Added namespaces, copyright and a bit of cleaning...

This commit is contained in:
Paolo Cignoni 2014-08-09 00:15:52 +00:00
parent f456e8aca3
commit 5fab3cefd1
1 changed files with 184 additions and 188 deletions

View File

@ -1,218 +1,214 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef MESH_TO_MATRIX
#define MESH_TO_MATRIX
#include <vector>
#include <list>
#include <utility>
#include <Eigen/Dense>
#include <vcg/complex/algorithms/update/topology.h>
#include <vcg/complex/complex.h>
#include <vcg/complex/algorithms/update/topology.h>
using namespace std;
namespace vcg{
namespace vcg {
namespace tri {
template < typename TriMeshType >
class MeshToMatrix
{
// define types
// define types
typedef typename TriMeshType::FaceType FaceType;
typedef typename TriMeshType::VertexType VertexType;
typedef typename TriMeshType::CoordType CoordType;
typedef typename TriMeshType::ScalarType ScalarType;
typedef typename TriMeshType::FaceType FaceType;
typedef typename TriMeshType::VertexType VertexType;
typedef typename TriMeshType::CoordType CoordType;
typedef typename TriMeshType::ScalarType ScalarType;
static void GetTriEdgeAdjacency(const Eigen::MatrixXd& V,
const Eigen::MatrixXi& F,
Eigen::MatrixXi& EV,
Eigen::MatrixXi& FE,
Eigen::MatrixXi& EF)
static void GetTriEdgeAdjacency(const Eigen::MatrixXd& V,
const Eigen::MatrixXi& F,
Eigen::MatrixXi& EV,
Eigen::MatrixXi& FE,
Eigen::MatrixXi& EF)
{
//assert(igl::is_manifold(V,F));
std::vector<std::vector<int> > ETT;
for(int f=0;f<F.rows();++f)
for (int i=0;i<3;++i)
{
// v1 v2 f vi
int v1 = F(f,i);
int v2 = F(f,(i+1)%3);
if (v1 > v2) std::swap(v1,v2);
std::vector<int> r(4);
r[0] = v1; r[1] = v2;
r[2] = f; r[3] = i;
ETT.push_back(r);
}
std::sort(ETT.begin(),ETT.end());
// count the number of edges (assume manifoldness)
int En = 1; // the last is always counted
for(unsigned i=0;i<ETT.size()-1;++i)
if (!((ETT[i][0] == ETT[i+1][0]) && (ETT[i][1] == ETT[i+1][1])))
++En;
EV = Eigen::MatrixXi::Constant((int)(En),2,-1);
FE = Eigen::MatrixXi::Constant((int)(F.rows()),3,-1);
EF = Eigen::MatrixXi::Constant((int)(En),2,-1);
En = 0;
for(unsigned i=0;i<ETT.size();++i)
{
//assert(igl::is_manifold(V,F));
std::vector<std::vector<int> > ETT;
for(int f=0;f<F.rows();++f)
for (int i=0;i<3;++i)
{
// v1 v2 f vi
int v1 = F(f,i);
int v2 = F(f,(i+1)%3);
if (v1 > v2) std::swap(v1,v2);
std::vector<int> r(4);
r[0] = v1; r[1] = v2;
r[2] = f; r[3] = i;
ETT.push_back(r);
}
std::sort(ETT.begin(),ETT.end());
// count the number of edges (assume manifoldness)
int En = 1; // the last is always counted
for(unsigned i=0;i<ETT.size()-1;++i)
if (!((ETT[i][0] == ETT[i+1][0]) && (ETT[i][1] == ETT[i+1][1])))
++En;
EV = Eigen::MatrixXi::Constant((int)(En),2,-1);
FE = Eigen::MatrixXi::Constant((int)(F.rows()),3,-1);
EF = Eigen::MatrixXi::Constant((int)(En),2,-1);
En = 0;
for(unsigned i=0;i<ETT.size();++i)
{
if (i == ETT.size()-1 ||
!((ETT[i][0] == ETT[i+1][0]) && (ETT[i][1] == ETT[i+1][1]))
)
{
// Border edge
std::vector<int>& r1 = ETT[i];
EV(En,0) = r1[0];
EV(En,1) = r1[1];
EF(En,0) = r1[2];
FE(r1[2],r1[3]) = En;
}
else
{
std::vector<int>& r1 = ETT[i];
std::vector<int>& r2 = ETT[i+1];
EV(En,0) = r1[0];
EV(En,1) = r1[1];
EF(En,0) = r1[2];
EF(En,1) = r2[2];
FE(r1[2],r1[3]) = En;
FE(r2[2],r2[3]) = En;
++i; // skip the next one
}
++En;
}
// Sort the relation EF, accordingly to EV
// the first one is the face on the left of the edge
for(unsigned i=0; i<EF.rows(); ++i)
{
int fid = EF(i,0);
bool flip = true;
// search for edge EV.row(i)
for (unsigned j=0; j<3; ++j)
{
if ((F(fid,j) == EV(i,0)) && (F(fid,(j+1)%3) == EV(i,1)))
flip = false;
}
if (flip)
{
int tmp = EF(i,0);
EF(i,0) = EF(i,1);
EF(i,1) = tmp;
}
}
if (i == ETT.size()-1 ||
!((ETT[i][0] == ETT[i+1][0]) && (ETT[i][1] == ETT[i+1][1]))
)
{
// Border edge
std::vector<int>& r1 = ETT[i];
EV(En,0) = r1[0];
EV(En,1) = r1[1];
EF(En,0) = r1[2];
FE(r1[2],r1[3]) = En;
}
else
{
std::vector<int>& r1 = ETT[i];
std::vector<int>& r2 = ETT[i+1];
EV(En,0) = r1[0];
EV(En,1) = r1[1];
EF(En,0) = r1[2];
EF(En,1) = r2[2];
FE(r1[2],r1[3]) = En;
FE(r2[2],r2[3]) = En;
++i; // skip the next one
}
++En;
}
// Sort the relation EF, accordingly to EV
// the first one is the face on the left of the edge
for(unsigned i=0; i<EF.rows(); ++i)
{
int fid = EF(i,0);
bool flip = true;
// search for edge EV.row(i)
for (unsigned j=0; j<3; ++j)
{
if ((F(fid,j) == EV(i,0)) && (F(fid,(j+1)%3) == EV(i,1)))
flip = false;
}
if (flip)
{
int tmp = EF(i,0);
EF(i,0) = EF(i,1);
EF(i,1) = tmp;
}
}
}
public:
// return mesh as vactor of vertices and faces
static void GetTriMeshData(const TriMeshType &mesh,
Eigen::MatrixXi &faces,
Eigen::MatrixXd &vert)
{
// create eigen matrix of vertices
vert=Eigen::MatrixXd(mesh.VN(), 3);
// return mesh as vector of vertices and faces
static void GetTriMeshData(const TriMeshType &mesh,
Eigen::MatrixXi &faces,
Eigen::MatrixXd &vert)
{
tri::RequireCompactness(mesh);
// create eigen matrix of vertices
vert=Eigen::MatrixXd(mesh.VN(), 3);
// copy vertices
for (int i = 0; i < mesh.VN(); i++)
for (int j = 0; j < 3; j++)
vert(i,j) = mesh.vert[i].cP()[j];
// copy vertices
for (int i = 0; i < mesh.VN(); i++)
for (int j = 0; j < 3; j++)
vert(i,j) = mesh.vert[i].cP()[j];
// create eigen matrix of faces
faces=Eigen::MatrixXi(mesh.FN(), 3);
// create eigen matrix of faces
faces=Eigen::MatrixXi(mesh.FN(), 3);
// copy faces
const VertexType *v0 = &mesh.vert[0];
for (int i = 0; i < mesh.FN(); i++)
for (int j = 0; j < 3; j++)
{
faces(i,j) = (int)(mesh.face[i].cV(j) - v0);
assert(faces(i,j) >= 0 && faces(i,j) < mesh.VN());
}
}
// copy faces
for (int i = 0; i < mesh.FN(); i++)
for (int j = 0; j < 3; j++)
faces(i,j) = (int)tri::Index(mesh,mesh.face[i].cV(j));
}
// return normals of the mesh
static void GetNormalData(const TriMeshType &mesh,
Eigen::MatrixXd &Nvert,
Eigen::MatrixXd &Nface)
{
// create eigen matrix of vertices
Nvert=Eigen::MatrixXd(mesh.VN(), 3);
Nface=Eigen::MatrixXd(mesh.FN(), 3);
// return normals of the mesh
static void GetNormalData(const TriMeshType &mesh,
Eigen::MatrixXd &Nvert,
Eigen::MatrixXd &Nface)
{
// create eigen matrix of vertices
Nvert=Eigen::MatrixXd(mesh.VN(), 3);
Nface=Eigen::MatrixXd(mesh.FN(), 3);
// per vertices normals
for (int i = 0; i < mesh.VN(); i++)
for (int j = 0; j < 3; j++)
Nvert(i,j) = mesh.vert[i].cN()[j];
// per vertices normals
for (int i = 0; i < mesh.VN(); i++)
for (int j = 0; j < 3; j++)
Nvert(i,j) = mesh.vert[i].cN()[j];
// per vertices normals
for (int i = 0; i < mesh.FN(); i++)
for (int j = 0; j < 3; j++)
Nface(i,j) = mesh.face[i].cN()[j];
}
// per vertices normals
for (int i = 0; i < mesh.FN(); i++)
for (int j = 0; j < 3; j++)
Nface(i,j) = mesh.face[i].cN()[j];
}
// get face to face adjacency
static void GetTriFFAdjacency(TriMeshType &mesh,
Eigen::MatrixXi &FFp,
Eigen::MatrixXi &FFi)
{
vcg::tri::UpdateTopology<TriMeshType>::FaceFace(mesh);
// FFp = Eigen::PlainObjectBase<int>::Constant(mesh.FN(),3,-1);
// FFi = Eigen::PlainObjectBase<int>::Constant(mesh.FN(),3,-1);
// get face to face adjacency
static void GetTriFFAdjacency(TriMeshType &mesh,
Eigen::MatrixXi &FFp,
Eigen::MatrixXi &FFi)
{
tri::UpdateTopology<TriMeshType>::FaceFace(mesh);
FFp = Eigen::MatrixXi(mesh.FN(),3);
FFi = Eigen::MatrixXi(mesh.FN(),3);
FFp = Eigen::MatrixXi(mesh.FN(),3);
FFi = Eigen::MatrixXi(mesh.FN(),3);
for (int i = 0; i < mesh.FN(); i++)
for (int j = 0; j < 3; j++)
{
FaceType *AdjF=mesh.face[i].FFp(j);
if (AdjF==&mesh.face[i])
{
FFp(i,j)=-1;
FFi(i,j)=-1;
continue;
}
int AdjF_Index=vcg::tri::Index(mesh,AdjF);
int OppF_Index=mesh.face[i].FFi(j);
FFp(i,j)=AdjF_Index;
FFi(i,j)=OppF_Index;
assert(AdjF_Index >= 0 && AdjF_Index < mesh.FN());
}
}
// get edge to face and edge to vertex adjacency
static void GetTriEdgeAdjacency(const TriMeshType &mesh,
Eigen::MatrixXi& EV,
Eigen::MatrixXi& FE,
Eigen::MatrixXi& EF)
{
Eigen::MatrixXi faces;
Eigen::MatrixXd vert;
GetTriMeshData(mesh,faces,vert);
GetTriEdgeAdjacency(vert,faces,EV,FE,EF);
}
static Eigen::Vector3d VectorFromCoord(const CoordType &v)
{
// create eigen vector
Eigen::Vector3d c;
// copy coordinates
for (int i = 0; i < 3; i++)
c(i) = v[i];
return c;
}
for (int i = 0; i < mesh.FN(); i++)
for (int j = 0; j < 3; j++)
{
FaceType *AdjF=mesh.face[i].FFp(j);
if (AdjF==&mesh.face[i])
{
FFp(i,j)=-1;
FFi(i,j)=-1;
}
else
{
FFp(i,j)=tri::Index(mesh,AdjF);
FFi(i,j)=mesh.face[i].FFi(j);
}
}
}
// get edge to face and edge to vertex adjacency
static void GetTriEdgeAdjacency(const TriMeshType &mesh,
Eigen::MatrixXi& EV,
Eigen::MatrixXi& FE,
Eigen::MatrixXi& EF)
{
Eigen::MatrixXi faces;
Eigen::MatrixXd vert;
GetTriMeshData(mesh,faces,vert);
GetTriEdgeAdjacency(vert,faces,EV,FE,EF);
}
};
}
} // end namespace tri
} // end namespace vcg
#endif // MESH_TO_MATRIX_CONVERTER