart + 1);
|
||||
FMatrixType H = FMatrixType::Zero(m, restart + 1); // Hessenberg matrix
|
||||
VectorType tau = VectorType::Zero(restart + 1);
|
||||
std::vector < JacobiRotation < Scalar > > G(restart);
|
||||
|
||||
// generate first Householder vector
|
||||
VectorType e;
|
||||
VectorType e(m-1);
|
||||
RealScalar beta;
|
||||
r0.makeHouseholder(e, tau.coeffRef(0), beta);
|
||||
w(0)=(Scalar) beta;
|
||||
|
|
|
@ -127,46 +127,47 @@ template<typename Func> void forward_jacobian(const Func& f)
|
|||
VERIFY_IS_APPROX(j, jref);
|
||||
}
|
||||
|
||||
|
||||
// TODO also check actual derivatives!
|
||||
void test_autodiff_scalar()
|
||||
{
|
||||
std::cerr << foo<float>(1,2) << "\n";
|
||||
Vector2f p = Vector2f::Random();
|
||||
typedef AutoDiffScalar<Vector2f> AD;
|
||||
AD ax(1,Vector2f::UnitX());
|
||||
AD ay(2,Vector2f::UnitY());
|
||||
AD ax(p.x(),Vector2f::UnitX());
|
||||
AD ay(p.y(),Vector2f::UnitY());
|
||||
AD res = foo<AD>(ax,ay);
|
||||
std::cerr << res.value() << " <> "
|
||||
<< res.derivatives().transpose() << "\n\n";
|
||||
VERIFY_IS_APPROX(res.value(), foo(p.x(),p.y()));
|
||||
}
|
||||
|
||||
// TODO also check actual derivatives!
|
||||
void test_autodiff_vector()
|
||||
{
|
||||
std::cerr << foo<Vector2f>(Vector2f(1,2)) << "\n";
|
||||
Vector2f p = Vector2f::Random();
|
||||
typedef AutoDiffScalar<Vector2f> AD;
|
||||
typedef Matrix<AD,2,1> VectorAD;
|
||||
VectorAD p(AD(1),AD(-1));
|
||||
p.x().derivatives() = Vector2f::UnitX();
|
||||
p.y().derivatives() = Vector2f::UnitY();
|
||||
VectorAD ap = p.cast<AD>();
|
||||
ap.x().derivatives() = Vector2f::UnitX();
|
||||
ap.y().derivatives() = Vector2f::UnitY();
|
||||
|
||||
AD res = foo<VectorAD>(p);
|
||||
std::cerr << res.value() << " <> "
|
||||
<< res.derivatives().transpose() << "\n\n";
|
||||
AD res = foo<VectorAD>(ap);
|
||||
VERIFY_IS_APPROX(res.value(), foo(p));
|
||||
}
|
||||
|
||||
void test_autodiff_jacobian()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) ));
|
||||
}
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) ));
|
||||
}
|
||||
|
||||
void test_autodiff()
|
||||
{
|
||||
test_autodiff_scalar();
|
||||
test_autodiff_vector();
|
||||
// test_autodiff_jacobian();
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( test_autodiff_scalar() );
|
||||
CALL_SUBTEST_2( test_autodiff_vector() );
|
||||
CALL_SUBTEST_3( test_autodiff_jacobian() );
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue