Updated eigen to 3.2.5
This commit is contained in:
parent
e612b0b2f8
commit
5e40d7a734
|
@ -123,7 +123,7 @@
|
|||
#undef bool
|
||||
#undef vector
|
||||
#undef pixel
|
||||
#elif defined __ARM_NEON__
|
||||
#elif defined __ARM_NEON
|
||||
#define EIGEN_VECTORIZE
|
||||
#define EIGEN_VECTORIZE_NEON
|
||||
#include <arm_neon.h>
|
||||
|
|
|
@ -236,6 +236,11 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
|||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
|
||||
* The strict upper part is used during the decomposition, the strict lower
|
||||
|
@ -434,6 +439,8 @@ template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
|
|||
template<typename MatrixType, int _UpLo>
|
||||
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
|
||||
|
@ -442,6 +449,7 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
|
|||
m_transpositions.resize(size);
|
||||
m_isInitialized = false;
|
||||
m_temporary.resize(size);
|
||||
m_sign = internal::ZeroSign;
|
||||
|
||||
internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);
|
||||
|
||||
|
@ -502,7 +510,6 @@ struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
|
|||
using std::abs;
|
||||
using std::max;
|
||||
typedef typename LDLTType::MatrixType MatrixType;
|
||||
typedef typename LDLTType::Scalar Scalar;
|
||||
typedef typename LDLTType::RealScalar RealScalar;
|
||||
const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
|
||||
// In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
|
||||
|
|
|
@ -174,6 +174,12 @@ template<typename _MatrixType, int _UpLo> class LLT
|
|||
LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* Used to compute and store L
|
||||
* The strict upper part is not used and even not initialized.
|
||||
|
@ -384,6 +390,8 @@ template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
|
|||
template<typename MatrixType, int _UpLo>
|
||||
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
|
|
|
@ -60,7 +60,7 @@ template<> struct mkl_llt<EIGTYPE> \
|
|||
lda = m.outerStride(); \
|
||||
\
|
||||
info = LAPACKE_##MKLPREFIX##potrf( matrix_order, uplo, size, (MKLTYPE*)a, lda ); \
|
||||
info = (info==0) ? Success : NumericalIssue; \
|
||||
info = (info==0) ? -1 : info>0 ? info-1 : size; \
|
||||
return info; \
|
||||
} \
|
||||
}; \
|
||||
|
|
|
@ -29,6 +29,11 @@ struct traits<ArrayWrapper<ExpressionType> >
|
|||
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
|
||||
{
|
||||
typedef ArrayXpr XprKind;
|
||||
// Let's remove NestByRefBit
|
||||
enum {
|
||||
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
|
||||
Flags = Flags0 & ~NestByRefBit
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -149,6 +154,11 @@ struct traits<MatrixWrapper<ExpressionType> >
|
|||
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
|
||||
{
|
||||
typedef MatrixXpr XprKind;
|
||||
// Let's remove NestByRefBit
|
||||
enum {
|
||||
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
|
||||
Flags = Flags0 & ~NestByRefBit
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
|
|
|
@ -439,19 +439,26 @@ struct assign_impl<Derived1, Derived2, SliceVectorizedTraversal, NoUnrolling, Ve
|
|||
typedef typename Derived1::Index Index;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
typedef packet_traits<typename Derived1::Scalar> PacketTraits;
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
typedef packet_traits<Scalar> PacketTraits;
|
||||
enum {
|
||||
packetSize = PacketTraits::size,
|
||||
alignable = PacketTraits::AlignedOnScalar,
|
||||
dstAlignment = alignable ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
|
||||
dstIsAligned = assign_traits<Derived1,Derived2>::DstIsAligned,
|
||||
dstAlignment = alignable ? Aligned : int(dstIsAligned),
|
||||
srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
|
||||
};
|
||||
const Scalar *dst_ptr = &dst.coeffRef(0,0);
|
||||
if((!bool(dstIsAligned)) && (Index(dst_ptr) % sizeof(Scalar))>0)
|
||||
{
|
||||
// the pointer is not aligend-on scalar, so alignment is not possible
|
||||
return assign_impl<Derived1,Derived2,DefaultTraversal,NoUnrolling>::run(dst, src);
|
||||
}
|
||||
const Index packetAlignedMask = packetSize - 1;
|
||||
const Index innerSize = dst.innerSize();
|
||||
const Index outerSize = dst.outerSize();
|
||||
const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0;
|
||||
Index alignedStart = ((!alignable) || assign_traits<Derived1,Derived2>::DstIsAligned) ? 0
|
||||
: internal::first_aligned(&dst.coeffRef(0,0), innerSize);
|
||||
Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned(dst_ptr, innerSize);
|
||||
|
||||
for(Index outer = 0; outer < outerSize; ++outer)
|
||||
{
|
||||
|
|
|
@ -66,8 +66,9 @@ struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprTyp
|
|||
: ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
|
||||
: int(traits<XprType>::MaxColsAtCompileTime),
|
||||
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
|
||||
IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
|
||||
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
|
||||
IsDense = is_same<StorageKind,Dense>::value,
|
||||
IsRowMajor = (IsDense&&MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
|
||||
: (IsDense&&MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
|
||||
: XprTypeIsRowMajor,
|
||||
HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor),
|
||||
InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
|
||||
|
|
|
@ -266,11 +266,13 @@ template<typename Derived> class DenseBase
|
|||
template<typename OtherDerived>
|
||||
Derived& operator=(const ReturnByValue<OtherDerived>& func);
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** Copies \a other into *this without evaluating other. \returns a reference to *this. */
|
||||
/** \internal Copies \a other into *this without evaluating other. \returns a reference to *this. */
|
||||
template<typename OtherDerived>
|
||||
Derived& lazyAssign(const DenseBase<OtherDerived>& other);
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
/** \internal Evaluates \a other into *this. \returns a reference to *this. */
|
||||
template<typename OtherDerived>
|
||||
Derived& lazyAssign(const ReturnByValue<OtherDerived>& other);
|
||||
|
||||
CommaInitializer<Derived> operator<< (const Scalar& s);
|
||||
|
||||
|
@ -462,8 +464,10 @@ template<typename Derived> class DenseBase
|
|||
template<int p> RealScalar lpNorm() const;
|
||||
|
||||
template<int RowFactor, int ColFactor>
|
||||
const Replicate<Derived,RowFactor,ColFactor> replicate() const;
|
||||
const Replicate<Derived,Dynamic,Dynamic> replicate(Index rowFacor,Index colFactor) const;
|
||||
inline const Replicate<Derived,RowFactor,ColFactor> replicate() const;
|
||||
|
||||
typedef Replicate<Derived,Dynamic,Dynamic> ReplicateReturnType;
|
||||
inline const ReplicateReturnType replicate(Index rowFacor,Index colFactor) const;
|
||||
|
||||
typedef Reverse<Derived, BothDirections> ReverseReturnType;
|
||||
typedef const Reverse<const Derived, BothDirections> ConstReverseReturnType;
|
||||
|
|
|
@ -190,18 +190,18 @@ MatrixBase<Derived>::diagonal() const
|
|||
*
|
||||
* \sa MatrixBase::diagonal(), class Diagonal */
|
||||
template<typename Derived>
|
||||
inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<DynamicIndex>::Type
|
||||
inline typename MatrixBase<Derived>::DiagonalDynamicIndexReturnType
|
||||
MatrixBase<Derived>::diagonal(Index index)
|
||||
{
|
||||
return typename DiagonalIndexReturnType<DynamicIndex>::Type(derived(), index);
|
||||
return DiagonalDynamicIndexReturnType(derived(), index);
|
||||
}
|
||||
|
||||
/** This is the const version of diagonal(Index). */
|
||||
template<typename Derived>
|
||||
inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<DynamicIndex>::Type
|
||||
inline typename MatrixBase<Derived>::ConstDiagonalDynamicIndexReturnType
|
||||
MatrixBase<Derived>::diagonal(Index index) const
|
||||
{
|
||||
return typename ConstDiagonalIndexReturnType<DynamicIndex>::Type(derived(), index);
|
||||
return ConstDiagonalDynamicIndexReturnType(derived(), index);
|
||||
}
|
||||
|
||||
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
|
||||
|
|
|
@ -34,7 +34,7 @@ struct traits<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
|
|||
_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))),
|
||||
_LinearAccessMask = (RowsAtCompileTime==1 || ColsAtCompileTime==1) ? LinearAccessBit : 0,
|
||||
|
||||
Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0) | AlignedBit,//(int(MatrixType::Flags)&int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit),
|
||||
Flags = ((HereditaryBits|_LinearAccessMask|AlignedBit) & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0),//(int(MatrixType::Flags)&int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit),
|
||||
CoeffReadCost = NumTraits<Scalar>::MulCost + MatrixType::CoeffReadCost + DiagonalType::DiagonalVectorType::CoeffReadCost
|
||||
};
|
||||
};
|
||||
|
|
|
@ -259,6 +259,47 @@ template<> struct functor_traits<scalar_boolean_or_op> {
|
|||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functors for comparison of two scalars
|
||||
* \todo Implement packet-comparisons
|
||||
*/
|
||||
template<typename Scalar, ComparisonName cmp> struct scalar_cmp_op;
|
||||
|
||||
template<typename Scalar, ComparisonName cmp>
|
||||
struct functor_traits<scalar_cmp_op<Scalar, cmp> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = false
|
||||
};
|
||||
};
|
||||
|
||||
template<ComparisonName Cmp, typename Scalar>
|
||||
struct result_of<scalar_cmp_op<Scalar, Cmp>(Scalar,Scalar)> {
|
||||
typedef bool type;
|
||||
};
|
||||
|
||||
|
||||
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_EQ> {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
|
||||
EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a==b;}
|
||||
};
|
||||
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_LT> {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
|
||||
EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<b;}
|
||||
};
|
||||
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_LE> {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
|
||||
EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<=b;}
|
||||
};
|
||||
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_UNORD> {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
|
||||
EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return !(a<=b || b<=a);}
|
||||
};
|
||||
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_NEQ> {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
|
||||
EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a!=b;}
|
||||
};
|
||||
|
||||
// unary functors:
|
||||
|
||||
/** \internal
|
||||
|
|
|
@ -232,7 +232,7 @@ EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest&
|
|||
// FIXME not very good if rhs is real and lhs complex while alpha is real too
|
||||
const Index cols = dest.cols();
|
||||
for (Index j=0; j<cols; ++j)
|
||||
func(dest.col(j), prod.rhs().coeff(j) * prod.lhs());
|
||||
func(dest.col(j), prod.rhs().coeff(0,j) * prod.lhs());
|
||||
}
|
||||
|
||||
// Row major
|
||||
|
@ -243,7 +243,7 @@ EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest&
|
|||
// FIXME not very good if lhs is real and rhs complex while alpha is real too
|
||||
const Index rows = dest.rows();
|
||||
for (Index i=0; i<rows; ++i)
|
||||
func(dest.row(i), prod.lhs().coeff(i) * prod.rhs());
|
||||
func(dest.row(i), prod.lhs().coeff(i,0) * prod.rhs());
|
||||
}
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
|
|
|
@ -157,7 +157,7 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
|
|||
internal::inner_stride_at_compile_time<Derived>::ret==1),
|
||||
PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
|
||||
eigen_assert(EIGEN_IMPLIES(internal::traits<Derived>::Flags&AlignedBit, (size_t(m_data) % 16) == 0)
|
||||
&& "data is not aligned");
|
||||
&& "input pointer is not aligned on a 16 byte boundary");
|
||||
}
|
||||
|
||||
PointerType m_data;
|
||||
|
@ -168,6 +168,7 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
|
|||
template<typename Derived> class MapBase<Derived, WriteAccessors>
|
||||
: public MapBase<Derived, ReadOnlyAccessors>
|
||||
{
|
||||
typedef MapBase<Derived, ReadOnlyAccessors> ReadOnlyMapBase;
|
||||
public:
|
||||
|
||||
typedef MapBase<Derived, ReadOnlyAccessors> Base;
|
||||
|
@ -230,11 +231,13 @@ template<typename Derived> class MapBase<Derived, WriteAccessors>
|
|||
|
||||
Derived& operator=(const MapBase& other)
|
||||
{
|
||||
Base::Base::operator=(other);
|
||||
ReadOnlyMapBase::Base::operator=(other);
|
||||
return derived();
|
||||
}
|
||||
|
||||
using Base::Base::operator=;
|
||||
// In theory we could simply refer to Base:Base::operator=, but MSVC does not like Base::Base,
|
||||
// see bugs 821 and 920.
|
||||
using ReadOnlyMapBase::Base::operator=;
|
||||
};
|
||||
|
||||
#undef EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS
|
||||
|
|
|
@ -159,13 +159,11 @@ template<typename Derived> class MatrixBase
|
|||
template<typename OtherDerived>
|
||||
Derived& operator=(const ReturnByValue<OtherDerived>& other);
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
Derived& lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other);
|
||||
|
||||
template<typename MatrixPower, typename Lhs, typename Rhs>
|
||||
Derived& lazyAssign(const MatrixPowerProduct<MatrixPower, Lhs,Rhs>& other);
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator+=(const MatrixBase<OtherDerived>& other);
|
||||
|
@ -224,15 +222,11 @@ template<typename Derived> class MatrixBase
|
|||
template<int Index> typename DiagonalIndexReturnType<Index>::Type diagonal();
|
||||
template<int Index> typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const;
|
||||
|
||||
// Note: The "MatrixBase::" prefixes are added to help MSVC9 to match these declarations with the later implementations.
|
||||
// On the other hand they confuse MSVC8...
|
||||
#if (defined _MSC_VER) && (_MSC_VER >= 1500) // 2008 or later
|
||||
typename MatrixBase::template DiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index);
|
||||
typename MatrixBase::template ConstDiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index) const;
|
||||
#else
|
||||
typename DiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index);
|
||||
typename ConstDiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index) const;
|
||||
#endif
|
||||
typedef Diagonal<Derived,DynamicIndex> DiagonalDynamicIndexReturnType;
|
||||
typedef typename internal::add_const<Diagonal<const Derived,DynamicIndex> >::type ConstDiagonalDynamicIndexReturnType;
|
||||
|
||||
DiagonalDynamicIndexReturnType diagonal(Index index);
|
||||
ConstDiagonalDynamicIndexReturnType diagonal(Index index) const;
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
template<unsigned int Mode> typename internal::eigen2_part_return_type<Derived, Mode>::type part();
|
||||
|
|
|
@ -251,6 +251,35 @@ class PermutationBase : public EigenBase<Derived>
|
|||
inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other, const PermutationBase& perm)
|
||||
{ return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); }
|
||||
|
||||
/** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the permutation.
|
||||
*
|
||||
* This function is O(\c n) procedure allocating a buffer of \c n booleans.
|
||||
*/
|
||||
Index determinant() const
|
||||
{
|
||||
Index res = 1;
|
||||
Index n = size();
|
||||
Matrix<bool,RowsAtCompileTime,1,0,MaxRowsAtCompileTime> mask(n);
|
||||
mask.fill(false);
|
||||
Index r = 0;
|
||||
while(r < n)
|
||||
{
|
||||
// search for the next seed
|
||||
while(r<n && mask[r]) r++;
|
||||
if(r>=n)
|
||||
break;
|
||||
// we got one, let's follow it until we are back to the seed
|
||||
Index k0 = r++;
|
||||
mask.coeffRef(k0) = true;
|
||||
for(Index k=indices().coeff(k0); k!=k0; k=indices().coeff(k))
|
||||
{
|
||||
mask.coeffRef(k) = true;
|
||||
res = -res;
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
};
|
||||
|
@ -555,7 +584,10 @@ struct permut_matrix_product_retval
|
|||
const Index n = Side==OnTheLeft ? rows() : cols();
|
||||
// FIXME we need an is_same for expression that is not sensitive to constness. For instance
|
||||
// is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
|
||||
if(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix))
|
||||
if( is_same<MatrixTypeNestedCleaned,Dest>::value
|
||||
&& blas_traits<MatrixTypeNestedCleaned>::HasUsableDirectAccess
|
||||
&& blas_traits<Dest>::HasUsableDirectAccess
|
||||
&& extract_data(dst) == extract_data(m_matrix))
|
||||
{
|
||||
// apply the permutation inplace
|
||||
Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(m_permutation.size());
|
||||
|
|
|
@ -573,6 +573,8 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
|||
: (rows() == other.rows() && cols() == other.cols())))
|
||||
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(other);
|
||||
if(this->size()==0)
|
||||
resizeLike(other);
|
||||
#else
|
||||
resizeLike(other);
|
||||
#endif
|
||||
|
|
|
@ -85,7 +85,14 @@ class ProductBase : public MatrixBase<Derived>
|
|||
|
||||
public:
|
||||
|
||||
#ifndef EIGEN_NO_MALLOC
|
||||
typedef typename Base::PlainObject BasePlainObject;
|
||||
typedef Matrix<Scalar,RowsAtCompileTime==1?1:Dynamic,ColsAtCompileTime==1?1:Dynamic,BasePlainObject::Options> DynPlainObject;
|
||||
typedef typename internal::conditional<(BasePlainObject::SizeAtCompileTime==Dynamic) || (BasePlainObject::SizeAtCompileTime*int(sizeof(Scalar)) < int(EIGEN_STACK_ALLOCATION_LIMIT)),
|
||||
BasePlainObject, DynPlainObject>::type PlainObject;
|
||||
#else
|
||||
typedef typename Base::PlainObject PlainObject;
|
||||
#endif
|
||||
|
||||
ProductBase(const Lhs& a_lhs, const Rhs& a_rhs)
|
||||
: m_lhs(a_lhs), m_rhs(a_rhs)
|
||||
|
@ -180,7 +187,12 @@ namespace internal {
|
|||
template<typename Lhs, typename Rhs, int Mode, int N, typename PlainObject>
|
||||
struct nested<GeneralProduct<Lhs,Rhs,Mode>, N, PlainObject>
|
||||
{
|
||||
typedef PlainObject const& type;
|
||||
typedef typename GeneralProduct<Lhs,Rhs,Mode>::PlainObject const& type;
|
||||
};
|
||||
template<typename Lhs, typename Rhs, int Mode, int N, typename PlainObject>
|
||||
struct nested<const GeneralProduct<Lhs,Rhs,Mode>, N, PlainObject>
|
||||
{
|
||||
typedef typename GeneralProduct<Lhs,Rhs,Mode>::PlainObject const& type;
|
||||
};
|
||||
}
|
||||
|
||||
|
|
|
@ -108,7 +108,8 @@ struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
|
|||
OuterStrideMatch = Derived::IsVectorAtCompileTime
|
||||
|| int(StrideType::OuterStrideAtCompileTime)==int(Dynamic) || int(StrideType::OuterStrideAtCompileTime)==int(Derived::OuterStrideAtCompileTime),
|
||||
AlignmentMatch = (_Options!=Aligned) || ((PlainObjectType::Flags&AlignedBit)==0) || ((traits<Derived>::Flags&AlignedBit)==AlignedBit),
|
||||
MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch
|
||||
ScalarTypeMatch = internal::is_same<typename PlainObjectType::Scalar, typename Derived::Scalar>::value,
|
||||
MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch && ScalarTypeMatch
|
||||
};
|
||||
typedef typename internal::conditional<MatchAtCompileTime,internal::true_type,internal::false_type>::type type;
|
||||
};
|
||||
|
@ -187,7 +188,11 @@ protected:
|
|||
template<typename PlainObjectType, int Options, typename StrideType> class Ref
|
||||
: public RefBase<Ref<PlainObjectType, Options, StrideType> >
|
||||
{
|
||||
private:
|
||||
typedef internal::traits<Ref> Traits;
|
||||
template<typename Derived>
|
||||
inline Ref(const PlainObjectBase<Derived>& expr,
|
||||
typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0);
|
||||
public:
|
||||
|
||||
typedef RefBase<Ref> Base;
|
||||
|
@ -199,17 +204,20 @@ template<typename PlainObjectType, int Options, typename StrideType> class Ref
|
|||
inline Ref(PlainObjectBase<Derived>& expr,
|
||||
typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0)
|
||||
{
|
||||
Base::construct(expr);
|
||||
EIGEN_STATIC_ASSERT(static_cast<bool>(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
|
||||
Base::construct(expr.derived());
|
||||
}
|
||||
template<typename Derived>
|
||||
inline Ref(const DenseBase<Derived>& expr,
|
||||
typename internal::enable_if<bool(internal::is_lvalue<Derived>::value&&bool(Traits::template match<Derived>::MatchAtCompileTime)),Derived>::type* = 0,
|
||||
int = Derived::ThisConstantIsPrivateInPlainObjectBase)
|
||||
typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0)
|
||||
#else
|
||||
template<typename Derived>
|
||||
inline Ref(DenseBase<Derived>& expr)
|
||||
#endif
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(static_cast<bool>(internal::is_lvalue<Derived>::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
|
||||
EIGEN_STATIC_ASSERT(static_cast<bool>(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
|
||||
enum { THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY = Derived::ThisConstantIsPrivateInPlainObjectBase};
|
||||
Base::construct(expr.const_cast_derived());
|
||||
}
|
||||
|
||||
|
@ -228,7 +236,8 @@ template<typename TPlainObjectType, int Options, typename StrideType> class Ref<
|
|||
EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
|
||||
|
||||
template<typename Derived>
|
||||
inline Ref(const DenseBase<Derived>& expr)
|
||||
inline Ref(const DenseBase<Derived>& expr,
|
||||
typename internal::enable_if<bool(Traits::template match<Derived>::ScalarTypeMatch),Derived>::type* = 0)
|
||||
{
|
||||
// std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << "," << match_helper<Derived>::InnerStrideMatch << "\n";
|
||||
// std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n";
|
||||
|
|
|
@ -135,7 +135,7 @@ template<typename MatrixType,int RowFactor,int ColFactor> class Replicate
|
|||
*/
|
||||
template<typename Derived>
|
||||
template<int RowFactor, int ColFactor>
|
||||
inline const Replicate<Derived,RowFactor,ColFactor>
|
||||
const Replicate<Derived,RowFactor,ColFactor>
|
||||
DenseBase<Derived>::replicate() const
|
||||
{
|
||||
return Replicate<Derived,RowFactor,ColFactor>(derived());
|
||||
|
@ -150,7 +150,7 @@ DenseBase<Derived>::replicate() const
|
|||
* \sa VectorwiseOp::replicate(), DenseBase::replicate<int,int>(), class Replicate
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const Replicate<Derived,Dynamic,Dynamic>
|
||||
const typename DenseBase<Derived>::ReplicateReturnType
|
||||
DenseBase<Derived>::replicate(Index rowFactor,Index colFactor) const
|
||||
{
|
||||
return Replicate<Derived,Dynamic,Dynamic>(derived(),rowFactor,colFactor);
|
||||
|
|
|
@ -72,6 +72,8 @@ template<typename Derived> class ReturnByValue
|
|||
const Unusable& coeff(Index,Index) const { return *reinterpret_cast<const Unusable*>(this); }
|
||||
Unusable& coeffRef(Index) { return *reinterpret_cast<Unusable*>(this); }
|
||||
Unusable& coeffRef(Index,Index) { return *reinterpret_cast<Unusable*>(this); }
|
||||
template<int LoadMode> Unusable& packet(Index) const;
|
||||
template<int LoadMode> Unusable& packet(Index, Index) const;
|
||||
#endif
|
||||
};
|
||||
|
||||
|
@ -83,6 +85,15 @@ Derived& DenseBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
|
|||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& DenseBase<Derived>::lazyAssign(const ReturnByValue<OtherDerived>& other)
|
||||
{
|
||||
other.evalTo(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_RETURNBYVALUE_H
|
||||
|
|
|
@ -380,19 +380,19 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
|||
EIGEN_STRONG_INLINE TriangularView& operator=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
|
||||
{
|
||||
setZero();
|
||||
return assignProduct(other,1);
|
||||
return assignProduct(other.derived(),1);
|
||||
}
|
||||
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
EIGEN_STRONG_INLINE TriangularView& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
|
||||
{
|
||||
return assignProduct(other,1);
|
||||
return assignProduct(other.derived(),1);
|
||||
}
|
||||
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
EIGEN_STRONG_INLINE TriangularView& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
|
||||
{
|
||||
return assignProduct(other,-1);
|
||||
return assignProduct(other.derived(),-1);
|
||||
}
|
||||
|
||||
|
||||
|
@ -400,19 +400,19 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
|||
EIGEN_STRONG_INLINE TriangularView& operator=(const ScaledProduct<ProductDerived>& other)
|
||||
{
|
||||
setZero();
|
||||
return assignProduct(other,other.alpha());
|
||||
return assignProduct(other.derived(),other.alpha());
|
||||
}
|
||||
|
||||
template<typename ProductDerived>
|
||||
EIGEN_STRONG_INLINE TriangularView& operator+=(const ScaledProduct<ProductDerived>& other)
|
||||
{
|
||||
return assignProduct(other,other.alpha());
|
||||
return assignProduct(other.derived(),other.alpha());
|
||||
}
|
||||
|
||||
template<typename ProductDerived>
|
||||
EIGEN_STRONG_INLINE TriangularView& operator-=(const ScaledProduct<ProductDerived>& other)
|
||||
{
|
||||
return assignProduct(other,-other.alpha());
|
||||
return assignProduct(other.derived(),-other.alpha());
|
||||
}
|
||||
|
||||
protected:
|
||||
|
@ -420,6 +420,15 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
|||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
EIGEN_STRONG_INLINE TriangularView& assignProduct(const ProductBase<ProductDerived, Lhs,Rhs>& prod, const Scalar& alpha);
|
||||
|
||||
template<int Mode, bool LhsIsTriangular,
|
||||
typename Lhs, bool LhsIsVector,
|
||||
typename Rhs, bool RhsIsVector>
|
||||
EIGEN_STRONG_INLINE TriangularView& assignProduct(const TriangularProduct<Mode, LhsIsTriangular, Lhs, LhsIsVector, Rhs, RhsIsVector>& prod, const Scalar& alpha)
|
||||
{
|
||||
lazyAssign(alpha*prod.eval());
|
||||
return *this;
|
||||
}
|
||||
|
||||
MatrixTypeNested m_matrix;
|
||||
};
|
||||
|
||||
|
|
|
@ -110,7 +110,7 @@ template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<
|
|||
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { __pld((float *)addr); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { EIGEN_ARM_PREFETCH((float *)addr); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
|
|
|
@ -49,8 +49,17 @@ typedef uint32x4_t Packet4ui;
|
|||
#define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {X, Y, Z, W}
|
||||
#endif
|
||||
|
||||
#ifndef __pld
|
||||
#define __pld(x) asm volatile ( " pld [%[addr]]\n" :: [addr] "r" (x) : "cc" );
|
||||
// arm64 does have the pld instruction. If available, let's trust the __builtin_prefetch built-in function
|
||||
// which available on LLVM and GCC (at least)
|
||||
#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || defined(__GNUC__)
|
||||
#define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR);
|
||||
#elif defined __pld
|
||||
#define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR)
|
||||
#elif !defined(__aarch64__)
|
||||
#define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ( " pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
|
||||
#else
|
||||
// by default no explicit prefetching
|
||||
#define EIGEN_ARM_PREFETCH(ADDR)
|
||||
#endif
|
||||
|
||||
template<> struct packet_traits<float> : default_packet_traits
|
||||
|
@ -209,8 +218,8 @@ template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& f
|
|||
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { __pld(addr); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { __pld(addr); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { EIGEN_ARM_PREFETCH(addr); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { EIGEN_ARM_PREFETCH(addr); }
|
||||
|
||||
// FIXME only store the 2 first elements ?
|
||||
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
|
||||
|
|
|
@ -52,7 +52,7 @@ Packet4f plog<Packet4f>(const Packet4f& _x)
|
|||
|
||||
Packet4i emm0;
|
||||
|
||||
Packet4f invalid_mask = _mm_cmplt_ps(x, _mm_setzero_ps());
|
||||
Packet4f invalid_mask = _mm_cmpnge_ps(x, _mm_setzero_ps()); // not greater equal is true if x is NaN
|
||||
Packet4f iszero_mask = _mm_cmpeq_ps(x, _mm_setzero_ps());
|
||||
|
||||
x = pmax(x, p4f_min_norm_pos); /* cut off denormalized stuff */
|
||||
|
@ -166,7 +166,7 @@ Packet4f pexp<Packet4f>(const Packet4f& _x)
|
|||
emm0 = _mm_cvttps_epi32(fx);
|
||||
emm0 = _mm_add_epi32(emm0, p4i_0x7f);
|
||||
emm0 = _mm_slli_epi32(emm0, 23);
|
||||
return pmul(y, _mm_castsi128_ps(emm0));
|
||||
return pmax(pmul(y, Packet4f(_mm_castsi128_ps(emm0))), _x);
|
||||
}
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet2d pexp<Packet2d>(const Packet2d& _x)
|
||||
|
@ -239,7 +239,7 @@ Packet2d pexp<Packet2d>(const Packet2d& _x)
|
|||
emm0 = _mm_add_epi32(emm0, p4i_1023_0);
|
||||
emm0 = _mm_slli_epi32(emm0, 20);
|
||||
emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(1,2,0,3));
|
||||
return pmul(x, _mm_castsi128_pd(emm0));
|
||||
return pmax(pmul(x, Packet2d(_mm_castsi128_pd(emm0))), _x);
|
||||
}
|
||||
|
||||
/* evaluation of 4 sines at onces, using SSE2 intrinsics.
|
||||
|
|
|
@ -90,6 +90,7 @@ struct traits<CoeffBasedProduct<LhsNested,RhsNested,NestingFlags> >
|
|||
| (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0),
|
||||
|
||||
CoeffReadCost = InnerSize == Dynamic ? Dynamic
|
||||
: InnerSize == 0 ? 0
|
||||
: InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
|
||||
+ (InnerSize - 1) * NumTraits<Scalar>::AddCost,
|
||||
|
||||
|
@ -133,7 +134,7 @@ class CoeffBasedProduct
|
|||
};
|
||||
|
||||
typedef internal::product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
|
||||
Unroll ? InnerSize-1 : Dynamic,
|
||||
Unroll ? InnerSize : Dynamic,
|
||||
_LhsNested, _RhsNested, Scalar> ScalarCoeffImpl;
|
||||
|
||||
typedef CoeffBasedProduct<LhsNested,RhsNested,NestByRefBit> LazyCoeffBasedProductType;
|
||||
|
@ -184,7 +185,7 @@ class CoeffBasedProduct
|
|||
{
|
||||
PacketScalar res;
|
||||
internal::product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
|
||||
Unroll ? InnerSize-1 : Dynamic,
|
||||
Unroll ? InnerSize : Dynamic,
|
||||
_LhsNested, _RhsNested, PacketScalar, LoadMode>
|
||||
::run(row, col, m_lhs, m_rhs, res);
|
||||
return res;
|
||||
|
@ -242,7 +243,17 @@ struct product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
|
|||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
{
|
||||
product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, res);
|
||||
res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
|
||||
res += lhs.coeff(row, UnrollingIndex-1) * rhs.coeff(UnrollingIndex-1, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct product_coeff_impl<DefaultTraversal, 1, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
{
|
||||
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -250,9 +261,9 @@ template<typename Lhs, typename Rhs, typename RetScalar>
|
|||
struct product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, RetScalar &res)
|
||||
{
|
||||
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
|
||||
res = RetScalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -262,10 +273,7 @@ struct product_coeff_impl<DefaultTraversal, Dynamic, Lhs, Rhs, RetScalar>
|
|||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar& res)
|
||||
{
|
||||
eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
|
||||
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
|
||||
for(Index i = 1; i < lhs.cols(); ++i)
|
||||
res += lhs.coeff(row, i) * rhs.coeff(i, col);
|
||||
res = (lhs.row(row).transpose().cwiseProduct( rhs.col(col) )).sum();
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -295,6 +303,16 @@ struct product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
|
|||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct product_coeff_impl<InnerVectorizedTraversal, 0, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, RetScalar &res)
|
||||
{
|
||||
res = 0;
|
||||
}
|
||||
};
|
||||
|
||||
template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
|
@ -304,8 +322,7 @@ struct product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, Re
|
|||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
{
|
||||
Packet pres;
|
||||
product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
|
||||
product_coeff_impl<DefaultTraversal,UnrollingIndex,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, res);
|
||||
product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
|
||||
res = predux(pres);
|
||||
}
|
||||
};
|
||||
|
@ -373,7 +390,7 @@ struct product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
|
|||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
|
||||
{
|
||||
product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
|
||||
res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
|
||||
res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex-1)), rhs.template packet<LoadMode>(UnrollingIndex-1, col), res);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -384,12 +401,12 @@ struct product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
|
|||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
|
||||
{
|
||||
product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
|
||||
res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
|
||||
res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex-1), pset1<Packet>(rhs.coeff(UnrollingIndex-1, col)), res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
||||
struct product_packet_impl<RowMajor, 1, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
|
||||
|
@ -399,7 +416,7 @@ struct product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
|||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
||||
struct product_packet_impl<ColMajor, 1, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
|
||||
|
@ -408,15 +425,34 @@ struct product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
|||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Packet &res)
|
||||
{
|
||||
res = pset1<Packet>(0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Packet &res)
|
||||
{
|
||||
res = pset1<Packet>(0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
|
||||
{
|
||||
eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
|
||||
res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
|
||||
for(Index i = 1; i < lhs.cols(); ++i)
|
||||
res = pset1<Packet>(0);
|
||||
for(Index i = 0; i < lhs.cols(); ++i)
|
||||
res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
|
||||
}
|
||||
};
|
||||
|
@ -427,9 +463,8 @@ struct product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
|
|||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
|
||||
{
|
||||
eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
|
||||
res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
|
||||
for(Index i = 1; i < lhs.cols(); ++i)
|
||||
res = pset1<Packet>(0);
|
||||
for(Index i = 0; i < lhs.cols(); ++i)
|
||||
res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
|
||||
}
|
||||
};
|
||||
|
|
|
@ -125,19 +125,22 @@ void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpos
|
|||
if(transpose)
|
||||
std::swap(rows,cols);
|
||||
|
||||
Index blockCols = (cols / threads) & ~Index(0x3);
|
||||
Index blockRows = (rows / threads) & ~Index(0x7);
|
||||
|
||||
GemmParallelInfo<Index>* info = new GemmParallelInfo<Index>[threads];
|
||||
|
||||
#pragma omp parallel for schedule(static,1) num_threads(threads)
|
||||
for(Index i=0; i<threads; ++i)
|
||||
#pragma omp parallel num_threads(threads)
|
||||
{
|
||||
Index i = omp_get_thread_num();
|
||||
// Note that the actual number of threads might be lower than the number of request ones.
|
||||
Index actual_threads = omp_get_num_threads();
|
||||
|
||||
Index blockCols = (cols / actual_threads) & ~Index(0x3);
|
||||
Index blockRows = (rows / actual_threads) & ~Index(0x7);
|
||||
|
||||
Index r0 = i*blockRows;
|
||||
Index actualBlockRows = (i+1==threads) ? rows-r0 : blockRows;
|
||||
Index actualBlockRows = (i+1==actual_threads) ? rows-r0 : blockRows;
|
||||
|
||||
Index c0 = i*blockCols;
|
||||
Index actualBlockCols = (i+1==threads) ? cols-c0 : blockCols;
|
||||
Index actualBlockCols = (i+1==actual_threads) ? cols-c0 : blockCols;
|
||||
|
||||
info[i].rhs_start = c0;
|
||||
info[i].rhs_length = actualBlockCols;
|
||||
|
|
|
@ -433,6 +433,19 @@ struct MatrixXpr {};
|
|||
/** The type used to identify an array expression */
|
||||
struct ArrayXpr {};
|
||||
|
||||
namespace internal {
|
||||
/** \internal
|
||||
* Constants for comparison functors
|
||||
*/
|
||||
enum ComparisonName {
|
||||
cmp_EQ = 0,
|
||||
cmp_LT = 1,
|
||||
cmp_LE = 2,
|
||||
cmp_UNORD = 3,
|
||||
cmp_NEQ = 4
|
||||
};
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CONSTANTS_H
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
|
||||
#define EIGEN_WORLD_VERSION 3
|
||||
#define EIGEN_MAJOR_VERSION 2
|
||||
#define EIGEN_MINOR_VERSION 2
|
||||
#define EIGEN_MINOR_VERSION 5
|
||||
|
||||
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
|
||||
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
|
||||
|
@ -96,6 +96,13 @@
|
|||
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE std::ptrdiff_t
|
||||
#endif
|
||||
|
||||
// Cross compiler wrapper around LLVM's __has_builtin
|
||||
#ifdef __has_builtin
|
||||
# define EIGEN_HAS_BUILTIN(x) __has_builtin(x)
|
||||
#else
|
||||
# define EIGEN_HAS_BUILTIN(x) 0
|
||||
#endif
|
||||
|
||||
/** Allows to disable some optimizations which might affect the accuracy of the result.
|
||||
* Such optimization are enabled by default, and set EIGEN_FAST_MATH to 0 to disable them.
|
||||
* They currently include:
|
||||
|
@ -247,7 +254,7 @@ namespace Eigen {
|
|||
|
||||
#if !defined(EIGEN_ASM_COMMENT)
|
||||
#if (defined __GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
|
||||
#define EIGEN_ASM_COMMENT(X) asm("#" X)
|
||||
#define EIGEN_ASM_COMMENT(X) __asm__("#" X)
|
||||
#else
|
||||
#define EIGEN_ASM_COMMENT(X)
|
||||
#endif
|
||||
|
@ -271,6 +278,7 @@ namespace Eigen {
|
|||
#error Please tell me what is the equivalent of __attribute__((aligned(n))) for your compiler
|
||||
#endif
|
||||
|
||||
#define EIGEN_ALIGN8 EIGEN_ALIGN_TO_BOUNDARY(8)
|
||||
#define EIGEN_ALIGN16 EIGEN_ALIGN_TO_BOUNDARY(16)
|
||||
|
||||
#if EIGEN_ALIGN_STATICALLY
|
||||
|
@ -306,7 +314,7 @@ namespace Eigen {
|
|||
// just an empty macro !
|
||||
#define EIGEN_EMPTY
|
||||
|
||||
#if defined(_MSC_VER) && (!defined(__INTEL_COMPILER))
|
||||
#if defined(_MSC_VER) && (_MSC_VER < 1800) && (!defined(__INTEL_COMPILER))
|
||||
#define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
|
||||
using Base::operator =;
|
||||
#elif defined(__clang__) // workaround clang bug (see http://forum.kde.org/viewtopic.php?f=74&t=102653)
|
||||
|
@ -325,8 +333,11 @@ namespace Eigen {
|
|||
}
|
||||
#endif
|
||||
|
||||
#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
|
||||
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived)
|
||||
/** \internal
|
||||
* \brief Macro to manually inherit assignment operators.
|
||||
* This is necessary, because the implicitly defined assignment operator gets deleted when a custom operator= is defined.
|
||||
*/
|
||||
#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived)
|
||||
|
||||
/**
|
||||
* Just a side note. Commenting within defines works only by documenting
|
||||
|
|
|
@ -63,7 +63,7 @@
|
|||
// Currently, let's include it only on unix systems:
|
||||
#if defined(__unix__) || defined(__unix)
|
||||
#include <unistd.h>
|
||||
#if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
|
||||
#if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || (defined __PGI) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
|
||||
#define EIGEN_HAS_POSIX_MEMALIGN 1
|
||||
#endif
|
||||
#endif
|
||||
|
@ -417,6 +417,8 @@ template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pt
|
|||
|
||||
template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
|
||||
{
|
||||
if(size==0)
|
||||
return 0; // short-cut. Also fixes Bug 884
|
||||
check_size_for_overflow<T>(size);
|
||||
T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
|
||||
if(NumTraits<T>::RequireInitialization)
|
||||
|
@ -464,9 +466,8 @@ template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *
|
|||
template<typename Scalar, typename Index>
|
||||
static inline Index first_aligned(const Scalar* array, Index size)
|
||||
{
|
||||
enum { PacketSize = packet_traits<Scalar>::size,
|
||||
PacketAlignedMask = PacketSize-1
|
||||
};
|
||||
static const Index PacketSize = packet_traits<Scalar>::size;
|
||||
static const Index PacketAlignedMask = PacketSize-1;
|
||||
|
||||
if(PacketSize==1)
|
||||
{
|
||||
|
@ -522,7 +523,7 @@ template<typename T> struct smart_copy_helper<T,false> {
|
|||
// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
|
||||
// to the appropriate stack allocation function
|
||||
#ifndef EIGEN_ALLOCA
|
||||
#if (defined __linux__)
|
||||
#if (defined __linux__) || (defined __APPLE__) || (defined alloca)
|
||||
#define EIGEN_ALLOCA alloca
|
||||
#elif defined(_MSC_VER)
|
||||
#define EIGEN_ALLOCA _alloca
|
||||
|
@ -612,7 +613,6 @@ template<typename T> class aligned_stack_memory_handler
|
|||
void* operator new(size_t size, const std::nothrow_t&) throw() { \
|
||||
try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
|
||||
catch (...) { return 0; } \
|
||||
return 0; \
|
||||
}
|
||||
#else
|
||||
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
|
||||
|
|
|
@ -90,7 +90,9 @@
|
|||
YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED,
|
||||
THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE,
|
||||
THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH,
|
||||
OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG
|
||||
OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG,
|
||||
IMPLICIT_CONVERSION_TO_SCALAR_IS_FOR_INNER_PRODUCT_ONLY,
|
||||
STORAGE_LAYOUT_DOES_NOT_MATCH
|
||||
};
|
||||
};
|
||||
|
||||
|
|
|
@ -341,7 +341,7 @@ template<typename T, int n=1, typename PlainObject = typename eval<T>::type> str
|
|||
};
|
||||
|
||||
template<typename T>
|
||||
T* const_cast_ptr(const T* ptr)
|
||||
inline T* const_cast_ptr(const T* ptr)
|
||||
{
|
||||
return const_cast<T*>(ptr);
|
||||
}
|
||||
|
|
|
@ -147,7 +147,6 @@ void fitHyperplane(int numPoints,
|
|||
|
||||
// compute the covariance matrix
|
||||
CovMatrixType covMat = CovMatrixType::Zero(size, size);
|
||||
VectorType remean = VectorType::Zero(size);
|
||||
for(int i = 0; i < numPoints; ++i)
|
||||
{
|
||||
VectorType diff = (*(points[i]) - mean).conjugate();
|
||||
|
|
|
@ -234,6 +234,12 @@ template<typename _MatrixType> class ComplexEigenSolver
|
|||
}
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
EigenvectorType m_eivec;
|
||||
EigenvalueType m_eivalues;
|
||||
ComplexSchur<MatrixType> m_schur;
|
||||
|
@ -251,6 +257,8 @@ template<typename MatrixType>
|
|||
ComplexEigenSolver<MatrixType>&
|
||||
ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
// this code is inspired from Jampack
|
||||
eigen_assert(matrix.cols() == matrix.rows());
|
||||
|
||||
|
|
|
@ -298,6 +298,13 @@ template<typename _MatrixType> class EigenSolver
|
|||
void doComputeEigenvectors();
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
|
||||
}
|
||||
|
||||
MatrixType m_eivec;
|
||||
EigenvalueType m_eivalues;
|
||||
bool m_isInitialized;
|
||||
|
@ -364,6 +371,8 @@ template<typename MatrixType>
|
|||
EigenSolver<MatrixType>&
|
||||
EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
eigen_assert(matrix.cols() == matrix.rows());
|
||||
|
|
|
@ -263,6 +263,13 @@ template<typename _MatrixType> class GeneralizedEigenSolver
|
|||
}
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
|
||||
}
|
||||
|
||||
MatrixType m_eivec;
|
||||
ComplexVectorType m_alphas;
|
||||
VectorType m_betas;
|
||||
|
@ -290,6 +297,8 @@ template<typename MatrixType>
|
|||
GeneralizedEigenSolver<MatrixType>&
|
||||
GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
|
||||
|
|
|
@ -240,10 +240,10 @@ namespace Eigen {
|
|||
m_S.coeffRef(i,j) = Scalar(0.0);
|
||||
m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
|
||||
m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
|
||||
}
|
||||
// update Q
|
||||
if (m_computeQZ)
|
||||
m_Q.applyOnTheRight(i-1,i,G);
|
||||
}
|
||||
// kill T(i,i-1)
|
||||
if(m_T.coeff(i,i-1)!=Scalar(0))
|
||||
{
|
||||
|
@ -251,13 +251,13 @@ namespace Eigen {
|
|||
m_T.coeffRef(i,i-1) = Scalar(0.0);
|
||||
m_S.applyOnTheRight(i,i-1,G);
|
||||
m_T.topRows(i).applyOnTheRight(i,i-1,G);
|
||||
}
|
||||
// update Z
|
||||
if (m_computeQZ)
|
||||
m_Z.applyOnTheLeft(i,i-1,G.adjoint());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
|
||||
template<typename MatrixType>
|
||||
|
@ -313,7 +313,7 @@ namespace Eigen {
|
|||
using std::abs;
|
||||
using std::sqrt;
|
||||
const Index dim=m_S.cols();
|
||||
if (abs(m_S.coeff(i+1,i)==Scalar(0)))
|
||||
if (abs(m_S.coeff(i+1,i))==Scalar(0))
|
||||
return;
|
||||
Index z = findSmallDiagEntry(i,i+1);
|
||||
if (z==i-1)
|
||||
|
|
|
@ -234,7 +234,7 @@ template<typename _MatrixType> class RealSchur
|
|||
typedef Matrix<Scalar,3,1> Vector3s;
|
||||
|
||||
Scalar computeNormOfT();
|
||||
Index findSmallSubdiagEntry(Index iu, const Scalar& norm);
|
||||
Index findSmallSubdiagEntry(Index iu);
|
||||
void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
|
||||
void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
|
||||
void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
|
||||
|
@ -286,7 +286,7 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMa
|
|||
{
|
||||
while (iu >= 0)
|
||||
{
|
||||
Index il = findSmallSubdiagEntry(iu, norm);
|
||||
Index il = findSmallSubdiagEntry(iu);
|
||||
|
||||
// Check for convergence
|
||||
if (il == iu) // One root found
|
||||
|
@ -343,16 +343,14 @@ inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
|
|||
|
||||
/** \internal Look for single small sub-diagonal element and returns its index */
|
||||
template<typename MatrixType>
|
||||
inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& norm)
|
||||
inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
|
||||
{
|
||||
using std::abs;
|
||||
Index res = iu;
|
||||
while (res > 0)
|
||||
{
|
||||
Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
|
||||
if (s == 0.0)
|
||||
s = norm;
|
||||
if (abs(m_matT.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
|
||||
if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
|
||||
break;
|
||||
res--;
|
||||
}
|
||||
|
@ -457,11 +455,9 @@ inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const V
|
|||
const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
|
||||
const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
|
||||
if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
|
||||
template<typename MatrixType>
|
||||
|
|
|
@ -351,6 +351,11 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
|||
#endif // EIGEN2_SUPPORT
|
||||
|
||||
protected:
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
MatrixType m_eivec;
|
||||
RealVectorType m_eivalues;
|
||||
typename TridiagonalizationType::SubDiagonalType m_subdiag;
|
||||
|
@ -384,6 +389,8 @@ template<typename MatrixType>
|
|||
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
||||
::compute(const MatrixType& matrix, int options)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
using std::abs;
|
||||
eigen_assert(matrix.cols() == matrix.rows());
|
||||
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
||||
|
@ -490,7 +497,12 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
|||
typedef typename SolverType::MatrixType MatrixType;
|
||||
typedef typename SolverType::RealVectorType VectorType;
|
||||
typedef typename SolverType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
/** \internal
|
||||
* Computes the roots of the characteristic polynomial of \a m.
|
||||
* For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
|
||||
*/
|
||||
static inline void computeRoots(const MatrixType& m, VectorType& roots)
|
||||
{
|
||||
using std::sqrt;
|
||||
|
@ -510,39 +522,48 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
|||
// Construct the parameters used in classifying the roots of the equation
|
||||
// and in solving the equation for the roots in closed form.
|
||||
Scalar c2_over_3 = c2*s_inv3;
|
||||
Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
|
||||
if (a_over_3 > Scalar(0))
|
||||
Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
|
||||
if(a_over_3<Scalar(0))
|
||||
a_over_3 = Scalar(0);
|
||||
|
||||
Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
|
||||
|
||||
Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
|
||||
if (q > Scalar(0))
|
||||
Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
|
||||
if(q<Scalar(0))
|
||||
q = Scalar(0);
|
||||
|
||||
// Compute the eigenvalues by solving for the roots of the polynomial.
|
||||
Scalar rho = sqrt(-a_over_3);
|
||||
Scalar theta = atan2(sqrt(-q),half_b)*s_inv3;
|
||||
Scalar rho = sqrt(a_over_3);
|
||||
Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
|
||||
Scalar cos_theta = cos(theta);
|
||||
Scalar sin_theta = sin(theta);
|
||||
roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
|
||||
roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
|
||||
roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
|
||||
|
||||
// Sort in increasing order.
|
||||
if (roots(0) >= roots(1))
|
||||
std::swap(roots(0),roots(1));
|
||||
if (roots(1) >= roots(2))
|
||||
{
|
||||
std::swap(roots(1),roots(2));
|
||||
if (roots(0) >= roots(1))
|
||||
std::swap(roots(0),roots(1));
|
||||
// roots are already sorted, since cos is monotonically decreasing on [0, pi]
|
||||
roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
|
||||
roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
|
||||
roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
|
||||
}
|
||||
|
||||
static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
|
||||
{
|
||||
using std::abs;
|
||||
Index i0;
|
||||
// Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
|
||||
mat.diagonal().cwiseAbs().maxCoeff(&i0);
|
||||
// mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
|
||||
// so let's save it:
|
||||
representative = mat.col(i0);
|
||||
Scalar n0, n1;
|
||||
VectorType c0, c1;
|
||||
n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
|
||||
n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
|
||||
if(n0>n1) res = c0/std::sqrt(n0);
|
||||
else res = c1/std::sqrt(n1);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline void run(SolverType& solver, const MatrixType& mat, int options)
|
||||
{
|
||||
using std::sqrt;
|
||||
eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
|
||||
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
||||
&& (options&EigVecMask)!=EigVecMask
|
||||
|
@ -552,9 +573,13 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
|||
MatrixType& eivecs = solver.m_eivec;
|
||||
VectorType& eivals = solver.m_eivalues;
|
||||
|
||||
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
||||
Scalar scale = mat.cwiseAbs().maxCoeff();
|
||||
MatrixType scaledMat = mat / scale;
|
||||
// Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
||||
Scalar shift = mat.trace() / Scalar(3);
|
||||
// TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
|
||||
MatrixType scaledMat = mat.template selfadjointView<Lower>();
|
||||
scaledMat.diagonal().array() -= shift;
|
||||
Scalar scale = scaledMat.cwiseAbs().maxCoeff();
|
||||
if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
|
||||
|
||||
// compute the eigenvalues
|
||||
computeRoots(scaledMat,eivals);
|
||||
|
@ -562,96 +587,58 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
|||
// compute the eigenvectors
|
||||
if(computeEigenvectors)
|
||||
{
|
||||
Scalar safeNorm2 = Eigen::NumTraits<Scalar>::epsilon();
|
||||
safeNorm2 *= safeNorm2;
|
||||
if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
|
||||
{
|
||||
// All three eigenvalues are numerically the same
|
||||
eivecs.setIdentity();
|
||||
}
|
||||
else
|
||||
{
|
||||
scaledMat = scaledMat.template selfadjointView<Lower>();
|
||||
MatrixType tmp;
|
||||
tmp = scaledMat;
|
||||
|
||||
// Compute the eigenvector of the most distinct eigenvalue
|
||||
Scalar d0 = eivals(2) - eivals(1);
|
||||
Scalar d1 = eivals(1) - eivals(0);
|
||||
int k = d0 > d1 ? 2 : 0;
|
||||
d0 = d0 > d1 ? d1 : d0;
|
||||
Index k(0), l(2);
|
||||
if(d0 > d1)
|
||||
{
|
||||
std::swap(k,l);
|
||||
d0 = d1;
|
||||
}
|
||||
|
||||
// Compute the eigenvector of index k
|
||||
{
|
||||
tmp.diagonal().array () -= eivals(k);
|
||||
VectorType cross;
|
||||
Scalar n;
|
||||
n = (cross = tmp.row(0).cross(tmp.row(1))).squaredNorm();
|
||||
|
||||
if(n>safeNorm2)
|
||||
eivecs.col(k) = cross / sqrt(n);
|
||||
else
|
||||
{
|
||||
n = (cross = tmp.row(0).cross(tmp.row(2))).squaredNorm();
|
||||
|
||||
if(n>safeNorm2)
|
||||
eivecs.col(k) = cross / sqrt(n);
|
||||
else
|
||||
{
|
||||
n = (cross = tmp.row(1).cross(tmp.row(2))).squaredNorm();
|
||||
|
||||
if(n>safeNorm2)
|
||||
eivecs.col(k) = cross / sqrt(n);
|
||||
else
|
||||
{
|
||||
// the input matrix and/or the eigenvaues probably contains some inf/NaN,
|
||||
// => exit
|
||||
// scale back to the original size.
|
||||
eivals *= scale;
|
||||
|
||||
solver.m_info = NumericalIssue;
|
||||
solver.m_isInitialized = true;
|
||||
solver.m_eigenvectorsOk = computeEigenvectors;
|
||||
return;
|
||||
}
|
||||
}
|
||||
// By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
|
||||
extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
|
||||
}
|
||||
|
||||
// Compute eigenvector of index l
|
||||
if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
|
||||
{
|
||||
// If d0 is too small, then the two other eigenvalues are numerically the same,
|
||||
// and thus we only have to ortho-normalize the near orthogonal vector we saved above.
|
||||
eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
|
||||
eivecs.col(l).normalize();
|
||||
}
|
||||
else
|
||||
{
|
||||
tmp = scaledMat;
|
||||
tmp.diagonal().array() -= eivals(1);
|
||||
tmp.diagonal().array () -= eivals(l);
|
||||
|
||||
if(d0<=Eigen::NumTraits<Scalar>::epsilon())
|
||||
eivecs.col(1) = eivecs.col(k).unitOrthogonal();
|
||||
else
|
||||
{
|
||||
n = (cross = eivecs.col(k).cross(tmp.row(0).normalized())).squaredNorm();
|
||||
if(n>safeNorm2)
|
||||
eivecs.col(1) = cross / sqrt(n);
|
||||
else
|
||||
{
|
||||
n = (cross = eivecs.col(k).cross(tmp.row(1))).squaredNorm();
|
||||
if(n>safeNorm2)
|
||||
eivecs.col(1) = cross / sqrt(n);
|
||||
else
|
||||
{
|
||||
n = (cross = eivecs.col(k).cross(tmp.row(2))).squaredNorm();
|
||||
if(n>safeNorm2)
|
||||
eivecs.col(1) = cross / sqrt(n);
|
||||
else
|
||||
{
|
||||
// we should never reach this point,
|
||||
// if so the last two eigenvalues are likely to ve very closed to each other
|
||||
eivecs.col(1) = eivecs.col(k).unitOrthogonal();
|
||||
VectorType dummy;
|
||||
extract_kernel(tmp, eivecs.col(l), dummy);
|
||||
}
|
||||
|
||||
// Compute last eigenvector from the other two
|
||||
eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
|
||||
}
|
||||
}
|
||||
|
||||
// make sure that eivecs[1] is orthogonal to eivecs[2]
|
||||
Scalar d = eivecs.col(1).dot(eivecs.col(k));
|
||||
eivecs.col(1) = (eivecs.col(1) - d * eivecs.col(k)).normalized();
|
||||
}
|
||||
|
||||
eivecs.col(k==2 ? 0 : 2) = eivecs.col(k).cross(eivecs.col(1)).normalized();
|
||||
}
|
||||
}
|
||||
// Rescale back to the original size.
|
||||
eivals *= scale;
|
||||
eivals.array() += shift;
|
||||
|
||||
solver.m_info = Success;
|
||||
solver.m_isInitialized = true;
|
||||
|
@ -669,7 +656,7 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2
|
|||
static inline void computeRoots(const MatrixType& m, VectorType& roots)
|
||||
{
|
||||
using std::sqrt;
|
||||
const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*m(1,0)*m(1,0));
|
||||
const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
|
||||
const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
|
||||
roots(0) = t1 - t0;
|
||||
roots(1) = t1 + t0;
|
||||
|
@ -678,6 +665,8 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2
|
|||
static inline void run(SolverType& solver, const MatrixType& mat, int options)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
|
||||
eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
|
||||
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
||||
&& (options&EigVecMask)!=EigVecMask
|
||||
|
@ -697,6 +686,12 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2
|
|||
|
||||
// compute the eigen vectors
|
||||
if(computeEigenvectors)
|
||||
{
|
||||
if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
|
||||
{
|
||||
eivecs.setIdentity();
|
||||
}
|
||||
else
|
||||
{
|
||||
scaledMat.diagonal().array () -= eivals(1);
|
||||
Scalar a2 = numext::abs2(scaledMat(0,0));
|
||||
|
@ -715,6 +710,7 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2
|
|||
|
||||
eivecs.col(0) << eivecs.col(1).unitOrthogonal();
|
||||
}
|
||||
}
|
||||
|
||||
// Rescale back to the original size.
|
||||
eivals *= scale;
|
||||
|
|
|
@ -19,10 +19,12 @@ namespace Eigen {
|
|||
*
|
||||
* \brief An axis aligned box
|
||||
*
|
||||
* \param _Scalar the type of the scalar coefficients
|
||||
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
|
||||
* \tparam _Scalar the type of the scalar coefficients
|
||||
* \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
|
||||
*
|
||||
* This class represents an axis aligned box as a pair of the minimal and maximal corners.
|
||||
* \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using isEmpty().
|
||||
* \sa alignedboxtypedefs
|
||||
*/
|
||||
template <typename _Scalar, int _AmbientDim>
|
||||
class AlignedBox
|
||||
|
@ -40,18 +42,21 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
/** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */
|
||||
enum CornerType
|
||||
{
|
||||
/** 1D names */
|
||||
/** 1D names @{ */
|
||||
Min=0, Max=1,
|
||||
/** @} */
|
||||
|
||||
/** Added names for 2D */
|
||||
/** Identifier for 2D corner @{ */
|
||||
BottomLeft=0, BottomRight=1,
|
||||
TopLeft=2, TopRight=3,
|
||||
/** @} */
|
||||
|
||||
/** Added names for 3D */
|
||||
/** Identifier for 3D corner @{ */
|
||||
BottomLeftFloor=0, BottomRightFloor=1,
|
||||
TopLeftFloor=2, TopRightFloor=3,
|
||||
BottomLeftCeil=4, BottomRightCeil=5,
|
||||
TopLeftCeil=6, TopRightCeil=7
|
||||
/** @} */
|
||||
};
|
||||
|
||||
|
||||
|
@ -63,34 +68,33 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim)
|
||||
{ setEmpty(); }
|
||||
|
||||
/** Constructs a box with extremities \a _min and \a _max. */
|
||||
/** Constructs a box with extremities \a _min and \a _max.
|
||||
* \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty. */
|
||||
template<typename OtherVectorType1, typename OtherVectorType2>
|
||||
inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {}
|
||||
|
||||
/** Constructs a box containing a single point \a p. */
|
||||
template<typename Derived>
|
||||
inline explicit AlignedBox(const MatrixBase<Derived>& a_p)
|
||||
{
|
||||
typename internal::nested<Derived,2>::type p(a_p.derived());
|
||||
m_min = p;
|
||||
m_max = p;
|
||||
}
|
||||
inline explicit AlignedBox(const MatrixBase<Derived>& p) : m_min(p), m_max(m_min)
|
||||
{ }
|
||||
|
||||
~AlignedBox() {}
|
||||
|
||||
/** \returns the dimension in which the box holds */
|
||||
inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); }
|
||||
|
||||
/** \deprecated use isEmpty */
|
||||
/** \deprecated use isEmpty() */
|
||||
inline bool isNull() const { return isEmpty(); }
|
||||
|
||||
/** \deprecated use setEmpty */
|
||||
/** \deprecated use setEmpty() */
|
||||
inline void setNull() { setEmpty(); }
|
||||
|
||||
/** \returns true if the box is empty. */
|
||||
/** \returns true if the box is empty.
|
||||
* \sa setEmpty */
|
||||
inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); }
|
||||
|
||||
/** Makes \c *this an empty box. */
|
||||
/** Makes \c *this an empty box.
|
||||
* \sa isEmpty */
|
||||
inline void setEmpty()
|
||||
{
|
||||
m_min.setConstant( ScalarTraits::highest() );
|
||||
|
@ -175,27 +179,34 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
|
||||
/** \returns true if the point \a p is inside the box \c *this. */
|
||||
template<typename Derived>
|
||||
inline bool contains(const MatrixBase<Derived>& a_p) const
|
||||
inline bool contains(const MatrixBase<Derived>& p) const
|
||||
{
|
||||
typename internal::nested<Derived,2>::type p(a_p.derived());
|
||||
return (m_min.array()<=p.array()).all() && (p.array()<=m_max.array()).all();
|
||||
typename internal::nested<Derived,2>::type p_n(p.derived());
|
||||
return (m_min.array()<=p_n.array()).all() && (p_n.array()<=m_max.array()).all();
|
||||
}
|
||||
|
||||
/** \returns true if the box \a b is entirely inside the box \c *this. */
|
||||
inline bool contains(const AlignedBox& b) const
|
||||
{ return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); }
|
||||
|
||||
/** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
|
||||
/** \returns true if the box \a b is intersecting the box \c *this.
|
||||
* \sa intersection, clamp */
|
||||
inline bool intersects(const AlignedBox& b) const
|
||||
{ return (m_min.array()<=(b.max)().array()).all() && ((b.min)().array()<=m_max.array()).all(); }
|
||||
|
||||
/** Extends \c *this such that it contains the point \a p and returns a reference to \c *this.
|
||||
* \sa extend(const AlignedBox&) */
|
||||
template<typename Derived>
|
||||
inline AlignedBox& extend(const MatrixBase<Derived>& a_p)
|
||||
inline AlignedBox& extend(const MatrixBase<Derived>& p)
|
||||
{
|
||||
typename internal::nested<Derived,2>::type p(a_p.derived());
|
||||
m_min = m_min.cwiseMin(p);
|
||||
m_max = m_max.cwiseMax(p);
|
||||
typename internal::nested<Derived,2>::type p_n(p.derived());
|
||||
m_min = m_min.cwiseMin(p_n);
|
||||
m_max = m_max.cwiseMax(p_n);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
|
||||
/** Extends \c *this such that it contains the box \a b and returns a reference to \c *this.
|
||||
* \sa merged, extend(const MatrixBase&) */
|
||||
inline AlignedBox& extend(const AlignedBox& b)
|
||||
{
|
||||
m_min = m_min.cwiseMin(b.m_min);
|
||||
|
@ -203,7 +214,9 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
return *this;
|
||||
}
|
||||
|
||||
/** Clamps \c *this by the box \a b and returns a reference to \c *this. */
|
||||
/** Clamps \c *this by the box \a b and returns a reference to \c *this.
|
||||
* \note If the boxes don't intersect, the resulting box is empty.
|
||||
* \sa intersection(), intersects() */
|
||||
inline AlignedBox& clamp(const AlignedBox& b)
|
||||
{
|
||||
m_min = m_min.cwiseMax(b.m_min);
|
||||
|
@ -211,11 +224,15 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
return *this;
|
||||
}
|
||||
|
||||
/** Returns an AlignedBox that is the intersection of \a b and \c *this */
|
||||
/** Returns an AlignedBox that is the intersection of \a b and \c *this
|
||||
* \note If the boxes don't intersect, the resulting box is empty.
|
||||
* \sa intersects(), clamp, contains() */
|
||||
inline AlignedBox intersection(const AlignedBox& b) const
|
||||
{return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); }
|
||||
|
||||
/** Returns an AlignedBox that is the union of \a b and \c *this */
|
||||
/** Returns an AlignedBox that is the union of \a b and \c *this.
|
||||
* \note Merging with an empty box may result in a box bigger than \c *this.
|
||||
* \sa extend(const AlignedBox&) */
|
||||
inline AlignedBox merged(const AlignedBox& b) const
|
||||
{ return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); }
|
||||
|
||||
|
@ -231,20 +248,20 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
|
||||
/** \returns the squared distance between the point \a p and the box \c *this,
|
||||
* and zero if \a p is inside the box.
|
||||
* \sa exteriorDistance()
|
||||
* \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& a_p) const;
|
||||
inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& p) const;
|
||||
|
||||
/** \returns the squared distance between the boxes \a b and \c *this,
|
||||
* and zero if the boxes intersect.
|
||||
* \sa exteriorDistance()
|
||||
* \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&)
|
||||
*/
|
||||
inline Scalar squaredExteriorDistance(const AlignedBox& b) const;
|
||||
|
||||
/** \returns the distance between the point \a p and the box \c *this,
|
||||
* and zero if \a p is inside the box.
|
||||
* \sa squaredExteriorDistance()
|
||||
* \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const
|
||||
|
@ -252,7 +269,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
|
||||
/** \returns the distance between the boxes \a b and \c *this,
|
||||
* and zero if the boxes intersect.
|
||||
* \sa squaredExteriorDistance()
|
||||
* \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&)
|
||||
*/
|
||||
inline NonInteger exteriorDistance(const AlignedBox& b) const
|
||||
{ using std::sqrt; return sqrt(NonInteger(squaredExteriorDistance(b))); }
|
||||
|
|
|
@ -79,7 +79,7 @@ template<typename MatrixType,int _Direction> class Homogeneous
|
|||
{
|
||||
if( (int(Direction)==Vertical && row==m_matrix.rows())
|
||||
|| (int(Direction)==Horizontal && col==m_matrix.cols()))
|
||||
return 1;
|
||||
return Scalar(1);
|
||||
return m_matrix.coeff(row, col);
|
||||
}
|
||||
|
||||
|
|
|
@ -100,7 +100,17 @@ public:
|
|||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
|
||||
Hyperplane result(p0.size());
|
||||
result.normal() = (p2 - p0).cross(p1 - p0).normalized();
|
||||
VectorType v0(p2 - p0), v1(p1 - p0);
|
||||
result.normal() = v0.cross(v1);
|
||||
RealScalar norm = result.normal().norm();
|
||||
if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon())
|
||||
{
|
||||
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
|
||||
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
|
||||
result.normal() = svd.matrixV().col(2);
|
||||
}
|
||||
else
|
||||
result.normal() /= norm;
|
||||
result.offset() = -p0.dot(result.normal());
|
||||
return result;
|
||||
}
|
||||
|
|
|
@ -161,7 +161,7 @@ public:
|
|||
{ return coeffs().isApprox(other.coeffs(), prec); }
|
||||
|
||||
/** return the result vector of \a v through the rotation*/
|
||||
EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;
|
||||
EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
|
@ -231,7 +231,7 @@ class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
|
|||
public:
|
||||
typedef _Scalar Scalar;
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
|
||||
using Base::operator*=;
|
||||
|
||||
typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
|
||||
|
@ -341,7 +341,7 @@ class Map<const Quaternion<_Scalar>, _Options >
|
|||
public:
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename internal::traits<Map>::Coefficients Coefficients;
|
||||
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
|
||||
using Base::operator*=;
|
||||
|
||||
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
||||
|
@ -378,7 +378,7 @@ class Map<Quaternion<_Scalar>, _Options >
|
|||
public:
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename internal::traits<Map>::Coefficients Coefficients;
|
||||
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
|
||||
using Base::operator*=;
|
||||
|
||||
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
||||
|
@ -461,7 +461,7 @@ EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const Quaterni
|
|||
*/
|
||||
template <class Derived>
|
||||
EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
|
||||
QuaternionBase<Derived>::_transformVector(Vector3 v) const
|
||||
QuaternionBase<Derived>::_transformVector(const Vector3& v) const
|
||||
{
|
||||
// Note that this algorithm comes from the optimization by hand
|
||||
// of the conversion to a Matrix followed by a Matrix/Vector product.
|
||||
|
@ -637,7 +637,7 @@ inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Der
|
|||
{
|
||||
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
|
||||
Scalar n2 = this->squaredNorm();
|
||||
if (n2 > 0)
|
||||
if (n2 > Scalar(0))
|
||||
return Quaternion<Scalar>(conjugate().coeffs() / n2);
|
||||
else
|
||||
{
|
||||
|
@ -667,12 +667,10 @@ template <class OtherDerived>
|
|||
inline typename internal::traits<Derived>::Scalar
|
||||
QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
|
||||
{
|
||||
using std::acos;
|
||||
using std::atan2;
|
||||
using std::abs;
|
||||
Scalar d = abs(this->dot(other));
|
||||
if (d>=Scalar(1))
|
||||
return Scalar(0);
|
||||
return Scalar(2) * acos(d);
|
||||
Quaternion<Scalar> d = (*this) * other.conjugate();
|
||||
return Scalar(2) * atan2( d.vec().norm(), abs(d.w()) );
|
||||
}
|
||||
|
||||
|
||||
|
@ -712,7 +710,7 @@ QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerive
|
|||
scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
|
||||
scale1 = sin( ( t * theta) ) / sinTheta;
|
||||
}
|
||||
if(d<0) scale1 = -scale1;
|
||||
if(d<Scalar(0)) scale1 = -scale1;
|
||||
|
||||
return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
|
||||
}
|
||||
|
|
|
@ -61,6 +61,9 @@ public:
|
|||
/** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
|
||||
inline Rotation2D(const Scalar& a) : m_angle(a) {}
|
||||
|
||||
/** Default constructor wihtout initialization. The represented rotation is undefined. */
|
||||
Rotation2D() {}
|
||||
|
||||
/** \returns the rotation angle */
|
||||
inline Scalar angle() const { return m_angle; }
|
||||
|
||||
|
@ -84,7 +87,7 @@ public:
|
|||
|
||||
template<typename Derived>
|
||||
Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
|
||||
Matrix2 toRotationMatrix(void) const;
|
||||
Matrix2 toRotationMatrix() const;
|
||||
|
||||
/** \returns the spherical interpolation between \c *this and \a other using
|
||||
* parameter \a t. It is in fact equivalent to a linear interpolation.
|
||||
|
|
|
@ -62,6 +62,8 @@ struct transform_construct_from_matrix;
|
|||
|
||||
template<typename TransformType> struct transform_take_affine_part;
|
||||
|
||||
template<int Mode> struct transform_make_affine;
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
|
@ -230,8 +232,7 @@ public:
|
|||
inline Transform()
|
||||
{
|
||||
check_template_params();
|
||||
if (int(Mode)==Affine)
|
||||
makeAffine();
|
||||
internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix);
|
||||
}
|
||||
|
||||
inline Transform(const Transform& other)
|
||||
|
@ -591,11 +592,7 @@ public:
|
|||
*/
|
||||
void makeAffine()
|
||||
{
|
||||
if(int(Mode)!=int(AffineCompact))
|
||||
{
|
||||
matrix().template block<1,Dim>(Dim,0).setZero();
|
||||
matrix().coeffRef(Dim,Dim) = Scalar(1);
|
||||
}
|
||||
internal::transform_make_affine<int(Mode)>::run(m_matrix);
|
||||
}
|
||||
|
||||
/** \internal
|
||||
|
@ -1079,6 +1076,24 @@ Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBas
|
|||
|
||||
namespace internal {
|
||||
|
||||
template<int Mode>
|
||||
struct transform_make_affine
|
||||
{
|
||||
template<typename MatrixType>
|
||||
static void run(MatrixType &mat)
|
||||
{
|
||||
static const int Dim = MatrixType::ColsAtCompileTime-1;
|
||||
mat.template block<1,Dim>(Dim,0).setZero();
|
||||
mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct transform_make_affine<AffineCompact>
|
||||
{
|
||||
template<typename MatrixType> static void run(MatrixType &) { }
|
||||
};
|
||||
|
||||
// selector needed to avoid taking the inverse of a 3x4 matrix
|
||||
template<typename TransformType, int Mode=TransformType::Mode>
|
||||
struct projective_transform_inverse
|
||||
|
|
|
@ -39,7 +39,6 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|||
int maxIters = iters;
|
||||
|
||||
int n = mat.cols();
|
||||
x = precond.solve(x);
|
||||
VectorType r = rhs - mat * x;
|
||||
VectorType r0 = r;
|
||||
|
||||
|
@ -143,7 +142,7 @@ struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
|
|||
* SparseMatrix<double> A(n,n);
|
||||
* // fill A and b
|
||||
* BiCGSTAB<SparseMatrix<double> > solver;
|
||||
* solver(A);
|
||||
* solver.compute(A);
|
||||
* x = solver.solve(b);
|
||||
* std::cout << "#iterations: " << solver.iterations() << std::endl;
|
||||
* std::cout << "estimated error: " << solver.error() << std::endl;
|
||||
|
@ -152,20 +151,7 @@ struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
|
|||
* \endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method. Here is a step by
|
||||
* step execution example starting with a random guess and printing the evolution
|
||||
* of the estimated error:
|
||||
* * \code
|
||||
* x = VectorXd::Random(n);
|
||||
* solver.setMaxIterations(1);
|
||||
* int i = 0;
|
||||
* do {
|
||||
* x = solver.solveWithGuess(b,x);
|
||||
* std::cout << i << " : " << solver.error() << std::endl;
|
||||
* ++i;
|
||||
* } while (solver.info()!=Success && i<100);
|
||||
* \endcode
|
||||
* Note that such a step by step excution is slightly slower.
|
||||
* One can control the start using the solveWithGuess() method.
|
||||
*
|
||||
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
*/
|
||||
|
|
|
@ -112,9 +112,9 @@ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
|||
* This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
|
||||
* The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
|
||||
* Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower.
|
||||
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
||||
*
|
||||
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
||||
|
@ -137,20 +137,7 @@ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
|||
* \endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method. Here is a step by
|
||||
* step execution example starting with a random guess and printing the evolution
|
||||
* of the estimated error:
|
||||
* * \code
|
||||
* x = VectorXd::Random(n);
|
||||
* cg.setMaxIterations(1);
|
||||
* int i = 0;
|
||||
* do {
|
||||
* x = cg.solveWithGuess(b,x);
|
||||
* std::cout << i << " : " << cg.error() << std::endl;
|
||||
* ++i;
|
||||
* } while (cg.info()!=Success && i<100);
|
||||
* \endcode
|
||||
* Note that such a step by step excution is slightly slower.
|
||||
* One can control the start using the solveWithGuess() method.
|
||||
*
|
||||
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
*/
|
||||
|
@ -213,6 +200,10 @@ public:
|
|||
template<typename Rhs,typename Dest>
|
||||
void _solveWithGuess(const Rhs& b, Dest& x) const
|
||||
{
|
||||
typedef typename internal::conditional<UpLo==(Lower|Upper),
|
||||
const MatrixType&,
|
||||
SparseSelfAdjointView<const MatrixType, UpLo>
|
||||
>::type MatrixWrapperType;
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
|
@ -222,8 +213,7 @@ public:
|
|||
m_error = Base::m_tolerance;
|
||||
|
||||
typename Dest::ColXpr xj(x,j);
|
||||
internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj,
|
||||
Base::m_preconditioner, m_iterations, m_error);
|
||||
internal::conjugate_gradient(MatrixWrapperType(*mp_matrix), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
|
@ -234,7 +224,7 @@ public:
|
|||
template<typename Rhs,typename Dest>
|
||||
void _solve(const Rhs& b, Dest& x) const
|
||||
{
|
||||
x.setOnes();
|
||||
x.setZero();
|
||||
_solveWithGuess(b,x);
|
||||
}
|
||||
|
||||
|
|
|
@ -150,7 +150,6 @@ class IncompleteLUT : internal::noncopyable
|
|||
{
|
||||
analyzePattern(amat);
|
||||
factorize(amat);
|
||||
m_isInitialized = m_factorizationIsOk;
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -235,6 +234,8 @@ void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
|
|||
m_Pinv = m_P.inverse(); // ... and the inverse permutation
|
||||
|
||||
m_analysisIsOk = true;
|
||||
m_factorizationIsOk = false;
|
||||
m_isInitialized = false;
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
|
@ -442,6 +443,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
|
|||
m_lu.makeCompressed();
|
||||
|
||||
m_factorizationIsOk = true;
|
||||
m_isInitialized = m_factorizationIsOk;
|
||||
m_info = Success;
|
||||
}
|
||||
|
||||
|
|
|
@ -374,6 +374,12 @@ template<typename _MatrixType> class FullPivLU
|
|||
inline Index cols() const { return m_lu.cols(); }
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
MatrixType m_lu;
|
||||
PermutationPType m_p;
|
||||
PermutationQType m_q;
|
||||
|
@ -418,6 +424,8 @@ FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
|
|||
template<typename MatrixType>
|
||||
FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
// the permutations are stored as int indices, so just to be sure:
|
||||
eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
|
||||
|
||||
|
|
|
@ -171,6 +171,12 @@ template<typename _MatrixType> class PartialPivLU
|
|||
inline Index cols() const { return m_lu.cols(); }
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
MatrixType m_lu;
|
||||
PermutationType m_p;
|
||||
TranspositionType m_rowsTranspositions;
|
||||
|
@ -386,6 +392,8 @@ void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, t
|
|||
template<typename MatrixType>
|
||||
PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
// the row permutation is stored as int indices, so just to be sure:
|
||||
eigen_assert(matrix.rows()<NumTraits<int>::highest());
|
||||
|
||||
|
|
|
@ -144,15 +144,23 @@ void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,Index>& C, Permutation
|
|||
/* --- Initialize degree lists ------------------------------------------ */
|
||||
for(i = 0; i < n; i++)
|
||||
{
|
||||
bool has_diag = false;
|
||||
for(p = Cp[i]; p<Cp[i+1]; ++p)
|
||||
if(Ci[p]==i)
|
||||
{
|
||||
has_diag = true;
|
||||
break;
|
||||
}
|
||||
|
||||
d = degree[i];
|
||||
if(d == 0) /* node i is empty */
|
||||
if(d == 1) /* node i is empty */
|
||||
{
|
||||
elen[i] = -2; /* element i is dead */
|
||||
nel++;
|
||||
Cp[i] = -1; /* i is a root of assembly tree */
|
||||
w[i] = 0;
|
||||
}
|
||||
else if(d > dense) /* node i is dense */
|
||||
else if(d > dense || !has_diag) /* node i is dense or has no structural diagonal element */
|
||||
{
|
||||
nv[i] = 0; /* absorb i into element n */
|
||||
elen[i] = -1; /* node i is dead */
|
||||
|
@ -168,6 +176,10 @@ void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,Index>& C, Permutation
|
|||
}
|
||||
}
|
||||
|
||||
elen[n] = -2; /* n is a dead element */
|
||||
Cp[n] = -1; /* n is a root of assembly tree */
|
||||
w[n] = 0; /* n is a dead element */
|
||||
|
||||
while (nel < n) /* while (selecting pivots) do */
|
||||
{
|
||||
/* --- Select node of minimum approximate degree -------------------- */
|
||||
|
|
|
@ -219,7 +219,7 @@ class PardisoImpl
|
|||
void pardisoInit(int type)
|
||||
{
|
||||
m_type = type;
|
||||
bool symmetric = abs(m_type) < 10;
|
||||
bool symmetric = std::abs(m_type) < 10;
|
||||
m_iparm[0] = 1; // No solver default
|
||||
m_iparm[1] = 3; // use Metis for the ordering
|
||||
m_iparm[2] = 1; // Numbers of processors, value of OMP_NUM_THREADS
|
||||
|
|
|
@ -384,6 +384,12 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
|||
}
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
PermutationType m_colsPermutation;
|
||||
|
@ -422,6 +428,8 @@ typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDetermina
|
|||
template<typename MatrixType>
|
||||
ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
using std::abs;
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
|
@ -463,20 +471,10 @@ ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const
|
|||
// we store that back into our table: it can't hurt to correct our table.
|
||||
m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm;
|
||||
|
||||
// if the current biggest column is smaller than epsilon times the initial biggest column,
|
||||
// terminate to avoid generating nan/inf values.
|
||||
// Note that here, if we test instead for "biggest == 0", we get a failure every 1000 (or so)
|
||||
// repetitions of the unit test, with the result of solve() filled with large values of the order
|
||||
// of 1/(size*epsilon).
|
||||
if(biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
|
||||
{
|
||||
// Track the number of meaningful pivots but do not stop the decomposition to make
|
||||
// sure that the initial matrix is properly reproduced. See bug 941.
|
||||
if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
|
||||
m_nonzero_pivots = k;
|
||||
m_hCoeffs.tail(size-k).setZero();
|
||||
m_qr.bottomRightCorner(rows-k,cols-k)
|
||||
.template triangularView<StrictlyLower>()
|
||||
.setZero();
|
||||
break;
|
||||
}
|
||||
|
||||
// apply the transposition to the columns
|
||||
m_colsTranspositions.coeffRef(k) = biggest_col_index;
|
||||
|
@ -505,7 +503,7 @@ ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const
|
|||
}
|
||||
|
||||
m_colsPermutation.setIdentity(PermIndexType(cols));
|
||||
for(PermIndexType k = 0; k < m_nonzero_pivots; ++k)
|
||||
for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k)
|
||||
m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
|
||||
|
||||
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
|
||||
|
@ -555,13 +553,15 @@ struct solve_retval<ColPivHouseholderQR<_MatrixType>, Rhs>
|
|||
|
||||
} // end namespace internal
|
||||
|
||||
/** \returns the matrix Q as a sequence of householder transformations */
|
||||
/** \returns the matrix Q as a sequence of householder transformations.
|
||||
* You can extract the meaningful part only by using:
|
||||
* \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/
|
||||
template<typename MatrixType>
|
||||
typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
|
||||
::householderQ() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
|
||||
return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()).setLength(m_nonzero_pivots);
|
||||
return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
|
||||
}
|
||||
|
||||
/** \return the column-pivoting Householder QR decomposition of \c *this.
|
||||
|
|
|
@ -368,6 +368,12 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
|||
RealScalar maxPivot() const { return m_maxpivot; }
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
IntDiagSizeVectorType m_rows_transpositions;
|
||||
|
@ -407,6 +413,8 @@ typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDetermin
|
|||
template<typename MatrixType>
|
||||
FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
using std::abs;
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
|
|
|
@ -189,6 +189,12 @@ template<typename _MatrixType> class HouseholderQR
|
|||
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
RowVectorType m_temp;
|
||||
|
@ -251,8 +257,13 @@ void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename
|
|||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename MatrixQR, typename HCoeffs>
|
||||
void householder_qr_inplace_blocked(MatrixQR& mat, HCoeffs& hCoeffs,
|
||||
template<typename MatrixQR, typename HCoeffs,
|
||||
typename MatrixQRScalar = typename MatrixQR::Scalar,
|
||||
bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
|
||||
struct householder_qr_inplace_blocked
|
||||
{
|
||||
// This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h
|
||||
static void run(MatrixQR& mat, HCoeffs& hCoeffs,
|
||||
typename MatrixQR::Index maxBlockSize=32,
|
||||
typename MatrixQR::Scalar* tempData = 0)
|
||||
{
|
||||
|
@ -301,6 +312,7 @@ void householder_qr_inplace_blocked(MatrixQR& mat, HCoeffs& hCoeffs,
|
|||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename _MatrixType, typename Rhs>
|
||||
struct solve_retval<HouseholderQR<_MatrixType>, Rhs>
|
||||
|
@ -343,6 +355,8 @@ struct solve_retval<HouseholderQR<_MatrixType>, Rhs>
|
|||
template<typename MatrixType>
|
||||
HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
Index size = (std::min)(rows,cols);
|
||||
|
@ -352,7 +366,7 @@ HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType&
|
|||
|
||||
m_temp.resize(cols);
|
||||
|
||||
internal::householder_qr_inplace_blocked(m_qr, m_hCoeffs, 48, m_temp.data());
|
||||
internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
|
|
|
@ -34,7 +34,7 @@
|
|||
#ifndef EIGEN_QR_MKL_H
|
||||
#define EIGEN_QR_MKL_H
|
||||
|
||||
#include "Eigen/src/Core/util/MKL_support.h"
|
||||
#include "../Core/util/MKL_support.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
|
@ -44,18 +44,20 @@ namespace internal {
|
|||
|
||||
#define EIGEN_MKL_QR_NOPIV(EIGTYPE, MKLTYPE, MKLPREFIX) \
|
||||
template<typename MatrixQR, typename HCoeffs> \
|
||||
void householder_qr_inplace_blocked(MatrixQR& mat, HCoeffs& hCoeffs, \
|
||||
typename MatrixQR::Index maxBlockSize=32, \
|
||||
EIGTYPE* tempData = 0) \
|
||||
struct householder_qr_inplace_blocked<MatrixQR, HCoeffs, EIGTYPE, true> \
|
||||
{ \
|
||||
lapack_int m = mat.rows(); \
|
||||
lapack_int n = mat.cols(); \
|
||||
lapack_int lda = mat.outerStride(); \
|
||||
static void run(MatrixQR& mat, HCoeffs& hCoeffs, \
|
||||
typename MatrixQR::Index = 32, \
|
||||
typename MatrixQR::Scalar* = 0) \
|
||||
{ \
|
||||
lapack_int m = (lapack_int) mat.rows(); \
|
||||
lapack_int n = (lapack_int) mat.cols(); \
|
||||
lapack_int lda = (lapack_int) mat.outerStride(); \
|
||||
lapack_int matrix_order = (MatrixQR::IsRowMajor) ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
|
||||
LAPACKE_##MKLPREFIX##geqrf( matrix_order, m, n, (MKLTYPE*)mat.data(), lda, (MKLTYPE*)hCoeffs.data()); \
|
||||
hCoeffs.adjointInPlace(); \
|
||||
\
|
||||
}
|
||||
} \
|
||||
};
|
||||
|
||||
EIGEN_MKL_QR_NOPIV(double, double, d)
|
||||
EIGEN_MKL_QR_NOPIV(float, float, s)
|
||||
|
|
|
@ -64,19 +64,13 @@ class SPQR
|
|||
typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
|
||||
public:
|
||||
SPQR()
|
||||
: m_isInitialized(false),
|
||||
m_ordering(SPQR_ORDERING_DEFAULT),
|
||||
m_allow_tol(SPQR_DEFAULT_TOL),
|
||||
m_tolerance (NumTraits<Scalar>::epsilon())
|
||||
: m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
|
||||
{
|
||||
cholmod_l_start(&m_cc);
|
||||
}
|
||||
|
||||
SPQR(const _MatrixType& matrix)
|
||||
: m_isInitialized(false),
|
||||
m_ordering(SPQR_ORDERING_DEFAULT),
|
||||
m_allow_tol(SPQR_DEFAULT_TOL),
|
||||
m_tolerance (NumTraits<Scalar>::epsilon())
|
||||
: m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
|
||||
{
|
||||
cholmod_l_start(&m_cc);
|
||||
compute(matrix);
|
||||
|
@ -101,10 +95,26 @@ class SPQR
|
|||
if(m_isInitialized) SPQR_free();
|
||||
|
||||
MatrixType mat(matrix);
|
||||
|
||||
/* Compute the default threshold as in MatLab, see:
|
||||
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
|
||||
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
|
||||
*/
|
||||
RealScalar pivotThreshold = m_tolerance;
|
||||
if(m_useDefaultThreshold)
|
||||
{
|
||||
using std::max;
|
||||
RealScalar max2Norm = 0.0;
|
||||
for (int j = 0; j < mat.cols(); j++) max2Norm = (max)(max2Norm, mat.col(j).norm());
|
||||
if(max2Norm==RealScalar(0))
|
||||
max2Norm = RealScalar(1);
|
||||
pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
|
||||
}
|
||||
|
||||
cholmod_sparse A;
|
||||
A = viewAsCholmod(mat);
|
||||
Index col = matrix.cols();
|
||||
m_rank = SuiteSparseQR<Scalar>(m_ordering, m_tolerance, col, &A,
|
||||
m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
|
||||
&m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
|
||||
|
||||
if (!m_cR)
|
||||
|
@ -120,7 +130,7 @@ class SPQR
|
|||
/**
|
||||
* Get the number of rows of the input matrix and the Q matrix
|
||||
*/
|
||||
inline Index rows() const {return m_H->nrow; }
|
||||
inline Index rows() const {return m_cR->nrow; }
|
||||
|
||||
/**
|
||||
* Get the number of columns of the input matrix.
|
||||
|
@ -147,14 +157,23 @@ class SPQR
|
|||
eigen_assert(b.cols()==1 && "This method is for vectors only");
|
||||
|
||||
//Compute Q^T * b
|
||||
typename Dest::PlainObject y;
|
||||
typename Dest::PlainObject y, y2;
|
||||
y = matrixQ().transpose() * b;
|
||||
|
||||
// Solves with the triangular matrix R
|
||||
Index rk = this->rank();
|
||||
y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y.topRows(rk));
|
||||
y.bottomRows(cols()-rk).setZero();
|
||||
y2 = y;
|
||||
y.resize((std::max)(cols(),Index(y.rows())),y.cols());
|
||||
y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
|
||||
|
||||
// Apply the column permutation
|
||||
dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
|
||||
// colsPermutation() performs a copy of the permutation,
|
||||
// so let's apply it manually:
|
||||
for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
|
||||
for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
|
||||
|
||||
// y.bottomRows(y.rows()-rk).setZero();
|
||||
// dest = colsPermutation() * y.topRows(cols());
|
||||
|
||||
m_info = Success;
|
||||
}
|
||||
|
@ -197,7 +216,11 @@ class SPQR
|
|||
/// Set the fill-reducing ordering method to be used
|
||||
void setSPQROrdering(int ord) { m_ordering = ord;}
|
||||
/// Set the tolerance tol to treat columns with 2-norm < =tol as zero
|
||||
void setPivotThreshold(const RealScalar& tol) { m_tolerance = tol; }
|
||||
void setPivotThreshold(const RealScalar& tol)
|
||||
{
|
||||
m_useDefaultThreshold = false;
|
||||
m_tolerance = tol;
|
||||
}
|
||||
|
||||
/** \returns a pointer to the SPQR workspace */
|
||||
cholmod_common *cholmodCommon() const { return &m_cc; }
|
||||
|
@ -230,6 +253,7 @@ class SPQR
|
|||
mutable cholmod_dense *m_HTau; // The Householder coefficients
|
||||
mutable Index m_rank; // The rank of the matrix
|
||||
mutable cholmod_common m_cc; // Workspace and parameters
|
||||
bool m_useDefaultThreshold; // Use default threshold
|
||||
template<typename ,typename > friend struct SPQR_QProduct;
|
||||
};
|
||||
|
||||
|
|
|
@ -743,6 +743,11 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
private:
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
protected:
|
||||
MatrixUType m_matrixU;
|
||||
MatrixVType m_matrixV;
|
||||
|
@ -762,6 +767,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
|
||||
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
|
||||
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
|
||||
MatrixType m_scaledMatrix;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
|
@ -810,12 +816,15 @@ void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, u
|
|||
|
||||
if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this);
|
||||
if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this);
|
||||
if(m_cols!=m_cols) m_scaledMatrix.resize(rows,cols);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
JacobiSVD<MatrixType, QRPreconditioner>&
|
||||
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
using std::abs;
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
|
||||
|
@ -826,22 +835,27 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
// limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
|
||||
const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
|
||||
|
||||
// Scaling factor to reduce over/under-flows
|
||||
RealScalar scale = matrix.cwiseAbs().maxCoeff();
|
||||
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||||
|
||||
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
|
||||
|
||||
if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix))
|
||||
if(m_rows!=m_cols)
|
||||
{
|
||||
m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize);
|
||||
m_scaledMatrix = matrix / scale;
|
||||
m_qr_precond_morecols.run(*this, m_scaledMatrix);
|
||||
m_qr_precond_morerows.run(*this, m_scaledMatrix);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale;
|
||||
if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
|
||||
if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
|
||||
if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
|
||||
if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
|
||||
}
|
||||
|
||||
// Scaling factor to reduce over/under-flows
|
||||
RealScalar scale = m_workMatrix.cwiseAbs().maxCoeff();
|
||||
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||||
m_workMatrix /= scale;
|
||||
|
||||
/*** step 2. The main Jacobi SVD iteration. ***/
|
||||
|
||||
bool finished = false;
|
||||
|
@ -861,7 +875,8 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
using std::max;
|
||||
RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
|
||||
abs(m_workMatrix.coeff(q,q))));
|
||||
if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
|
||||
// We compare both values to threshold instead of calling max to be robust to NaN (See bug 791)
|
||||
if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold)
|
||||
{
|
||||
finished = false;
|
||||
|
||||
|
|
|
@ -69,7 +69,7 @@ class AmbiVector
|
|||
delete[] m_buffer;
|
||||
if (size<1000)
|
||||
{
|
||||
Index allocSize = (size * sizeof(ListEl))/sizeof(Scalar);
|
||||
Index allocSize = (size * sizeof(ListEl) + sizeof(Scalar) - 1)/sizeof(Scalar);
|
||||
m_allocatedElements = (allocSize*sizeof(Scalar))/sizeof(ListEl);
|
||||
m_buffer = new Scalar[allocSize];
|
||||
}
|
||||
|
@ -88,7 +88,7 @@ class AmbiVector
|
|||
Index copyElements = m_allocatedElements;
|
||||
m_allocatedElements = (std::min)(Index(m_allocatedElements*1.5),m_size);
|
||||
Index allocSize = m_allocatedElements * sizeof(ListEl);
|
||||
allocSize = allocSize/sizeof(Scalar) + (allocSize%sizeof(Scalar)>0?1:0);
|
||||
allocSize = (allocSize + sizeof(Scalar) - 1)/sizeof(Scalar);
|
||||
Scalar* newBuffer = new Scalar[allocSize];
|
||||
memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl));
|
||||
delete[] m_buffer;
|
||||
|
|
|
@ -58,6 +58,16 @@ public:
|
|||
: m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols)
|
||||
{}
|
||||
|
||||
inline const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_matrix.coeff(row + IsRowMajor ? m_outerStart : 0, col +IsRowMajor ? 0 : m_outerStart);
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int index) const
|
||||
{
|
||||
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
|
||||
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
|
||||
|
||||
|
@ -68,6 +78,8 @@ public:
|
|||
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl)
|
||||
private:
|
||||
Index nonZeros() const;
|
||||
};
|
||||
|
||||
|
||||
|
@ -82,6 +94,7 @@ class BlockImpl<SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true
|
|||
typedef SparseMatrix<_Scalar, _Options, _Index> SparseMatrixType;
|
||||
typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _MatrixTypeNested;
|
||||
typedef Block<SparseMatrixType, BlockRows, BlockCols, true> BlockType;
|
||||
typedef Block<const SparseMatrixType, BlockRows, BlockCols, true> ConstBlockType;
|
||||
public:
|
||||
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
|
||||
|
@ -224,6 +237,118 @@ public:
|
|||
return Map<const Matrix<Index,OuterSize,1> >(m_matrix.innerNonZeroPtr()+m_outerStart, m_outerSize.value()).sum();
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int row, int col)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int index) const
|
||||
{
|
||||
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
|
||||
}
|
||||
|
||||
const Scalar& lastCoeff() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(BlockImpl);
|
||||
eigen_assert(nonZeros()>0);
|
||||
if(m_matrix.isCompressed())
|
||||
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart+1]-1];
|
||||
else
|
||||
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart]+m_matrix.innerNonZeroPtr()[m_outerStart]-1];
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
|
||||
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
|
||||
|
||||
protected:
|
||||
|
||||
typename SparseMatrixType::Nested m_matrix;
|
||||
Index m_outerStart;
|
||||
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
|
||||
|
||||
};
|
||||
|
||||
|
||||
template<typename _Scalar, int _Options, typename _Index, int BlockRows, int BlockCols>
|
||||
class BlockImpl<const SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true,Sparse>
|
||||
: public SparseMatrixBase<Block<const SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true> >
|
||||
{
|
||||
typedef SparseMatrix<_Scalar, _Options, _Index> SparseMatrixType;
|
||||
typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _MatrixTypeNested;
|
||||
typedef Block<const SparseMatrixType, BlockRows, BlockCols, true> BlockType;
|
||||
public:
|
||||
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
|
||||
protected:
|
||||
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
|
||||
public:
|
||||
|
||||
class InnerIterator: public SparseMatrixType::InnerIterator
|
||||
{
|
||||
public:
|
||||
inline InnerIterator(const BlockType& xpr, Index outer)
|
||||
: SparseMatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
|
||||
{}
|
||||
inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
|
||||
inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
|
||||
protected:
|
||||
Index m_outer;
|
||||
};
|
||||
class ReverseInnerIterator: public SparseMatrixType::ReverseInnerIterator
|
||||
{
|
||||
public:
|
||||
inline ReverseInnerIterator(const BlockType& xpr, Index outer)
|
||||
: SparseMatrixType::ReverseInnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
|
||||
{}
|
||||
inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
|
||||
inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
|
||||
protected:
|
||||
Index m_outer;
|
||||
};
|
||||
|
||||
inline BlockImpl(const SparseMatrixType& xpr, int i)
|
||||
: m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize)
|
||||
{}
|
||||
|
||||
inline BlockImpl(const SparseMatrixType& xpr, int startRow, int startCol, int blockRows, int blockCols)
|
||||
: m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols)
|
||||
{}
|
||||
|
||||
inline const Scalar* valuePtr() const
|
||||
{ return m_matrix.valuePtr() + m_matrix.outerIndexPtr()[m_outerStart]; }
|
||||
|
||||
inline const Index* innerIndexPtr() const
|
||||
{ return m_matrix.innerIndexPtr() + m_matrix.outerIndexPtr()[m_outerStart]; }
|
||||
|
||||
inline const Index* outerIndexPtr() const
|
||||
{ return m_matrix.outerIndexPtr() + m_outerStart; }
|
||||
|
||||
Index nonZeros() const
|
||||
{
|
||||
if(m_matrix.isCompressed())
|
||||
return std::size_t(m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()])
|
||||
- std::size_t(m_matrix.outerIndexPtr()[m_outerStart]);
|
||||
else if(m_outerSize.value()==0)
|
||||
return 0;
|
||||
else
|
||||
return Map<const Matrix<Index,OuterSize,1> >(m_matrix.innerNonZeroPtr()+m_outerStart, m_outerSize.value()).sum();
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int index) const
|
||||
{
|
||||
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
|
||||
}
|
||||
|
||||
const Scalar& lastCoeff() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(BlockImpl);
|
||||
|
@ -265,7 +390,8 @@ const typename SparseMatrixBase<Derived>::ConstInnerVectorReturnType SparseMatri
|
|||
* is col-major (resp. row-major).
|
||||
*/
|
||||
template<typename Derived>
|
||||
Block<Derived,Dynamic,Dynamic,true> SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize)
|
||||
typename SparseMatrixBase<Derived>::InnerVectorsReturnType
|
||||
SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize)
|
||||
{
|
||||
return Block<Derived,Dynamic,Dynamic,true>(derived(),
|
||||
IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart,
|
||||
|
@ -277,7 +403,8 @@ Block<Derived,Dynamic,Dynamic,true> SparseMatrixBase<Derived>::innerVectors(Inde
|
|||
* is col-major (resp. row-major). Read-only.
|
||||
*/
|
||||
template<typename Derived>
|
||||
const Block<const Derived,Dynamic,Dynamic,true> SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize) const
|
||||
const typename SparseMatrixBase<Derived>::ConstInnerVectorsReturnType
|
||||
SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize) const
|
||||
{
|
||||
return Block<const Derived,Dynamic,Dynamic,true>(derived(),
|
||||
IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart,
|
||||
|
@ -304,8 +431,8 @@ public:
|
|||
: m_matrix(xpr),
|
||||
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
|
||||
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
|
||||
m_blockRows(xpr.rows()),
|
||||
m_blockCols(xpr.cols())
|
||||
m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
|
||||
m_blockCols(BlockCols==1 ? 1 : xpr.cols())
|
||||
{}
|
||||
|
||||
/** Dynamic-size constructor
|
||||
|
@ -407,3 +534,4 @@ public:
|
|||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_BLOCK_H
|
||||
|
||||
|
|
|
@ -180,7 +180,7 @@ struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, R
|
|||
typename Res::Scalar tmp(0);
|
||||
for(LhsInnerIterator it(lhs,j); it ;++it)
|
||||
tmp += it.value() * rhs.coeff(it.index(),c);
|
||||
res.coeffRef(j,c) = alpha * tmp;
|
||||
res.coeffRef(j,c) += alpha * tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -306,15 +306,6 @@ class DenseTimeSparseProduct
|
|||
DenseTimeSparseProduct& operator=(const DenseTimeSparseProduct&);
|
||||
};
|
||||
|
||||
// sparse * dense
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline const typename SparseDenseProductReturnType<Derived,OtherDerived>::Type
|
||||
SparseMatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return typename SparseDenseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSEDENSEPRODUCT_H
|
||||
|
|
|
@ -358,7 +358,8 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
|
|||
/** sparse * dense (returns a dense object unless it is an outer product) */
|
||||
template<typename OtherDerived>
|
||||
const typename SparseDenseProductReturnType<Derived,OtherDerived>::Type
|
||||
operator*(const MatrixBase<OtherDerived> &other) const;
|
||||
operator*(const MatrixBase<OtherDerived> &other) const
|
||||
{ return typename SparseDenseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived()); }
|
||||
|
||||
/** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */
|
||||
SparseSymmetricPermutationProduct<Derived,Upper|Lower> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const
|
||||
|
@ -403,8 +404,10 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
|
|||
const ConstInnerVectorReturnType innerVector(Index outer) const;
|
||||
|
||||
// set of inner-vectors
|
||||
Block<Derived,Dynamic,Dynamic,true> innerVectors(Index outerStart, Index outerSize);
|
||||
const Block<const Derived,Dynamic,Dynamic,true> innerVectors(Index outerStart, Index outerSize) const;
|
||||
typedef Block<Derived,Dynamic,Dynamic,true> InnerVectorsReturnType;
|
||||
typedef Block<const Derived,Dynamic,Dynamic,true> ConstInnerVectorsReturnType;
|
||||
InnerVectorsReturnType innerVectors(Index outerStart, Index outerSize);
|
||||
const ConstInnerVectorsReturnType innerVectors(Index outerStart, Index outerSize) const;
|
||||
|
||||
/** \internal use operator= */
|
||||
template<typename DenseDerived>
|
||||
|
|
|
@ -61,7 +61,7 @@ struct permut_sparsematrix_product_retval
|
|||
for(Index j=0; j<m_matrix.outerSize(); ++j)
|
||||
{
|
||||
Index jp = m_permutation.indices().coeff(j);
|
||||
sizes[((Side==OnTheLeft) ^ Transposed) ? jp : j] = m_matrix.innerVector(((Side==OnTheRight) ^ Transposed) ? jp : j).size();
|
||||
sizes[((Side==OnTheLeft) ^ Transposed) ? jp : j] = m_matrix.innerVector(((Side==OnTheRight) ^ Transposed) ? jp : j).nonZeros();
|
||||
}
|
||||
tmp.reserve(sizes);
|
||||
for(Index j=0; j<m_matrix.outerSize(); ++j)
|
||||
|
|
|
@ -69,7 +69,7 @@ struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,RowMajor>
|
|||
for(int i=lhs.rows()-1 ; i>=0 ; --i)
|
||||
{
|
||||
Scalar tmp = other.coeff(i,col);
|
||||
Scalar l_ii = 0;
|
||||
Scalar l_ii(0);
|
||||
typename Lhs::InnerIterator it(lhs, i);
|
||||
while(it && it.index()<i)
|
||||
++it;
|
||||
|
|
|
@ -266,10 +266,10 @@ class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typ
|
|||
{
|
||||
for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
|
||||
{
|
||||
if(it.row() < j) continue;
|
||||
if(it.row() == j)
|
||||
if(it.index() == j)
|
||||
{
|
||||
det *= (std::abs)(it.value());
|
||||
using std::abs;
|
||||
det *= abs(it.value());
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -296,7 +296,8 @@ class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typ
|
|||
if(it.row() < j) continue;
|
||||
if(it.row() == j)
|
||||
{
|
||||
det += (std::log)((std::abs)(it.value()));
|
||||
using std::log; using std::abs;
|
||||
det += log(abs(it.value()));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -311,14 +312,57 @@ class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typ
|
|||
Scalar signDeterminant()
|
||||
{
|
||||
eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
|
||||
return Scalar(m_detPermR);
|
||||
// Initialize with the determinant of the row matrix
|
||||
Index det = 1;
|
||||
// Note that the diagonal blocks of U are stored in supernodes,
|
||||
// which are available in the L part :)
|
||||
for (Index j = 0; j < this->cols(); ++j)
|
||||
{
|
||||
for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
|
||||
{
|
||||
if(it.index() == j)
|
||||
{
|
||||
if(it.value()<0)
|
||||
det = -det;
|
||||
else if(it.value()==0)
|
||||
return 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return det * m_detPermR * m_detPermC;
|
||||
}
|
||||
|
||||
/** \returns The determinant of the matrix.
|
||||
*
|
||||
* \sa absDeterminant(), logAbsDeterminant()
|
||||
*/
|
||||
Scalar determinant()
|
||||
{
|
||||
eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
|
||||
// Initialize with the determinant of the row matrix
|
||||
Scalar det = Scalar(1.);
|
||||
// Note that the diagonal blocks of U are stored in supernodes,
|
||||
// which are available in the L part :)
|
||||
for (Index j = 0; j < this->cols(); ++j)
|
||||
{
|
||||
for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
|
||||
{
|
||||
if(it.index() == j)
|
||||
{
|
||||
det *= it.value();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return det * Scalar(m_detPermR * m_detPermC);
|
||||
}
|
||||
|
||||
protected:
|
||||
// Functions
|
||||
void initperfvalues()
|
||||
{
|
||||
m_perfv.panel_size = 1;
|
||||
m_perfv.panel_size = 16;
|
||||
m_perfv.relax = 1;
|
||||
m_perfv.maxsuper = 128;
|
||||
m_perfv.rowblk = 16;
|
||||
|
@ -347,7 +391,7 @@ class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typ
|
|||
internal::perfvalues<Index> m_perfv;
|
||||
RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
|
||||
Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
|
||||
Index m_detPermR; // Determinant of the coefficient matrix
|
||||
Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
|
||||
private:
|
||||
// Disable copy constructor
|
||||
SparseLU (const SparseLU& );
|
||||
|
@ -623,7 +667,8 @@ void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
|
|||
}
|
||||
|
||||
// Update the determinant of the row permutation matrix
|
||||
if (pivrow != jj) m_detPermR *= -1;
|
||||
// FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
|
||||
if (pivrow != jj) m_detPermR = -m_detPermR;
|
||||
|
||||
// Prune columns (0:jj-1) using column jj
|
||||
Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
|
||||
|
@ -638,6 +683,9 @@ void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
|
|||
jcol += panel_size; // Move to the next panel
|
||||
} // end for -- end elimination
|
||||
|
||||
m_detPermR = m_perm_r.determinant();
|
||||
m_detPermC = m_perm_c.determinant();
|
||||
|
||||
// Count the number of nonzeros in factors
|
||||
Base::countnz(n, m_nnzL, m_nnzU, m_glu);
|
||||
// Apply permutation to the L subscripts
|
||||
|
|
|
@ -189,8 +189,8 @@ class MappedSuperNodalMatrix<Scalar,Index>::InnerIterator
|
|||
m_idval(mat.colIndexPtr()[outer]),
|
||||
m_startidval(m_idval),
|
||||
m_endidval(mat.colIndexPtr()[outer+1]),
|
||||
m_idrow(mat.rowIndexPtr()[outer]),
|
||||
m_endidrow(mat.rowIndexPtr()[outer+1])
|
||||
m_idrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]]),
|
||||
m_endidrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]+1])
|
||||
{}
|
||||
inline InnerIterator& operator++()
|
||||
{
|
||||
|
|
|
@ -77,7 +77,8 @@ Index SparseLUImpl<Scalar,Index>::pivotL(const Index jcol, const RealScalar& dia
|
|||
RealScalar rtemp;
|
||||
Index isub, icol, itemp, k;
|
||||
for (isub = nsupc; isub < nsupr; ++isub) {
|
||||
rtemp = std::abs(lu_col_ptr[isub]);
|
||||
using std::abs;
|
||||
rtemp = abs(lu_col_ptr[isub]);
|
||||
if (rtemp > pivmax) {
|
||||
pivmax = rtemp;
|
||||
pivptr = isub;
|
||||
|
@ -101,7 +102,8 @@ Index SparseLUImpl<Scalar,Index>::pivotL(const Index jcol, const RealScalar& dia
|
|||
if (diag >= 0 )
|
||||
{
|
||||
// Diagonal element exists
|
||||
rtemp = std::abs(lu_col_ptr[diag]);
|
||||
using std::abs;
|
||||
rtemp = abs(lu_col_ptr[diag]);
|
||||
if (rtemp != 0.0 && rtemp >= thresh) pivptr = diag;
|
||||
}
|
||||
pivrow = lsub_ptr[pivptr];
|
||||
|
|
|
@ -75,7 +75,7 @@ class SparseQR
|
|||
typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
|
||||
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||||
public:
|
||||
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
|
||||
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
|
||||
{ }
|
||||
|
||||
/** Construct a QR factorization of the matrix \a mat.
|
||||
|
@ -84,7 +84,7 @@ class SparseQR
|
|||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
|
||||
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
|
@ -262,6 +262,7 @@ class SparseQR
|
|||
IndexVector m_etree; // Column elimination tree
|
||||
IndexVector m_firstRowElt; // First element in each row
|
||||
bool m_isQSorted; // whether Q is sorted or not
|
||||
bool m_isEtreeOk; // whether the elimination tree match the initial input matrix
|
||||
|
||||
template <typename, typename > friend struct SparseQR_QProduct;
|
||||
template <typename > friend struct SparseQRMatrixQReturnType;
|
||||
|
@ -281,9 +282,11 @@ template <typename MatrixType, typename OrderingType>
|
|||
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
||||
{
|
||||
eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
|
||||
// Copy to a column major matrix if the input is rowmajor
|
||||
typename internal::conditional<MatrixType::IsRowMajor,QRMatrixType,const MatrixType&>::type matCpy(mat);
|
||||
// Compute the column fill reducing ordering
|
||||
OrderingType ord;
|
||||
ord(mat, m_perm_c);
|
||||
ord(matCpy, m_perm_c);
|
||||
Index n = mat.cols();
|
||||
Index m = mat.rows();
|
||||
Index diagSize = (std::min)(m,n);
|
||||
|
@ -296,7 +299,8 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
|||
|
||||
// Compute the column elimination tree of the permuted matrix
|
||||
m_outputPerm_c = m_perm_c.inverse();
|
||||
internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
|
||||
internal::coletree(matCpy, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
|
||||
m_isEtreeOk = true;
|
||||
|
||||
m_R.resize(m, n);
|
||||
m_Q.resize(m, diagSize);
|
||||
|
@ -331,14 +335,37 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
ScalarVector tval(m); // The dense vector used to compute the current column
|
||||
RealScalar pivotThreshold = m_threshold;
|
||||
|
||||
m_R.setZero();
|
||||
m_Q.setZero();
|
||||
m_pmat = mat;
|
||||
if(!m_isEtreeOk)
|
||||
{
|
||||
m_outputPerm_c = m_perm_c.inverse();
|
||||
internal::coletree(m_pmat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
|
||||
m_isEtreeOk = true;
|
||||
}
|
||||
|
||||
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
|
||||
|
||||
// Apply the fill-in reducing permutation lazily:
|
||||
{
|
||||
// If the input is row major, copy the original column indices,
|
||||
// otherwise directly use the input matrix
|
||||
//
|
||||
IndexVector originalOuterIndicesCpy;
|
||||
const Index *originalOuterIndices = mat.outerIndexPtr();
|
||||
if(MatrixType::IsRowMajor)
|
||||
{
|
||||
originalOuterIndicesCpy = IndexVector::Map(m_pmat.outerIndexPtr(),n+1);
|
||||
originalOuterIndices = originalOuterIndicesCpy.data();
|
||||
}
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
|
||||
m_pmat.outerIndexPtr()[p] = mat.outerIndexPtr()[i];
|
||||
m_pmat.innerNonZeroPtr()[p] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i];
|
||||
m_pmat.outerIndexPtr()[p] = originalOuterIndices[i];
|
||||
m_pmat.innerNonZeroPtr()[p] = originalOuterIndices[i+1] - originalOuterIndices[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* Compute the default threshold as in MatLab, see:
|
||||
|
@ -349,6 +376,8 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
{
|
||||
RealScalar max2Norm = 0.0;
|
||||
for (int j = 0; j < n; j++) max2Norm = (max)(max2Norm, m_pmat.col(j).norm());
|
||||
if(max2Norm==RealScalar(0))
|
||||
max2Norm = RealScalar(1);
|
||||
pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
|
||||
}
|
||||
|
||||
|
@ -373,7 +402,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
// all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k.
|
||||
// Note: if the diagonal entry does not exist, then its contribution must be explicitly added,
|
||||
// thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
|
||||
for (typename MatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
|
||||
for (typename QRMatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
|
||||
{
|
||||
Index curIdx = nonzeroCol;
|
||||
if(itp) curIdx = itp.row();
|
||||
|
@ -447,7 +476,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
}
|
||||
} // End update current column
|
||||
|
||||
Scalar tau;
|
||||
Scalar tau = 0;
|
||||
RealScalar beta = 0;
|
||||
|
||||
if(nonzeroCol < diagSize)
|
||||
|
@ -461,7 +490,6 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
|
||||
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
|
||||
{
|
||||
tau = RealScalar(0);
|
||||
beta = numext::real(c0);
|
||||
tval(Qidx(0)) = 1;
|
||||
}
|
||||
|
@ -514,6 +542,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
|
||||
// Recompute the column elimination tree
|
||||
internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data());
|
||||
m_isEtreeOk = false;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -531,7 +560,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
if(nonzeroCol<n)
|
||||
{
|
||||
// Permute the triangular factor to put the 'dead' columns to the end
|
||||
MatrixType tempR(m_R);
|
||||
QRMatrixType tempR(m_R);
|
||||
m_R = tempR * m_pivotperm;
|
||||
|
||||
// Update the column permutation
|
||||
|
|
|
@ -107,6 +107,16 @@ inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *N
|
|||
return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
template<typename T> struct umfpack_helper_is_sparse_plain : false_type {};
|
||||
template<typename Scalar, int Options, typename StorageIndex>
|
||||
struct umfpack_helper_is_sparse_plain<SparseMatrix<Scalar,Options,StorageIndex> >
|
||||
: true_type {};
|
||||
template<typename Scalar, int Options, typename StorageIndex>
|
||||
struct umfpack_helper_is_sparse_plain<MappedSparseMatrix<Scalar,Options,StorageIndex> >
|
||||
: true_type {};
|
||||
}
|
||||
|
||||
/** \ingroup UmfPackSupport_Module
|
||||
* \brief A sparse LU factorization and solver based on UmfPack
|
||||
*
|
||||
|
@ -192,10 +202,14 @@ class UmfPackLU : internal::noncopyable
|
|||
* Note that the matrix should be column-major, and in compressed format for best performance.
|
||||
* \sa SparseMatrix::makeCompressed().
|
||||
*/
|
||||
void compute(const MatrixType& matrix)
|
||||
template<typename InputMatrixType>
|
||||
void compute(const InputMatrixType& matrix)
|
||||
{
|
||||
analyzePattern(matrix);
|
||||
factorize(matrix);
|
||||
if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
|
||||
if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar());
|
||||
grapInput(matrix.derived());
|
||||
analyzePattern_impl();
|
||||
factorize_impl();
|
||||
}
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
|
@ -230,23 +244,15 @@ class UmfPackLU : internal::noncopyable
|
|||
*
|
||||
* \sa factorize(), compute()
|
||||
*/
|
||||
void analyzePattern(const MatrixType& matrix)
|
||||
template<typename InputMatrixType>
|
||||
void analyzePattern(const InputMatrixType& matrix)
|
||||
{
|
||||
if(m_symbolic)
|
||||
umfpack_free_symbolic(&m_symbolic,Scalar());
|
||||
if(m_numeric)
|
||||
umfpack_free_numeric(&m_numeric,Scalar());
|
||||
if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
|
||||
if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar());
|
||||
|
||||
grapInput(matrix);
|
||||
grapInput(matrix.derived());
|
||||
|
||||
int errorCode = 0;
|
||||
errorCode = umfpack_symbolic(matrix.rows(), matrix.cols(), m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
|
||||
&m_symbolic, 0, 0);
|
||||
|
||||
m_isInitialized = true;
|
||||
m_info = errorCode ? InvalidInput : Success;
|
||||
m_analysisIsOk = true;
|
||||
m_factorizationIsOk = false;
|
||||
analyzePattern_impl();
|
||||
}
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
|
@ -255,20 +261,16 @@ class UmfPackLU : internal::noncopyable
|
|||
*
|
||||
* \sa analyzePattern(), compute()
|
||||
*/
|
||||
void factorize(const MatrixType& matrix)
|
||||
template<typename InputMatrixType>
|
||||
void factorize(const InputMatrixType& matrix)
|
||||
{
|
||||
eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
|
||||
if(m_numeric)
|
||||
umfpack_free_numeric(&m_numeric,Scalar());
|
||||
|
||||
grapInput(matrix);
|
||||
grapInput(matrix.derived());
|
||||
|
||||
int errorCode;
|
||||
errorCode = umfpack_numeric(m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
|
||||
m_symbolic, &m_numeric, 0, 0);
|
||||
|
||||
m_info = errorCode ? NumericalIssue : Success;
|
||||
m_factorizationIsOk = true;
|
||||
factorize_impl();
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
|
@ -283,7 +285,6 @@ class UmfPackLU : internal::noncopyable
|
|||
|
||||
protected:
|
||||
|
||||
|
||||
void init()
|
||||
{
|
||||
m_info = InvalidInput;
|
||||
|
@ -293,9 +294,11 @@ class UmfPackLU : internal::noncopyable
|
|||
m_outerIndexPtr = 0;
|
||||
m_innerIndexPtr = 0;
|
||||
m_valuePtr = 0;
|
||||
m_extractedDataAreDirty = true;
|
||||
}
|
||||
|
||||
void grapInput(const MatrixType& mat)
|
||||
template<typename InputMatrixType>
|
||||
void grapInput_impl(const InputMatrixType& mat, internal::true_type)
|
||||
{
|
||||
m_copyMatrix.resize(mat.rows(), mat.cols());
|
||||
if( ((MatrixType::Flags&RowMajorBit)==RowMajorBit) || sizeof(typename MatrixType::Index)!=sizeof(int) || !mat.isCompressed() )
|
||||
|
@ -314,6 +317,45 @@ class UmfPackLU : internal::noncopyable
|
|||
}
|
||||
}
|
||||
|
||||
template<typename InputMatrixType>
|
||||
void grapInput_impl(const InputMatrixType& mat, internal::false_type)
|
||||
{
|
||||
m_copyMatrix = mat;
|
||||
m_outerIndexPtr = m_copyMatrix.outerIndexPtr();
|
||||
m_innerIndexPtr = m_copyMatrix.innerIndexPtr();
|
||||
m_valuePtr = m_copyMatrix.valuePtr();
|
||||
}
|
||||
|
||||
template<typename InputMatrixType>
|
||||
void grapInput(const InputMatrixType& mat)
|
||||
{
|
||||
grapInput_impl(mat, internal::umfpack_helper_is_sparse_plain<InputMatrixType>());
|
||||
}
|
||||
|
||||
void analyzePattern_impl()
|
||||
{
|
||||
int errorCode = 0;
|
||||
errorCode = umfpack_symbolic(m_copyMatrix.rows(), m_copyMatrix.cols(), m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
|
||||
&m_symbolic, 0, 0);
|
||||
|
||||
m_isInitialized = true;
|
||||
m_info = errorCode ? InvalidInput : Success;
|
||||
m_analysisIsOk = true;
|
||||
m_factorizationIsOk = false;
|
||||
m_extractedDataAreDirty = true;
|
||||
}
|
||||
|
||||
void factorize_impl()
|
||||
{
|
||||
int errorCode;
|
||||
errorCode = umfpack_numeric(m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
|
||||
m_symbolic, &m_numeric, 0, 0);
|
||||
|
||||
m_info = errorCode ? NumericalIssue : Success;
|
||||
m_factorizationIsOk = true;
|
||||
m_extractedDataAreDirty = true;
|
||||
}
|
||||
|
||||
// cached data to reduce reallocation, etc.
|
||||
mutable LUMatrixType m_l;
|
||||
mutable LUMatrixType m_u;
|
||||
|
|
|
@ -70,6 +70,43 @@ max
|
|||
return (max)(Derived::PlainObject::Constant(rows(), cols(), other));
|
||||
}
|
||||
|
||||
|
||||
#define EIGEN_MAKE_CWISE_COMP_OP(OP, COMPARATOR) \
|
||||
template<typename OtherDerived> \
|
||||
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_ ## COMPARATOR>, const Derived, const OtherDerived> \
|
||||
OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const \
|
||||
{ \
|
||||
return CwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_ ## COMPARATOR>, const Derived, const OtherDerived>(derived(), other.derived()); \
|
||||
}\
|
||||
typedef CwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_ ## COMPARATOR>, const Derived, const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> > Cmp ## COMPARATOR ## ReturnType; \
|
||||
typedef CwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_ ## COMPARATOR>, const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject>, const Derived > RCmp ## COMPARATOR ## ReturnType; \
|
||||
EIGEN_STRONG_INLINE const Cmp ## COMPARATOR ## ReturnType \
|
||||
OP(const Scalar& s) const { \
|
||||
return this->OP(Derived::PlainObject::Constant(rows(), cols(), s)); \
|
||||
} \
|
||||
friend EIGEN_STRONG_INLINE const RCmp ## COMPARATOR ## ReturnType \
|
||||
OP(const Scalar& s, const Derived& d) { \
|
||||
return Derived::PlainObject::Constant(d.rows(), d.cols(), s).OP(d); \
|
||||
}
|
||||
|
||||
#define EIGEN_MAKE_CWISE_COMP_R_OP(OP, R_OP, RCOMPARATOR) \
|
||||
template<typename OtherDerived> \
|
||||
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_##RCOMPARATOR>, const OtherDerived, const Derived> \
|
||||
OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const \
|
||||
{ \
|
||||
return CwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_##RCOMPARATOR>, const OtherDerived, const Derived>(other.derived(), derived()); \
|
||||
} \
|
||||
\
|
||||
inline const RCmp ## RCOMPARATOR ## ReturnType \
|
||||
OP(const Scalar& s) const { \
|
||||
return Derived::PlainObject::Constant(rows(), cols(), s).R_OP(*this); \
|
||||
} \
|
||||
friend inline const Cmp ## RCOMPARATOR ## ReturnType \
|
||||
OP(const Scalar& s, const Derived& d) { \
|
||||
return d.R_OP(Derived::PlainObject::Constant(d.rows(), d.cols(), s)); \
|
||||
}
|
||||
|
||||
|
||||
/** \returns an expression of the coefficient-wise \< operator of *this and \a other
|
||||
*
|
||||
* Example: \include Cwise_less.cpp
|
||||
|
@ -77,7 +114,7 @@ max
|
|||
*
|
||||
* \sa all(), any(), operator>(), operator<=()
|
||||
*/
|
||||
EIGEN_MAKE_CWISE_BINARY_OP(operator<,std::less)
|
||||
EIGEN_MAKE_CWISE_COMP_OP(operator<, LT)
|
||||
|
||||
/** \returns an expression of the coefficient-wise \<= operator of *this and \a other
|
||||
*
|
||||
|
@ -86,7 +123,7 @@ EIGEN_MAKE_CWISE_BINARY_OP(operator<,std::less)
|
|||
*
|
||||
* \sa all(), any(), operator>=(), operator<()
|
||||
*/
|
||||
EIGEN_MAKE_CWISE_BINARY_OP(operator<=,std::less_equal)
|
||||
EIGEN_MAKE_CWISE_COMP_OP(operator<=, LE)
|
||||
|
||||
/** \returns an expression of the coefficient-wise \> operator of *this and \a other
|
||||
*
|
||||
|
@ -95,7 +132,7 @@ EIGEN_MAKE_CWISE_BINARY_OP(operator<=,std::less_equal)
|
|||
*
|
||||
* \sa all(), any(), operator>=(), operator<()
|
||||
*/
|
||||
EIGEN_MAKE_CWISE_BINARY_OP(operator>,std::greater)
|
||||
EIGEN_MAKE_CWISE_COMP_R_OP(operator>, operator<, LT)
|
||||
|
||||
/** \returns an expression of the coefficient-wise \>= operator of *this and \a other
|
||||
*
|
||||
|
@ -104,7 +141,7 @@ EIGEN_MAKE_CWISE_BINARY_OP(operator>,std::greater)
|
|||
*
|
||||
* \sa all(), any(), operator>(), operator<=()
|
||||
*/
|
||||
EIGEN_MAKE_CWISE_BINARY_OP(operator>=,std::greater_equal)
|
||||
EIGEN_MAKE_CWISE_COMP_R_OP(operator>=, operator<=, LE)
|
||||
|
||||
/** \returns an expression of the coefficient-wise == operator of *this and \a other
|
||||
*
|
||||
|
@ -118,7 +155,7 @@ EIGEN_MAKE_CWISE_BINARY_OP(operator>=,std::greater_equal)
|
|||
*
|
||||
* \sa all(), any(), isApprox(), isMuchSmallerThan()
|
||||
*/
|
||||
EIGEN_MAKE_CWISE_BINARY_OP(operator==,std::equal_to)
|
||||
EIGEN_MAKE_CWISE_COMP_OP(operator==, EQ)
|
||||
|
||||
/** \returns an expression of the coefficient-wise != operator of *this and \a other
|
||||
*
|
||||
|
@ -132,7 +169,10 @@ EIGEN_MAKE_CWISE_BINARY_OP(operator==,std::equal_to)
|
|||
*
|
||||
* \sa all(), any(), isApprox(), isMuchSmallerThan()
|
||||
*/
|
||||
EIGEN_MAKE_CWISE_BINARY_OP(operator!=,std::not_equal_to)
|
||||
EIGEN_MAKE_CWISE_COMP_OP(operator!=, NEQ)
|
||||
|
||||
#undef EIGEN_MAKE_CWISE_COMP_OP
|
||||
#undef EIGEN_MAKE_CWISE_COMP_R_OP
|
||||
|
||||
// scalar addition
|
||||
|
||||
|
@ -209,3 +249,5 @@ operator||(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
|
|||
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL);
|
||||
return CwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived>(derived(),other.derived());
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -185,19 +185,3 @@ cube() const
|
|||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
#define EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(METHOD_NAME,FUNCTOR) \
|
||||
inline const CwiseUnaryOp<std::binder2nd<FUNCTOR<Scalar> >, const Derived> \
|
||||
METHOD_NAME(const Scalar& s) const { \
|
||||
return CwiseUnaryOp<std::binder2nd<FUNCTOR<Scalar> >, const Derived> \
|
||||
(derived(), std::bind2nd(FUNCTOR<Scalar>(), s)); \
|
||||
}
|
||||
|
||||
EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator==, std::equal_to)
|
||||
EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator!=, std::not_equal_to)
|
||||
EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator<, std::less)
|
||||
EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator<=, std::less_equal)
|
||||
EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator>, std::greater)
|
||||
EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator>=, std::greater_equal)
|
||||
|
||||
|
||||
|
|
|
@ -124,3 +124,20 @@ cwiseQuotient(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
|
|||
{
|
||||
return CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
||||
}
|
||||
|
||||
typedef CwiseBinaryOp<internal::scalar_cmp_op<Scalar,internal::cmp_EQ>, const Derived, const ConstantReturnType> CwiseScalarEqualReturnType;
|
||||
|
||||
/** \returns an expression of the coefficient-wise == operator of \c *this and a scalar \a s
|
||||
*
|
||||
* \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
|
||||
* In order to check for equality between two vectors or matrices with floating-point coefficients, it is
|
||||
* generally a far better idea to use a fuzzy comparison as provided by isApprox() and
|
||||
* isMuchSmallerThan().
|
||||
*
|
||||
* \sa cwiseEqual(const MatrixBase<OtherDerived> &) const
|
||||
*/
|
||||
inline const CwiseScalarEqualReturnType
|
||||
cwiseEqual(const Scalar& s) const
|
||||
{
|
||||
return CwiseScalarEqualReturnType(derived(), Derived::Constant(rows(), cols(), s), internal::scalar_cmp_op<Scalar,internal::cmp_EQ>());
|
||||
}
|
||||
|
|
|
@ -50,18 +50,3 @@ cwiseSqrt() const { return derived(); }
|
|||
inline const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived>
|
||||
cwiseInverse() const { return derived(); }
|
||||
|
||||
/** \returns an expression of the coefficient-wise == operator of \c *this and a scalar \a s
|
||||
*
|
||||
* \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
|
||||
* In order to check for equality between two vectors or matrices with floating-point coefficients, it is
|
||||
* generally a far better idea to use a fuzzy comparison as provided by isApprox() and
|
||||
* isMuchSmallerThan().
|
||||
*
|
||||
* \sa cwiseEqual(const MatrixBase<OtherDerived> &) const
|
||||
*/
|
||||
inline const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >, const Derived>
|
||||
cwiseEqual(const Scalar& s) const
|
||||
{
|
||||
return CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >,const Derived>
|
||||
(derived(), std::bind1st(std::equal_to<Scalar>(), s));
|
||||
}
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
Current Eigen Version 3.1.2 (05.11.2012)
|
||||
Current Eigen Version 3.2.1 (26.02.2014) updated on 14/05/2014
|
||||
Current Eigen Version 3.2.2 (04.08.2014) updated on 21/10/2014
|
||||
Current Eigen Version 3.2.5 (16.06.2015) updated on 24/09/2015
|
||||
|
||||
To update the lib:
|
||||
- download Eigen
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
set(Eigen_HEADERS AdolcForward BVH IterativeSolvers MatrixFunctions MoreVectorization AutoDiff AlignedVector3 Polynomials
|
||||
FFT NonLinearOptimization SparseExtra IterativeSolvers
|
||||
NumericalDiff Skyline MPRealSupport OpenGLSupport KroneckerProduct Splines LevenbergMarquardt
|
||||
set(Eigen_HEADERS AdolcForward AlignedVector3 ArpackSupport AutoDiff BVH FFT IterativeSolvers KroneckerProduct LevenbergMarquardt
|
||||
MatrixFunctions MoreVectorization MPRealSupport NonLinearOptimization NumericalDiff OpenGLSupport Polynomials
|
||||
Skyline SparseExtra Splines
|
||||
)
|
||||
|
||||
install(FILES
|
||||
|
|
|
@ -178,11 +178,11 @@ template<typename Scalar> void glLoadMatrix(const Transform<Scalar,3,Affine>& t)
|
|||
template<typename Scalar> void glLoadMatrix(const Transform<Scalar,3,Projective>& t) { glLoadMatrix(t.matrix()); }
|
||||
template<typename Scalar> void glLoadMatrix(const Transform<Scalar,3,AffineCompact>& t) { glLoadMatrix(Transform<Scalar,3,Affine>(t).matrix()); }
|
||||
|
||||
static void glRotate(const Rotation2D<float>& rot)
|
||||
inline void glRotate(const Rotation2D<float>& rot)
|
||||
{
|
||||
glRotatef(rot.angle()*180.f/float(M_PI), 0.f, 0.f, 1.f);
|
||||
}
|
||||
static void glRotate(const Rotation2D<double>& rot)
|
||||
inline void glRotate(const Rotation2D<double>& rot)
|
||||
{
|
||||
glRotated(rot.angle()*180.0/M_PI, 0.0, 0.0, 1.0);
|
||||
}
|
||||
|
@ -246,18 +246,18 @@ EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glGet,GLenum,_,double, 4,4,Doublev)
|
|||
|
||||
#ifdef GL_VERSION_2_0
|
||||
|
||||
static void glUniform2fv_ei (GLint loc, const float* v) { glUniform2fv(loc,1,v); }
|
||||
static void glUniform2iv_ei (GLint loc, const int* v) { glUniform2iv(loc,1,v); }
|
||||
inline void glUniform2fv_ei (GLint loc, const float* v) { glUniform2fv(loc,1,v); }
|
||||
inline void glUniform2iv_ei (GLint loc, const int* v) { glUniform2iv(loc,1,v); }
|
||||
|
||||
static void glUniform3fv_ei (GLint loc, const float* v) { glUniform3fv(loc,1,v); }
|
||||
static void glUniform3iv_ei (GLint loc, const int* v) { glUniform3iv(loc,1,v); }
|
||||
inline void glUniform3fv_ei (GLint loc, const float* v) { glUniform3fv(loc,1,v); }
|
||||
inline void glUniform3iv_ei (GLint loc, const int* v) { glUniform3iv(loc,1,v); }
|
||||
|
||||
static void glUniform4fv_ei (GLint loc, const float* v) { glUniform4fv(loc,1,v); }
|
||||
static void glUniform4iv_ei (GLint loc, const int* v) { glUniform4iv(loc,1,v); }
|
||||
inline void glUniform4fv_ei (GLint loc, const float* v) { glUniform4fv(loc,1,v); }
|
||||
inline void glUniform4iv_ei (GLint loc, const int* v) { glUniform4iv(loc,1,v); }
|
||||
|
||||
static void glUniformMatrix2fv_ei (GLint loc, const float* v) { glUniformMatrix2fv(loc,1,false,v); }
|
||||
static void glUniformMatrix3fv_ei (GLint loc, const float* v) { glUniformMatrix3fv(loc,1,false,v); }
|
||||
static void glUniformMatrix4fv_ei (GLint loc, const float* v) { glUniformMatrix4fv(loc,1,false,v); }
|
||||
inline void glUniformMatrix2fv_ei (GLint loc, const float* v) { glUniformMatrix2fv(loc,1,false,v); }
|
||||
inline void glUniformMatrix3fv_ei (GLint loc, const float* v) { glUniformMatrix3fv(loc,1,false,v); }
|
||||
inline void glUniformMatrix4fv_ei (GLint loc, const float* v) { glUniformMatrix4fv(loc,1,false,v); }
|
||||
|
||||
|
||||
EIGEN_GL_FUNC1_DECLARATION (glUniform,GLint,const)
|
||||
|
@ -294,9 +294,9 @@ EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 4,3,Matrix
|
|||
|
||||
#ifdef GL_VERSION_3_0
|
||||
|
||||
static void glUniform2uiv_ei (GLint loc, const unsigned int* v) { glUniform2uiv(loc,1,v); }
|
||||
static void glUniform3uiv_ei (GLint loc, const unsigned int* v) { glUniform3uiv(loc,1,v); }
|
||||
static void glUniform4uiv_ei (GLint loc, const unsigned int* v) { glUniform4uiv(loc,1,v); }
|
||||
inline void glUniform2uiv_ei (GLint loc, const unsigned int* v) { glUniform2uiv(loc,1,v); }
|
||||
inline void glUniform3uiv_ei (GLint loc, const unsigned int* v) { glUniform3uiv(loc,1,v); }
|
||||
inline void glUniform4uiv_ei (GLint loc, const unsigned int* v) { glUniform4uiv(loc,1,v); }
|
||||
|
||||
EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,unsigned int, 2,2uiv_ei)
|
||||
EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,unsigned int, 3,3uiv_ei)
|
||||
|
@ -305,9 +305,9 @@ EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,unsigned int, 4,4uiv_ei)
|
|||
#endif
|
||||
|
||||
#ifdef GL_ARB_gpu_shader_fp64
|
||||
static void glUniform2dv_ei (GLint loc, const double* v) { glUniform2dv(loc,1,v); }
|
||||
static void glUniform3dv_ei (GLint loc, const double* v) { glUniform3dv(loc,1,v); }
|
||||
static void glUniform4dv_ei (GLint loc, const double* v) { glUniform4dv(loc,1,v); }
|
||||
inline void glUniform2dv_ei (GLint loc, const double* v) { glUniform2dv(loc,1,v); }
|
||||
inline void glUniform3dv_ei (GLint loc, const double* v) { glUniform3dv(loc,1,v); }
|
||||
inline void glUniform4dv_ei (GLint loc, const double* v) { glUniform4dv(loc,1,v); }
|
||||
|
||||
EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,double, 2,2dv_ei)
|
||||
EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,double, 3,3dv_ei)
|
||||
|
|
|
@ -2,6 +2,8 @@ ADD_SUBDIRECTORY(AutoDiff)
|
|||
ADD_SUBDIRECTORY(BVH)
|
||||
ADD_SUBDIRECTORY(FFT)
|
||||
ADD_SUBDIRECTORY(IterativeSolvers)
|
||||
ADD_SUBDIRECTORY(KroneckerProduct)
|
||||
ADD_SUBDIRECTORY(LevenbergMarquardt)
|
||||
ADD_SUBDIRECTORY(MatrixFunctions)
|
||||
ADD_SUBDIRECTORY(MoreVectorization)
|
||||
ADD_SUBDIRECTORY(NonLinearOptimization)
|
||||
|
@ -9,5 +11,4 @@ ADD_SUBDIRECTORY(NumericalDiff)
|
|||
ADD_SUBDIRECTORY(Polynomials)
|
||||
ADD_SUBDIRECTORY(Skyline)
|
||||
ADD_SUBDIRECTORY(SparseExtra)
|
||||
ADD_SUBDIRECTORY(KroneckerProduct)
|
||||
ADD_SUBDIRECTORY(Splines)
|
||||
|
|
|
@ -246,20 +246,7 @@ struct traits<GMRES<_MatrixType,_Preconditioner> >
|
|||
* \endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method. Here is a step by
|
||||
* step execution example starting with a random guess and printing the evolution
|
||||
* of the estimated error:
|
||||
* * \code
|
||||
* x = VectorXd::Random(n);
|
||||
* solver.setMaxIterations(1);
|
||||
* int i = 0;
|
||||
* do {
|
||||
* x = solver.solveWithGuess(b,x);
|
||||
* std::cout << i << " : " << solver.error() << std::endl;
|
||||
* ++i;
|
||||
* } while (solver.info()!=Success && i<100);
|
||||
* \endcode
|
||||
* Note that such a step by step excution is slightly slower.
|
||||
* One can control the start using the solveWithGuess() method.
|
||||
*
|
||||
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
*/
|
||||
|
|
|
@ -37,22 +37,31 @@ namespace Eigen {
|
|||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
|
||||
// Check for zero rhs
|
||||
const RealScalar rhsNorm2(rhs.squaredNorm());
|
||||
if(rhsNorm2 == 0)
|
||||
{
|
||||
x.setZero();
|
||||
iters = 0;
|
||||
tol_error = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
// initialize
|
||||
const int maxIters(iters); // initialize maxIters to iters
|
||||
const int N(mat.cols()); // the size of the matrix
|
||||
const RealScalar rhsNorm2(rhs.squaredNorm());
|
||||
const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
|
||||
|
||||
// Initialize preconditioned Lanczos
|
||||
// VectorType v_old(N); // will be initialized inside loop
|
||||
VectorType v_old(N); // will be initialized inside loop
|
||||
VectorType v( VectorType::Zero(N) ); //initialize v
|
||||
VectorType v_new(rhs-mat*x); //initialize v_new
|
||||
RealScalar residualNorm2(v_new.squaredNorm());
|
||||
// VectorType w(N); // will be initialized inside loop
|
||||
VectorType w(N); // will be initialized inside loop
|
||||
VectorType w_new(precond.solve(v_new)); // initialize w_new
|
||||
// RealScalar beta; // will be initialized inside loop
|
||||
RealScalar beta_new2(v_new.dot(w_new));
|
||||
eigen_assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||||
eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||||
RealScalar beta_new(sqrt(beta_new2));
|
||||
const RealScalar beta_one(beta_new);
|
||||
v_new /= beta_new;
|
||||
|
@ -62,14 +71,14 @@ namespace Eigen {
|
|||
RealScalar c_old(1.0);
|
||||
RealScalar s(0.0); // the sine of the Givens rotation
|
||||
RealScalar s_old(0.0); // the sine of the Givens rotation
|
||||
// VectorType p_oold(N); // will be initialized in loop
|
||||
VectorType p_oold(N); // will be initialized in loop
|
||||
VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
|
||||
VectorType p(p_old); // initialize p=0
|
||||
RealScalar eta(1.0);
|
||||
|
||||
iters = 0; // reset iters
|
||||
while ( iters < maxIters ){
|
||||
|
||||
while ( iters < maxIters )
|
||||
{
|
||||
// Preconditioned Lanczos
|
||||
/* Note that there are 4 variants on the Lanczos algorithm. These are
|
||||
* described in Paige, C. C. (1972). Computational variants of
|
||||
|
@ -81,17 +90,17 @@ namespace Eigen {
|
|||
* A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
|
||||
*/
|
||||
const RealScalar beta(beta_new);
|
||||
// v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
|
||||
const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT
|
||||
v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
|
||||
// const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT
|
||||
v = v_new; // update
|
||||
// w = w_new; // update
|
||||
const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT
|
||||
w = w_new; // update
|
||||
// const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT
|
||||
v_new.noalias() = mat*w - beta*v_old; // compute v_new
|
||||
const RealScalar alpha = v_new.dot(w);
|
||||
v_new -= alpha*v; // overwrite v_new
|
||||
w_new = precond.solve(v_new); // overwrite w_new
|
||||
beta_new2 = v_new.dot(w_new); // compute beta_new
|
||||
eigen_assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||||
eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||||
beta_new = sqrt(beta_new2); // compute beta_new
|
||||
v_new /= beta_new; // overwrite v_new for next iteration
|
||||
w_new /= beta_new; // overwrite w_new for next iteration
|
||||
|
@ -107,21 +116,28 @@ namespace Eigen {
|
|||
s=beta_new/r1; // new sine
|
||||
|
||||
// Update solution
|
||||
// p_oold = p_old;
|
||||
const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT
|
||||
p_oold = p_old;
|
||||
// const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT
|
||||
p_old = p;
|
||||
p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED?
|
||||
x += beta_one*c*eta*p;
|
||||
|
||||
/* Update the squared residual. Note that this is the estimated residual.
|
||||
The real residual |Ax-b|^2 may be slightly larger */
|
||||
residualNorm2 *= s*s;
|
||||
|
||||
if ( residualNorm2 < threshold2){
|
||||
if ( residualNorm2 < threshold2)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
eta=-s*eta; // update eta
|
||||
iters++; // increment iteration number (for output purposes)
|
||||
}
|
||||
tol_error = std::sqrt(residualNorm2 / rhsNorm2); // return error. Note that this is the estimated error. The real error |Ax-b|/|b| may be slightly larger
|
||||
|
||||
/* Compute error. Note that this is the estimated error. The real
|
||||
error |Ax-b|/|b| may be slightly larger */
|
||||
tol_error = std::sqrt(residualNorm2 / rhsNorm2);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -174,20 +190,7 @@ namespace Eigen {
|
|||
* \endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method. Here is a step by
|
||||
* step execution example starting with a random guess and printing the evolution
|
||||
* of the estimated error:
|
||||
* * \code
|
||||
* x = VectorXd::Random(n);
|
||||
* mr.setMaxIterations(1);
|
||||
* int i = 0;
|
||||
* do {
|
||||
* x = mr.solveWithGuess(b,x);
|
||||
* std::cout << i << " : " << mr.error() << std::endl;
|
||||
* ++i;
|
||||
* } while (mr.info()!=Success && i<100);
|
||||
* \endcode
|
||||
* Note that such a step by step excution is slightly slower.
|
||||
* One can control the start using the solveWithGuess() method.
|
||||
*
|
||||
* \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
*/
|
||||
|
@ -250,6 +253,11 @@ namespace Eigen {
|
|||
template<typename Rhs,typename Dest>
|
||||
void _solveWithGuess(const Rhs& b, Dest& x) const
|
||||
{
|
||||
typedef typename internal::conditional<UpLo==(Lower|Upper),
|
||||
const MatrixType&,
|
||||
SparseSelfAdjointView<const MatrixType, UpLo>
|
||||
>::type MatrixWrapperType;
|
||||
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
|
@ -259,7 +267,7 @@ namespace Eigen {
|
|||
m_error = Base::m_tolerance;
|
||||
|
||||
typename Dest::ColXpr xj(x,j);
|
||||
internal::minres(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj,
|
||||
internal::minres(MatrixWrapperType(*mp_matrix), b.col(j), xj,
|
||||
Base::m_preconditioner, m_iterations, m_error);
|
||||
}
|
||||
|
||||
|
|
|
@ -2,5 +2,5 @@ FILE(GLOB Eigen_LevenbergMarquardt_SRCS "*.h")
|
|||
|
||||
INSTALL(FILES
|
||||
${Eigen_LevenbergMarquardt_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/LevenbergMarquardt COMPONENT Devel
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/LevenbergMarquardt COMPONENT Devel
|
||||
)
|
||||
|
|
|
@ -110,7 +110,6 @@ void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) co
|
|||
using std::abs;
|
||||
using std::pow;
|
||||
|
||||
ArrayType logTdiag = m_A.diagonal().array().log();
|
||||
res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
|
||||
|
||||
for (Index i=1; i < m_A.cols(); ++i) {
|
||||
|
|
|
@ -10,12 +10,10 @@ FOREACH(example_src ${examples_SRCS})
|
|||
if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO)
|
||||
target_link_libraries(example_${example} ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO})
|
||||
endif()
|
||||
GET_TARGET_PROPERTY(example_executable
|
||||
example_${example} LOCATION)
|
||||
ADD_CUSTOM_COMMAND(
|
||||
TARGET example_${example}
|
||||
POST_BUILD
|
||||
COMMAND ${example_executable}
|
||||
COMMAND example_${example}
|
||||
ARGS >${CMAKE_CURRENT_BINARY_DIR}/${example}.out
|
||||
)
|
||||
ADD_DEPENDENCIES(unsupported_examples example_${example})
|
||||
|
|
|
@ -14,12 +14,10 @@ FOREACH(snippet_src ${snippets_SRCS})
|
|||
if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO)
|
||||
target_link_libraries(${compile_snippet_target} ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO})
|
||||
endif()
|
||||
GET_TARGET_PROPERTY(compile_snippet_executable
|
||||
${compile_snippet_target} LOCATION)
|
||||
ADD_CUSTOM_COMMAND(
|
||||
TARGET ${compile_snippet_target}
|
||||
POST_BUILD
|
||||
COMMAND ${compile_snippet_executable}
|
||||
COMMAND ${compile_snippet_target}
|
||||
ARGS >${CMAKE_CURRENT_BINARY_DIR}/${snippet}.out
|
||||
)
|
||||
ADD_DEPENDENCIES(unsupported_snippets ${compile_snippet_target})
|
||||
|
|
|
@ -29,11 +29,7 @@ ei_add_test(NonLinearOptimization)
|
|||
|
||||
ei_add_test(NumericalDiff)
|
||||
ei_add_test(autodiff)
|
||||
|
||||
if (NOT CMAKE_CXX_COMPILER MATCHES "clang\\+\\+$")
|
||||
ei_add_test(BVH)
|
||||
endif()
|
||||
|
||||
ei_add_test(matrix_exponential)
|
||||
ei_add_test(matrix_function)
|
||||
ei_add_test(matrix_power)
|
||||
|
@ -73,8 +69,9 @@ if(NOT EIGEN_TEST_NO_OPENGL)
|
|||
find_package(GLUT)
|
||||
find_package(GLEW)
|
||||
if(OPENGL_FOUND AND GLUT_FOUND AND GLEW_FOUND)
|
||||
include_directories(${OPENGL_INCLUDE_DIR} ${GLUT_INCLUDE_DIR} ${GLEW_INCLUDE_DIRS})
|
||||
ei_add_property(EIGEN_TESTED_BACKENDS "OpenGL, ")
|
||||
set(EIGEN_GL_LIB ${GLUT_LIBRARIES} ${GLEW_LIBRARIES})
|
||||
set(EIGEN_GL_LIB ${GLUT_LIBRARIES} ${GLEW_LIBRARIES} ${OPENGL_LIBRARIES})
|
||||
ei_add_test(openglsupport "" "${EIGEN_GL_LIB}" )
|
||||
else()
|
||||
ei_add_property(EIGEN_MISSING_BACKENDS "OpenGL, ")
|
||||
|
|
|
@ -14,15 +14,32 @@
|
|||
|
||||
template<typename T> void test_minres_T()
|
||||
{
|
||||
MINRES<SparseMatrix<T>, Lower, DiagonalPreconditioner<T> > minres_colmajor_diag;
|
||||
MINRES<SparseMatrix<T>, Lower, IdentityPreconditioner > minres_colmajor_I;
|
||||
MINRES<SparseMatrix<T>, Lower|Upper, DiagonalPreconditioner<T> > minres_colmajor_diag;
|
||||
MINRES<SparseMatrix<T>, Lower, IdentityPreconditioner > minres_colmajor_lower_I;
|
||||
MINRES<SparseMatrix<T>, Upper, IdentityPreconditioner > minres_colmajor_upper_I;
|
||||
// MINRES<SparseMatrix<T>, Lower, IncompleteLUT<T> > minres_colmajor_ilut;
|
||||
//minres<SparseMatrix<T>, SSORPreconditioner<T> > minres_colmajor_ssor;
|
||||
|
||||
CALL_SUBTEST( check_sparse_square_solving(minres_colmajor_diag) );
|
||||
CALL_SUBTEST( check_sparse_spd_solving(minres_colmajor_I) );
|
||||
|
||||
// CALL_SUBTEST( check_sparse_square_solving(minres_colmajor_diag) );
|
||||
// CALL_SUBTEST( check_sparse_square_solving(minres_colmajor_ilut) );
|
||||
//CALL_SUBTEST( check_sparse_square_solving(minres_colmajor_ssor) );
|
||||
|
||||
// Diagonal preconditioner
|
||||
MINRES<SparseMatrix<T>, Lower, DiagonalPreconditioner<T> > minres_colmajor_lower_diag;
|
||||
MINRES<SparseMatrix<T>, Upper, DiagonalPreconditioner<T> > minres_colmajor_upper_diag;
|
||||
MINRES<SparseMatrix<T>, Upper|Lower, DiagonalPreconditioner<T> > minres_colmajor_uplo_diag;
|
||||
|
||||
// call tests for SPD matrix
|
||||
CALL_SUBTEST( check_sparse_spd_solving(minres_colmajor_lower_I) );
|
||||
CALL_SUBTEST( check_sparse_spd_solving(minres_colmajor_upper_I) );
|
||||
|
||||
CALL_SUBTEST( check_sparse_spd_solving(minres_colmajor_lower_diag) );
|
||||
CALL_SUBTEST( check_sparse_spd_solving(minres_colmajor_upper_diag) );
|
||||
// CALL_SUBTEST( check_sparse_spd_solving(minres_colmajor_uplo_diag) );
|
||||
|
||||
// TO DO: symmetric semi-definite matrix
|
||||
// TO DO: symmetric indefinite matrix
|
||||
}
|
||||
|
||||
void test_minres()
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -104,9 +104,7 @@ void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, const
|
|||
// 1) the roots found are correct
|
||||
// 2) the roots have distinct moduli
|
||||
|
||||
typedef typename POLYNOMIAL::Scalar Scalar;
|
||||
typedef typename REAL_ROOTS::Scalar Real;
|
||||
typedef PolynomialSolver<Scalar, Deg > PolynomialSolverType;
|
||||
|
||||
//Test realRoots
|
||||
std::vector< Real > calc_realRoots;
|
||||
|
|
Loading…
Reference in New Issue