added several functions...

This commit is contained in:
Nico Pietroni 2012-01-23 13:09:38 +00:00
parent b10ed11bc0
commit 5ad96544bb
1 changed files with 246 additions and 67 deletions

View File

@ -26,7 +26,7 @@
namespace vcg {
namespace tri{
template <class MeshType>
class CrossField
{
@ -44,19 +44,19 @@ namespace vcg {
///fird a tranformation matrix to transform
///the 3D space to 2D tangent space specified
///by the cross field (where Z=0)
static vcg::Matrix33<ScalarType> TransformationMatrix(FaceType &f)
static vcg::Matrix33<ScalarType> TransformationMatrix(MeshType &mesh,const FaceType &f)
{
typedef typename FaceType::CoordType CoordType;
typedef typename FaceType::ScalarType ScalarType;
bool CrossDir0 = vcg::tri::HasPerFaceAttribute(mesh,"CrossDir0");
assert(CrossDir0);
Fh0= vcg::tri::Allocator<MeshType>::GetPerFaceAttribute<CoordType>(mesh,std::string("CrossDir0"));
PerFaceAttributeHandle Fh0= vcg::tri::Allocator<MeshType>::GetPerFaceAttribute<CoordType>(mesh,std::string("CrossDir0"));
///transform to 3d
CoordType axis0=Fh0[&f];
CoordType axis1=axis0^axis2;
CoordType axis2=f.N();
CoordType axis1=axis0^f.cN();
CoordType axis2=f.cN();
vcg::Matrix33<ScalarType> Trans;
@ -72,6 +72,7 @@ namespace vcg {
Trans[2][2]=axis2[2];
/////then find the inverse
return (Trans);
//f.InvTrans=Inverse(f.Trans);
}
@ -90,10 +91,9 @@ namespace vcg {
///find an angle with respect to a given face by a given vector
///in 3D space, it must be projected and normalized with respect to face's normal
static ScalarType VectToAngle(const FaceType &f,
const CoordType &vect3D)
static ScalarType VectToAngle(MeshType &mesh,const FaceType &f,const CoordType &vect3D)
{
vcg::Matrix33<ScalarType> Trans=TransformationMatrix(f);
vcg::Matrix33<ScalarType> Trans=TransformationMatrix(mesh,f);
///trensform the vector to the reference frame by rotating it
CoordType vect_transf=Trans*vect3D;
@ -109,12 +109,12 @@ namespace vcg {
alpha=0;
return alpha;
}
///return the direction of the cross field in 3D
///given a first direction
static void CrossVector(const CoordType &dir0,
const CoordType &norm,
CoordType axis[4])
const CoordType &norm,
CoordType axis[4])
{
axis[0]=dir0;
axis[1]=norm^axis[0];
@ -138,18 +138,36 @@ namespace vcg {
///return a specific direction given an integer 0..3
///considering the reference direction of the cross field
static CoordType CrossVector(MeshType &mesh,
const FaceType &f,
const int &index)
const FaceType &f,
const int &index)
{
assert((index>=0)&&(index<4));
CoordType axis[4];
CrossVector(mesh,f,axis);
return axis[index];
}
///return the direction of the cross field in 3D
static void SetCrossVector(MeshType &mesh,
const FaceType &f,
CoordType dir0,
CoordType dir1)
{
bool CrossDir0 = vcg::tri::HasPerFaceAttribute(mesh,"CrossDir0");
assert(CrossDir0);
bool CrossDir1 = vcg::tri::HasPerFaceAttribute(mesh,"CrossDir1");
assert(CrossDir1);
MeshType::PerFaceAttributeHandle<CoordType> Fh0=
vcg::tri::Allocator<MeshType>::GetPerFaceAttribute<CoordType>(mesh,std::string("CrossDir0"));
MeshType::PerFaceAttributeHandle<CoordType> Fh1=
vcg::tri::Allocator<MeshType>::GetPerFaceAttribute<CoordType>(mesh,std::string("CrossDir1"));
Fh0[f]=dir0;
Fh1[f]=dir1;
}
///rotate a given vector from a face to another
///vector is expressend in 3d coordinates
CoordType Rotate(const FaceType &f0,const FaceType &f1,const CoordType &dir3D)
static CoordType Rotate(const FaceType &f0,const FaceType &f1,const CoordType &dir3D)
{
CoordType N0=f0.cN();
CoordType N1=f1.cN();
@ -171,10 +189,10 @@ namespace vcg {
///interpolate cross field with barycentric coordinates
static CoordType InterpolateCrossField(const CoordType &t0,
const CoordType &t1,
const CoordType &t2,
const CoordType &n,
const CoordType &bary)
const CoordType &t1,
const CoordType &t2,
const CoordType &n,
const CoordType &bary)
{
CoordType trans0=t0;
CoordType trans1=K_PI(t1,t0,n);
@ -211,17 +229,17 @@ namespace vcg {
/*///interpolate cross field with barycentric coordinates
template <class FaceType>
typename FaceType::CoordType InterpolateCrossField(const typename FaceType::CoordType &t0,
const typename FaceType::CoordType &t1,
const typename FaceType::CoordType &n,
const typename FaceType::ScalarType &weight)
const typename FaceType::CoordType &t1,
const typename FaceType::CoordType &n,
const typename FaceType::ScalarType &weight)
{
CoordType trans0=t0;
CoordType trans1=K_PI(t1,t0,n);
CoordType sum = t0*weight + MyCross::V( t1, t0, n ) * (1.0-weight);
return sum;
CoordType trans0=t0;
CoordType trans1=K_PI(t1,t0,n);
CoordType sum = t0*weight + MyCross::V( t1, t0, n ) * (1.0-weight);
return sum;
}*/
///return the difference of two cross field, values between [0,0.5]
template <class FaceType>
typename FaceType::ScalarType DifferenceCrossField(const typename FaceType::CoordType &t0,
@ -235,18 +253,21 @@ namespace vcg {
}
///compute the mismatch between 2 faces
int MissMatch(const FaceType &f0,const FaceType &f1)
static int MissMatch(MeshType &mesh,
const FaceType &f0,
const FaceType &f1)
{
CoordType dir0=CrossVector(f0,0);
CoordType dir1=CrossVector(f1,0);
CoordType dir0=CrossVector(mesh,f0,0);
CoordType dir1=CrossVector(mesh,f1,0);
CoordType dir1Rot=Rotate(f1,f0,dir1);
dir1Rot.Normalize();
ScalarType angle_diff=VectToAngle(f0,dir1Rot);
ScalarType angle_diff=VectToAngle(mesh,f0,dir1Rot);
ScalarType step=M_PI/2.0;
int i=(int)floor((angle_diff/step)+0.5);
int k=0;
if (i>=0)
k=i%4;
else
@ -254,77 +275,235 @@ namespace vcg {
return k;
}
///this function return true if a
///given vertex is a singular vertex by
///moving around i n a roder wai and accounting for
///missmatches.. it requires VF topology
template <class VertexType>
bool IsSingular(VertexType &v)
static void SortedFaces(MeshType &mesh,
VertexType &v,
std::vector<FaceType*> &faces)
{
typedef typename VertexType::FaceType FaceType;
///check that is on border..
if (v.IsB())
return false;
///check that is not on border..
assert (!v.IsB());
///get first face sharing the edge
FaceType *f_init=v.VFp();
int edge_init=v.VFi();
int missmatch=0;
///and initialize the pos
vcg::face::Pos<FaceType> VFI(f_init,edge_init);
bool complete_turn=false;
do
{
FaceType *curr_f=VFI.F();
faces.push_back(curr_f);
int curr_edge=VFI.E();
///assert that is not a border edge
assert(curr_f->FFp(curr_edge)!=curr_f);
///find the current missmatch
FaceType *next_f=curr_f->FFp(curr_edge);
missmatch+=MissMatch(next_f);
/*///find the current missmatch
missmatch+=(curr_f,const FaceType &f1);*/
///continue moving
VFI.FlipF();
VFI.FlipE();
FaceType *next_f=VFI.F();
///test if I've finiseh with the face exploration
complete_turn=(next_f==f_init);
/// or if I've just crossed a mismatch
}while (!complete_turn);
return((missmatch%4)!=0);
}
/*void GetWeights(TriMeshType *mesh,
const std::vector<FaceType*> &faces,
std::vector<ScalarType> &weights)
{
weights.clear();
MeshType::PerFaceAttributeHandle<ScalarType> Fh0 FHRVal=
vcg::tri::Allocator<MeshType>::GetPerFaceAttribute<ScalarType>(mesh,std::string("CrossVal"));
/////this function return true if a
/////given vertex is a singular vertex by
/////moving around i n a roder wai and accounting for
/////missmatches.. it requires VF topology
/////this function return true if a
/////given vertex is a singular vertex by
/////moving around i n a roder wai and accounting for
/////missmatches
//static bool IsSingular(MeshType &mesh,
// VertexType &v,
// int &missmatch)
//{
// typedef typename VertexType::FaceType FaceType;
// ///check that is on border..
// if (v.IsB())
// return false;
// ///get first face sharing the edge
// FaceType *f_init=v.VFp();
// int edge_init=v.VFi();
// //int missmatch=0;
// missmatch=0;
// ///and initialize the pos
// vcg::face::Pos<FaceType> VFI(f_init,edge_init);
// bool complete_turn=false;
// do
// {
// FaceType *curr_f=VFI.F();
// int curr_edge=VFI.E();
// ///assert that is not a border edge
// assert(curr_f->FFp(curr_edge)!=curr_f);
// /*///find the current missmatch
// missmatch+=(curr_f,const FaceType &f1);*/
// ///continue moving
// VFI.FlipF();
// VFI.FlipE();
// FaceType *next_f=VFI.F();
//
// ///find the current missmatch
// missmatch+=MissMatch(mesh,*curr_f,*next_f);
// ///test if I've finiseh with the face exploration
// complete_turn=(next_f==f_init);
// /// or if I've just crossed a mismatch
// }while (!complete_turn);
// missmatch=missmatch%4;
// return(missmatch!=0);
//}
static int SimilarDir(CoordType dir[4],
CoordType TestD)
{
int ret=-1;
ScalarType maxAcc=-1;
for (int i=0;i<4;i++)
{
ScalarType testAcc=fabs(dir[i]*TestD);
if (testAcc>maxAcc)
{
maxAcc=testAcc;
ret=i;
}
}
assert(ret!=-1);
return ret;
}
static bool IsSingular(MeshType &mesh,
VertexType &v,
int &missmatch)
{
typedef typename VertexType::FaceType FaceType;
///check that is on border..
if (v.IsB())
return false;
std::vector<FaceType*> faces;
SortedFaces(mesh,v,faces);
for (int i=0;i<faces.size();i++)
weights.push_back(FHRVal[faces[i]]);
{
FaceType *curr_f=faces[i];
FaceType *next_f=faces[(i+1)%faces.size()];
///find the current missmatch
missmatch+=MissMatch(mesh,*curr_f,*next_f);
}
missmatch=missmatch%4;
return(missmatch!=0);
}
static bool LoadFIELD(MeshType *mesh,
const char *path_vfield,
bool per_vertex=false)
{
FILE *f = fopen(path_vfield,"rt");
if (!f) {
//if (errorMsg) sprintf(errorMsg,"Cannot Open File :(");
return false;
}
{
char word[512]; word[0]=0;
fscanf(f,"%s",word);
char c=0;
if (word[0]=='#') {
// skip comment line
while (fscanf(f,"%c",&c)!=EOF) if (c=='\n') break;
} else {
//if (errorMsg) sprintf(errorMsg,"The VField file should start with a comment");
return false;
}
int nnv = -1;
if (fscanf(f,"%d",&nnv)!=1) {
// number of vertices not read. Skip another line (ffield file?) and try again.
while (fscanf(f,"%c",&c)!=EOF) if (c=='\n') break; // skip
fscanf(f,"%d",&nnv);
}
int targetnum=mesh->fn;
if (per_vertex)
targetnum=mesh->vn;
if (nnv != (int)targetnum)
{
//if (errorMsg) sprintf(errorMsg,"Wrong element number. Found: %d. Expected: %d.",nnv,mesh->vn);
return false;
}
while (fscanf(f,"%c",&c)!=EOF) if (c=='\n') break; // skip
// skip strange string line
while (fscanf(f,"%c",&c)!=EOF) if (c=='\n') break;
for (int i=0; i<nnv; i++){
vcg::Point3d u,v;
int a,b;
if (fscanf(f,
"%d %d %lf %lf %lf %lf %lf %lf",
&a,&b,
&(v.X()),&(v.Y()),&(v.Z()),
&(u.X()),&(u.Y()),&(u.Z())
)!=8) {
//if (errorMsg) sprintf(errorMsg,"Format error reading vertex n. %d",i);
return false;
}
//node[i]->TF().Import(u);
if (per_vertex)
{
mesh->vert[i].PD1()=u;
mesh->vert[i].PD2()=v;
}
else
{
FaceType *f=&mesh->face[i];
SetCrossVector(*mesh,*f,u,v);
}
}
}
fclose(f);
return true;
}
/*void GetWeights(TriMeshType *mesh,
const std::vector<FaceType*> &faces,
std::vector<ScalarType> &weights)
{
weights.clear();
MeshType::PerFaceAttributeHandle<ScalarType> Fh0 FHRVal=
vcg::tri::Allocator<MeshType>::GetPerFaceAttribute<ScalarType>(mesh,std::string("CrossVal"));
for (int i=0;i<faces.size();i++)
weights.push_back(FHRVal[faces[i]]);
}
void GetTangDir(TriMeshType *mesh,
const std::vector<FaceType*> &faces,
std::vector<CoordType> &dir0,
std::vector<CoordType> &dir1)
const std::vector<FaceType*> &faces,
std::vector<CoordType> &dir0,
std::vector<CoordType> &dir1)
{
dir0.clear();
dir1.clear();
MeshType::PerFaceAttributeHandle<CoordType> FHDir0=vcg::tri::Allocator<MeshType>::GetPerFaceAttribute<CoordType>(test_mesh,std::string("CrossDir0"));
MeshType::PerFaceAttributeHandle<CoordType> FHDir1=vcg::tri::Allocator<MeshType>::GetPerFaceAttribute<CoordType>(test_mesh,std::string("CrossDir1"));
for (int i=0;i<faces.size();i++)
{
dir0.push_back(FHDir0[faces[i]]);
dir1.push_back(FHDir1[faces[i]]);
}
dir0.clear();
dir1.clear();
MeshType::PerFaceAttributeHandle<CoordType> FHDir0=vcg::tri::Allocator<MeshType>::GetPerFaceAttribute<CoordType>(test_mesh,std::string("CrossDir0"));
MeshType::PerFaceAttributeHandle<CoordType> FHDir1=vcg::tri::Allocator<MeshType>::GetPerFaceAttribute<CoordType>(test_mesh,std::string("CrossDir1"));
for (int i=0;i<faces.size();i++)
{
dir0.push_back(FHDir0[faces[i]]);
dir1.push_back(FHDir1[faces[i]]);
}
}*/
};///end class