removed tetra complex...bootstrapping tetra in trimesh:
base done foreach done Allocator done Append done quality selection topology WIP clean todo
This commit is contained in:
parent
b662f747a0
commit
67a80722d5
|
@ -116,6 +116,11 @@ public:
|
|||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;
|
||||
typedef typename MeshType::FaceContainer FaceContainer;
|
||||
typedef typename MeshType::TetraType TetraType;
|
||||
typedef typename MeshType::TetraPointer TetraPointer;
|
||||
typedef typename MeshType::TetraIterator TetraIterator;
|
||||
typedef typename MeshType::ConstTetraIterator ConstTetraIterator;
|
||||
|
||||
typedef typename vcg::Box3<ScalarType> Box3Type;
|
||||
|
||||
typedef GridStaticPtr<FaceType, ScalarType > TriMeshGrid;
|
||||
|
@ -191,6 +196,13 @@ public:
|
|||
{
|
||||
(*ei).V(k) = &*mp[ (*ei).V(k) ];
|
||||
}
|
||||
|
||||
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti)
|
||||
if (!(*ti).IsD())
|
||||
for (k = 0; k < 4; ++k)
|
||||
if (mp.find((typename MeshType::VertexPointer)(*ti).V(k)) != mp.end())
|
||||
(*ti).V(k) = &*mp[ (*ti).V(k) ];
|
||||
|
||||
if(RemoveDegenerateFlag) RemoveDegenerateFace(m);
|
||||
if(RemoveDegenerateFlag && m.en>0) {
|
||||
RemoveDegenerateEdge(m);
|
||||
|
|
|
@ -51,6 +51,9 @@ public:
|
|||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::FacePointer FacePointer;
|
||||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
typedef typename MeshType::TetraType TetraType;
|
||||
typedef typename MeshType::TetraPointer TetraPointer;
|
||||
typedef typename MeshType::TetraIterator TetraIterator;
|
||||
|
||||
/// \brief Reset all the mesh flags (vertexes edge faces) setting everithing to zero (the default value for flags)
|
||||
|
||||
|
@ -65,8 +68,12 @@ public:
|
|||
if(HasPerFaceFlags(m) )
|
||||
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
|
||||
(*fi).Flags() = 0;
|
||||
if(HasPerTetraFlags(m) )
|
||||
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
|
||||
(*ti).Flags() = 0;
|
||||
}
|
||||
|
||||
|
||||
static void VertexClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
|
||||
{
|
||||
RequirePerVertexFlags(m);
|
||||
|
@ -91,6 +98,14 @@ public:
|
|||
if(!(*fi).IsD()) (*fi).Flags() &= andMask ;
|
||||
}
|
||||
|
||||
static void TetraClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
|
||||
{
|
||||
RequirePerTetraFlags(m);
|
||||
int andMask = ~FlagMask;
|
||||
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
|
||||
if(!(*ti).IsD()) (*ti).Flags() &= andMask ;
|
||||
}
|
||||
|
||||
static void VertexSet(MeshType &m, unsigned int FlagMask)
|
||||
{
|
||||
RequirePerVertexFlags(m);
|
||||
|
@ -112,6 +127,13 @@ public:
|
|||
if(!(*fi).IsD()) (*fi).Flags() |= FlagMask ;
|
||||
}
|
||||
|
||||
static void TetraSet(MeshType &m, unsigned int FlagMask)
|
||||
{
|
||||
RequirePerTetraFlags(m);
|
||||
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
|
||||
if(!(*ti).IsD()) (*ti).Flags() |= FlagMask ;
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void VertexClearV(MeshType &m) { VertexClear(m,VertexType::VISITED);}
|
||||
|
@ -134,9 +156,13 @@ public:
|
|||
static void FaceSetV(MeshType &m) { FaceSet(m,FaceType::VISITED);}
|
||||
static void FaceSetB(MeshType &m) { FaceSet(m,FaceType::BORDER);}
|
||||
static void FaceSetF(MeshType &m) { FaceSet(m,FaceType::FAUX012);}
|
||||
|
||||
static void TetraClearV(MeshType &m) { TetraClear(m, TetraType::VISITED); }
|
||||
static void TetraClearS(MeshType &m) { TetraClear(m, TetraType::SELECTED); }
|
||||
static void TetraClearB(MeshType &m) { TetraClear(m, TetraType::BORDER0123); }
|
||||
static void TetraSetV(MeshType &m) { TetraSet(m, TetraType::VISITED); }
|
||||
static void TetraSetS(MeshType &m) { TetraSet(m, TetraType::SELECTED); }
|
||||
static void TetraSetB(MeshType &m) { TetraSet(m, TetraType::BORDER0123); }
|
||||
/// \brief Compute the border flags for the faces using the Face-Face Topology.
|
||||
|
||||
/**
|
||||
\warning Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace )
|
||||
*/
|
||||
|
@ -153,6 +179,23 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
/// \brief Compute the border flags for the tetras using the Tetra-Tetra Topology.
|
||||
/**
|
||||
\warning Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace )
|
||||
*/
|
||||
static void TetraBorderFromTT(MeshType &m)
|
||||
{
|
||||
RequirePerTetraFlags(m);
|
||||
RequireTTAdjacency(m);
|
||||
|
||||
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
|
||||
if(!(*ti).IsD())
|
||||
for(int j = 0; j < 4; ++j)
|
||||
{
|
||||
if (tetrahedron::IsBorder(*fi,j)) (*ti).SetB(j);
|
||||
else (*ti).ClearB(j);
|
||||
}
|
||||
}
|
||||
|
||||
static void FaceBorderFromVF(MeshType &m)
|
||||
{
|
||||
|
|
|
@ -55,6 +55,11 @@ public:
|
|||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
typedef typename MeshType::VertexType::QualityType VertexQualityType;
|
||||
typedef typename MeshType::FaceType::QualityType FaceQualityType;
|
||||
typedef typename MeshType::TetraType TetraType;
|
||||
typedef typename MeshType::TetraPointer TetraPointer;
|
||||
typedef typename MeshType::TetraIterator TetraIterator;
|
||||
typedef typename MeshType::TetraType::QualityType TetraQualityType;
|
||||
|
||||
|
||||
|
||||
/** Assign to each vertex of the mesh a constant quality value. Useful for initialization.
|
||||
|
@ -136,6 +141,21 @@ static void FaceArea(MeshType &m)
|
|||
(*fi).Q()=FaceQualityType(vcg::DoubleArea(*fi)/ScalarType(2.0));
|
||||
}
|
||||
|
||||
static void TetraConstant(MeshType & m, const TetraQualityType q)
|
||||
{
|
||||
tri::RequirePerTetraQuality(m);
|
||||
ForEachTetra(m, [&q] (MeshType::TetraType & t) {
|
||||
t.Q() = q;
|
||||
});
|
||||
}
|
||||
static void TetraVolume(MeshType & m)
|
||||
{
|
||||
tri::RequirePerTetraQuality(m);
|
||||
ForEachTetra(m, [] (MeshType::TetraType & t) {
|
||||
t.Q() = TetraQualityType(vcg::Tetra::ComputeVolume(t));
|
||||
});
|
||||
}
|
||||
|
||||
static void VertexFromFace( MeshType &m, bool areaWeighted=true)
|
||||
{
|
||||
tri::RequirePerFaceQuality(m);
|
||||
|
|
|
@ -37,6 +37,8 @@ class SelectionStack
|
|||
typedef typename ComputeMeshType::template PerVertexAttributeHandle< bool > vsHandle;
|
||||
typedef typename ComputeMeshType::template PerEdgeAttributeHandle< bool > esHandle;
|
||||
typedef typename ComputeMeshType::template PerFaceAttributeHandle< bool > fsHandle;
|
||||
typedef typename ComputeMeshType::template PerTetraAttributeHandle< bool > tsHandle;
|
||||
|
||||
|
||||
public:
|
||||
SelectionStack(ComputeMeshType &m)
|
||||
|
@ -47,8 +49,9 @@ public:
|
|||
bool push()
|
||||
{
|
||||
vsHandle vsH = Allocator<ComputeMeshType>::template AddPerVertexAttribute< bool >(*_m);
|
||||
esHandle esH = Allocator<ComputeMeshType>::template AddPerEdgeAttribute< bool >(*_m);
|
||||
esHandle esH = Allocator<ComputeMeshType>::template AddPerEdgeAttribute< bool > (*_m);
|
||||
fsHandle fsH = Allocator<ComputeMeshType>::template AddPerFaceAttribute< bool > (*_m);
|
||||
fsHandle tsH = Allocator<ComputeMeshType>::template AddPerTetraAttribute< bool > (*_m);
|
||||
typename ComputeMeshType::VertexIterator vi;
|
||||
for(vi = _m->vert.begin(); vi != _m->vert.end(); ++vi)
|
||||
if( !(*vi).IsD() ) vsH[*vi] = (*vi).IsS() ;
|
||||
|
@ -61,9 +64,14 @@ public:
|
|||
for(fi = _m->face.begin(); fi != _m->face.end(); ++fi)
|
||||
if( !(*fi).IsD() ) fsH[*fi] = (*fi).IsS() ;
|
||||
|
||||
typename ComputeMeshType::TetraIterator ti;
|
||||
for(ti = _m->tetra.begin(); ti != _m->tetra.end(); ++ti)
|
||||
if( !(*ti).IsD() ) tsH[*ti] = (*ti).IsS() ;
|
||||
|
||||
vsV.push_back(vsH);
|
||||
esV.push_back(esH);
|
||||
fsV.push_back(fsH);
|
||||
tsV.push_back(tsH);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -89,6 +97,8 @@ public:
|
|||
vsHandle vsH = vsV.back();
|
||||
esHandle esH = esV.back();
|
||||
fsHandle fsH = fsV.back();
|
||||
tsHandle tsH = tsV.back();
|
||||
|
||||
if(! (Allocator<ComputeMeshType>::template IsValidHandle(*_m, vsH))) return false;
|
||||
|
||||
for(auto vi = _m->vert.begin(); vi != _m->vert.end(); ++vi)
|
||||
|
@ -122,12 +132,25 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
for (auto ti = _m->tetra.begin(); ti != _m.tetra.end(); ++ti)
|
||||
if (!(*ti).IsD())
|
||||
{
|
||||
if (fsH[*ti]) {
|
||||
if (!andFlag) (*ti).SetS();
|
||||
} else {
|
||||
if (!orFlag) (*ti).ClearS();
|
||||
}
|
||||
}
|
||||
|
||||
Allocator<ComputeMeshType>::template DeletePerVertexAttribute<bool>(*_m,vsH);
|
||||
Allocator<ComputeMeshType>::template DeletePerEdgeAttribute<bool>(*_m,esH);
|
||||
Allocator<ComputeMeshType>::template DeletePerFaceAttribute<bool>(*_m,fsH);
|
||||
Allocator<ComputeMeshType>::template DeletePerTetraAttribute<bool>(*_m,tsH);
|
||||
|
||||
vsV.pop_back();
|
||||
esV.pop_back();
|
||||
fsV.pop_back();
|
||||
tsV.pop_back();
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -136,6 +159,8 @@ private:
|
|||
std::vector<vsHandle> vsV;
|
||||
std::vector<esHandle> esV;
|
||||
std::vector<fsHandle> fsV;
|
||||
std::vector<fsHandle> tsV;
|
||||
|
||||
};
|
||||
|
||||
/// \ingroup trimesh
|
||||
|
@ -161,6 +186,10 @@ typedef typename MeshType::EdgeIterator EdgeIterator;
|
|||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::FacePointer FacePointer;
|
||||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
typedef typename MeshType::TetraType TetraType;
|
||||
typedef typename MeshType::TetraPointer TetraPointer;
|
||||
typedef typename MeshType::TetraIterator TetraIterator;
|
||||
|
||||
typedef typename vcg::Box3<ScalarType> Box3Type;
|
||||
|
||||
/// \brief This function select all the vertices.
|
||||
|
@ -186,6 +215,16 @@ static size_t FaceAll(MeshType &m)
|
|||
return m.fn;
|
||||
}
|
||||
|
||||
/// \brief This function select all the tetras.
|
||||
static size_t TetraAll (MeshType & m)
|
||||
{
|
||||
ForEachTetra(m, [] (MeshType::TetraType & t) {
|
||||
t.SetS();
|
||||
});
|
||||
|
||||
return m.tn;
|
||||
}
|
||||
|
||||
/// \brief This function clear the selection flag for all the vertices.
|
||||
static size_t VertexClear(MeshType &m)
|
||||
{
|
||||
|
@ -210,12 +249,23 @@ static size_t FaceClear(MeshType &m)
|
|||
return 0;
|
||||
}
|
||||
|
||||
/// \brief This function clears the selection flag for all the tetras.
|
||||
static size_t TetraClear (MeshType & m)
|
||||
{
|
||||
ForEachTetra(m, [] (MeshType::TetraType & t) {
|
||||
t.ClearS();
|
||||
});
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// \brief This function clears the selection flag for all the elements of a mesh (vertices, edges, and faces).
|
||||
static void Clear(MeshType &m)
|
||||
{
|
||||
VertexClear(m);
|
||||
EdgeClear(m);
|
||||
FaceClear(m);
|
||||
TetraClear(m);
|
||||
}
|
||||
|
||||
/// \brief This function returns the number of selected faces.
|
||||
|
@ -245,6 +295,17 @@ static size_t VertexCount(MeshType &m)
|
|||
return selCnt;
|
||||
}
|
||||
|
||||
/// \brief This function returns the number of selected tetras.
|
||||
static size_t TetraCount (MeshType & m)
|
||||
{
|
||||
size_t selCnt = 0;
|
||||
ForEachTetra(m, [&selCnt] (MeshType::TetraType & t) {
|
||||
if (t.IsS())
|
||||
++selCnt;
|
||||
});
|
||||
|
||||
return selCnt;
|
||||
}
|
||||
/// \brief This function inverts the selection flag for all the faces.
|
||||
static size_t FaceInvert(MeshType &m)
|
||||
{
|
||||
|
@ -293,6 +354,24 @@ static size_t VertexInvert(MeshType &m)
|
|||
return selCnt;
|
||||
}
|
||||
|
||||
/// \brief This function inverts the selection flag for all the tetras.
|
||||
static size_t TetraInvert (MeshType & m)
|
||||
{
|
||||
size_t selCnt = 0;
|
||||
ForEachTetra(m, [&selCnt] (MeshType::TetraType & t) {
|
||||
if (t.IsS())
|
||||
t.ClearS();
|
||||
else
|
||||
{
|
||||
t.SetS();
|
||||
++selCnt;
|
||||
}
|
||||
});
|
||||
|
||||
return selCnt;
|
||||
}
|
||||
|
||||
|
||||
/// \brief Select all the vertices that are touched by at least a single selected faces
|
||||
static size_t VertexFromFaceLoose(MeshType &m, bool preserveSelection=false)
|
||||
{
|
||||
|
|
|
@ -48,15 +48,97 @@ typedef typename MeshType::EdgeIterator EdgeIterator;
|
|||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::FacePointer FacePointer;
|
||||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
typedef typename MeshType::TetraType TetraType;
|
||||
typedef typename MeshType::TetraPointer TetraPointer;
|
||||
typedef typename MeshType::TetraIterator TetraIterator;
|
||||
|
||||
|
||||
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
|
||||
|
||||
/// \brief Auxiliary data structure for computing tetra tetra adjacency information.
|
||||
/**
|
||||
* It identifies a face, storing three vertex pointers and a tetra pointer where it belongs.
|
||||
*/
|
||||
|
||||
class PFace
|
||||
{
|
||||
public:
|
||||
VertexPointer v[3]; //three ordered vertex pointers, identify a face
|
||||
TetraPointer t; //the pointer to the tetra where this face belongs
|
||||
int z; //index in [0..3] of the face in the tetra
|
||||
bool isBorder;
|
||||
|
||||
PFace () {}
|
||||
PFace (TetraPointer tp, const int nz) { this->Set(tp, nz); }
|
||||
|
||||
void Set (TetraPointer tp /*the tetra pointer*/, const int nz /*the face index*/)
|
||||
{
|
||||
assert (tp != 0);
|
||||
assert (nz >= 0 && nz < 4);
|
||||
|
||||
v[0] = tp->cV(Tetra::VofF(nz, 0));
|
||||
v[1] = tp->cV(Tetra::VofF(nz, 1));
|
||||
v[2] = tp->cV(Tetra::VofF(nz, 2));
|
||||
|
||||
assert(v[0] != v[1] && v[1] != v[2]); //no degenerate faces
|
||||
|
||||
if (v[0] > v[1])
|
||||
std::swap(v[0], v[1]);
|
||||
if (v[1] > v[2])
|
||||
std::swap(v[1], v[2]);
|
||||
if (v[0] > v[1])
|
||||
std::swap(v[0], v[1]);
|
||||
|
||||
t = tp;
|
||||
z = nz;
|
||||
|
||||
|
||||
}
|
||||
|
||||
inline bool operator < (const PFace & pf) const
|
||||
{
|
||||
if (v[0] < pf.v[0])
|
||||
return true;
|
||||
else
|
||||
{
|
||||
if (v[0] > pf.v[0]) return false;
|
||||
|
||||
if (v[1] < pf.v[1])
|
||||
return true;
|
||||
else
|
||||
{
|
||||
if (v[1] > pf.v[1]) return false;
|
||||
|
||||
return (v[2] < pf.v[2]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline bool operator == (const PFace & pf) const
|
||||
{
|
||||
return v[0] == pf.v[0] && v[1] == pf.v[1] && v[2] == pf.v[2];
|
||||
}
|
||||
};
|
||||
|
||||
static void FillFaceVector (MeshType & m, std::vector<PFace> & fvec)
|
||||
{
|
||||
ForEachTetra(m, [&fvec] (MeshType::TetraType & t) {
|
||||
for (int i = 0; i < 4; ++i)
|
||||
fvec.push_back(PFace(&t, i));
|
||||
});
|
||||
}
|
||||
|
||||
static void FillUniqueFaceVector (MeshType & m, std::vector<PFace> & fvec)
|
||||
{
|
||||
FillFaceVector(m, fvec);
|
||||
std::sort(fvec.begin(), fvec.end());
|
||||
typename std::vector<PFace>::iterator newEnd = std::unique(fvec.begin(), fvec.end());
|
||||
}
|
||||
|
||||
/// \brief Auxiliairy data structure for computing face face adjacency information.
|
||||
/**
|
||||
It identifies and edge storing two vertex pointer and a face pointer where it belong.
|
||||
*/
|
||||
|
||||
class PEdge
|
||||
{
|
||||
public:
|
||||
|
@ -219,6 +301,60 @@ static void AllocateEdge(MeshType &m)
|
|||
|
||||
}
|
||||
|
||||
/// \brief Clear the tetra-tetra topological relation, setting each involved pointer to null.
|
||||
/// useful when you passed a mesh with tt adjacency to an algorithm that does not use it and chould have messed it
|
||||
static void ClearTetraTetra (MeshType & m)
|
||||
{
|
||||
RequireTTAdjacency(m);
|
||||
ForEachTetra(m, [] (MeshType::TetraType & t) {
|
||||
for (int i = 0; i < 4; ++i)
|
||||
{
|
||||
t.TTp(i) = NULL;
|
||||
t.TTi(i) = -1;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/// \brief Updates the Tetra-Tetra topological relation by allowing to retrieve for each tetra what other tetras share their faces.
|
||||
static void TetraTetra (MeshType & m)
|
||||
{
|
||||
RequireTTAdjacency(m);
|
||||
if (m.tn == 0) return;
|
||||
|
||||
std::vector<PFace> fvec;
|
||||
FillFaceVector(m, fvec);
|
||||
std::sort(fvec.begin(), fvec.end());
|
||||
|
||||
int nf = 0;
|
||||
typename std::vector<PFace>::iterator pback, pfront;
|
||||
pback = fvec.begin();
|
||||
pfront = fvec.begin();
|
||||
|
||||
do
|
||||
{
|
||||
if (pfront == fvec.end() || !(*pfront == *pback))
|
||||
{
|
||||
typename std::vector<PFace>::iterator q, q_next;
|
||||
for (q = pback; q < pfront - 1; ++q)
|
||||
{
|
||||
assert((*q).z >= 0);
|
||||
q_next = q;
|
||||
++q_next;
|
||||
assert((*q_next).z >= 0 && (*q_next).z < 4);
|
||||
|
||||
(*q).t->TTp(q->z) = (*q_next).t;
|
||||
(*q).t->TTi(q->z) = (*q_next).z;
|
||||
}
|
||||
|
||||
(*q).t->TTp(q->z) = pback->t;
|
||||
(*q).t->TTi(q->z) = pback->z;
|
||||
pback = pfront;
|
||||
++nf;
|
||||
}
|
||||
if (pfront == fvec.end()) break;
|
||||
++pfront;
|
||||
} while (true);
|
||||
}
|
||||
/// \brief Clear the Face-Face topological relation setting each involved pointer to null.
|
||||
/// useful when you passed a mesh with ff adjacency to an algorithm that does not use it and could have messed it.
|
||||
static void ClearFaceFace(MeshType &m)
|
||||
|
@ -280,6 +416,30 @@ static void FaceFace(MeshType &m)
|
|||
} while(true);
|
||||
}
|
||||
|
||||
|
||||
/// \brief Update the vertex-tetra topological relation.
|
||||
static void VertexTetra(MeshType & m)
|
||||
{
|
||||
RequireVTAdjacency(m);
|
||||
|
||||
|
||||
ForEachVertex(m, [] (MeshType::VertexType & v) {
|
||||
v.VTp() = NULL;
|
||||
v.VTi() = 0;
|
||||
});
|
||||
|
||||
ForEachTetra(m, [] (MeshType::TetraType & t) {
|
||||
//this works like this: the first iteration defines the end of the chain
|
||||
//then it backwards chains everything
|
||||
for (int i = 0; i < 4; ++i)
|
||||
{
|
||||
t.VTp(i) = t.V(i)->VTp();
|
||||
t.VTi(i) = t.V(i)->VTi();
|
||||
t.V(i)->VTp() = &t;
|
||||
t.V(i)->VTi() = i;
|
||||
}
|
||||
});
|
||||
}
|
||||
/// \brief Update the Vertex-Face topological relation.
|
||||
/**
|
||||
The function allows to retrieve for each vertex the list of faces sharing this vertex.
|
||||
|
|
|
@ -1131,10 +1131,10 @@ public:
|
|||
if(HasEFAdjacency(m))
|
||||
// if (m.edge[i].cEEp(0)!=0)
|
||||
{
|
||||
m.edge[ pu.remap[i] ].EFp(0) = m.edge[i].cEFp(0);
|
||||
m.edge[ pu.remap[i] ].EFi(0) = m.edge[i].cEFi(0);
|
||||
m.edge[ pu.remap[i] ].EFp(1) = m.edge[i].cEFp(1);
|
||||
m.edge[ pu.remap[i] ].EFi(1) = m.edge[i].cEFi(1);
|
||||
m.edge[ pu.remap[i] ].EFp() = m.edge[i].cEFp();
|
||||
m.edge[ pu.remap[i] ].EFi() = m.edge[i].cEFi();
|
||||
m.edge[ pu.remap[i] ].EFp() = m.edge[i].cEFp();
|
||||
m.edge[ pu.remap[i] ].EFi() = m.edge[i].cEFi();
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -1170,8 +1170,8 @@ public:
|
|||
pu.Update((*ei).VEp(i));
|
||||
if(HasEEAdjacency(m))
|
||||
pu.Update((*ei).EEp(i));
|
||||
if(HasEFAdjacency(m))
|
||||
pu.Update((*ei).EFp(i));
|
||||
// if(HasEFAdjacency(m))
|
||||
// pu.Update((*ei).EFp());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1322,7 +1322,7 @@ public:
|
|||
size_t pos = 0;
|
||||
for (size_t i = 0; i < m.tetra.size(); ++i)
|
||||
{
|
||||
if (!m.tetra.IsD())
|
||||
if (!m.tetra[i].IsD())
|
||||
{
|
||||
if (pos != i)
|
||||
{
|
||||
|
@ -1341,7 +1341,7 @@ public:
|
|||
m.tetra[pos].VTi(j) = m.tetra[i].VTi(j);
|
||||
}
|
||||
else
|
||||
m.tetra[pos].VTClear();
|
||||
m.tetra[pos].VTClear(j);
|
||||
}
|
||||
//import TT adj
|
||||
if (HasTTAdjacency(m))
|
||||
|
@ -1397,7 +1397,7 @@ public:
|
|||
for (int i = 0; i < 4; ++i)
|
||||
if ((*ti).IsVTInitialized(i) && (*ti).VTp(i) != 0)
|
||||
{
|
||||
size_t oldIndex = (*ti).VTp(i) - fbase;
|
||||
size_t oldIndex = (*ti).VTp(i) - tbase;
|
||||
assert(tbase <= (*ti).VTp(i) && oldIndex < pu.remap.size());
|
||||
(*ti).VTp(i) = tbase + pu.remap[oldIndex];
|
||||
}
|
||||
|
|
|
@ -193,7 +193,6 @@ public:
|
|||
{
|
||||
// Tetra to Tetra Adj
|
||||
if(HasTTAdjacency(ml) && HasTTAdjacency(mr)){
|
||||
assert(tl.TN() == tr.TN());
|
||||
for( int vi = 0; vi < 4; ++vi ){
|
||||
size_t idx = remap.tetra[Index(mr,tr.cTTp(vi))];
|
||||
if(idx != Remap::InvalidIndex()){
|
||||
|
@ -307,7 +306,7 @@ static void Mesh(MeshLeft& ml, ConstMeshRight& mr, const bool selected = false,
|
|||
for (TetraIteratorRight ti = mr.tetra.begin(); ti != mr.tetra.end(); ++ti)
|
||||
if (!(*ti).IsD() && (!selected || (*ti).IsS())) {
|
||||
size_t idx = Index(mr, *ti);
|
||||
assert (remap.tetra[ind] == Remap::InvalidIndex());
|
||||
assert (remap.tetra[idx] == Remap::InvalidIndex());
|
||||
TetraIteratorLeft tp = Allocator<MeshLeft>::AddTetras(ml, 1);
|
||||
(*tp).ImportData(*ti);
|
||||
remap.tetra[idx] = Index(ml, *tp);
|
||||
|
|
|
@ -641,10 +641,10 @@ template < class TetraType> bool TetraVectorHasPerTetraQuality(const std::vector
|
|||
template < class TetraType> bool TetraVectorHasVTAdjacency (const std::vector<TetraType> &) { return TetraType::HasVTAdjacency(); }
|
||||
template < class TetraType> bool TetraVectorHasTTAdjacency (const std::vector<TetraType> &) { return TetraType::HasTTAdjacency(); }
|
||||
|
||||
template < class TriMeshType> bool HasPerTetraFlags (const TriMeshType &m) { return tri::FaceVectorHasPerTetraFlags (m.face); }
|
||||
template < class TriMeshType> bool HasPerTetraColor (const TriMeshType &m) { return tri::FaceVectorHasPerTetraColor (m.face); }
|
||||
template < class TriMeshType> bool HasPerTetraMark (const TriMeshType &m) { return tri::FaceVectorHasPerTetraMark (m.face); }
|
||||
template < class TriMeshType> bool HasPerTetraQuality (const TriMeshType &m) { return tri::FaceVectorHasPerTetraQuality (m.face); }
|
||||
template < class TriMeshType> bool HasPerTetraFlags (const TriMeshType &m) { return tri::TetraVectorHasPerTetraFlags (m.tetra); }
|
||||
template < class TriMeshType> bool HasPerTetraColor (const TriMeshType &m) { return tri::TetraVectorHasPerTetraColor (m.tetra); }
|
||||
template < class TriMeshType> bool HasPerTetraMark (const TriMeshType &m) { return tri::TetraVectorHasPerTetraMark (m.tetra); }
|
||||
template < class TriMeshType> bool HasPerTetraQuality (const TriMeshType &m) { return tri::TetraVectorHasPerTetraQuality (m.tetra); }
|
||||
|
||||
template < class TriMeshType> bool HasFFAdjacency (const TriMeshType &m) { return tri::FaceVectorHasFFAdjacency (m.face); }
|
||||
template < class TriMeshType> bool HasEEAdjacency (const TriMeshType &m) { return tri::EdgeVectorHasEEAdjacency (m.edge); }
|
||||
|
|
|
@ -190,7 +190,7 @@ inline void ForEachTetra(MeshType &m, std::function<void (typename MeshType::Tet
|
|||
{
|
||||
if(m.tn == (int) m.tetra.size())
|
||||
{
|
||||
for(auto ti = m.tetra.begin(); ti! = m.tetra.end(); ++ti) {
|
||||
for(auto ti = m.tetra.begin(); ti != m.tetra.end(); ++ti) {
|
||||
action(*ti);
|
||||
}
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,456 +0,0 @@
|
|||
/****************************************************************************
|
||||
* VCGLib o o *
|
||||
* Visual and Computer Graphics Library o o *
|
||||
* _ O _ *
|
||||
* Copyright(C) 2004-2016 \/)\/ *
|
||||
* Visual Computing Lab /\/| *
|
||||
* ISTI - Italian National Research Council | *
|
||||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||||
* for more details. *
|
||||
* *
|
||||
****************************************************************************/
|
||||
#ifndef __VCGLIB_TETRAAPPEND
|
||||
#define __VCGLIB_TETRAAPPEND
|
||||
|
||||
#ifndef __VCG_TETRA_MESH
|
||||
#error "This file should not be included alone. It is automatically included by complex.h"
|
||||
#endif
|
||||
|
||||
namespace vcg {
|
||||
namespace tetra {
|
||||
/** \ingroup trimesh */
|
||||
/*! \brief Class to safely duplicate and append (portion of) meshes.
|
||||
|
||||
Adding elements to a mesh, like faces and vertices can involve the reallocation of the vectors of the involved elements.
|
||||
This class provide the only safe methods to add elements of a mesh to another one.
|
||||
\sa \ref allocation
|
||||
*/
|
||||
template<class MeshLeft, class ConstMeshRight>
|
||||
class Append
|
||||
{
|
||||
public:
|
||||
typedef typename MeshLeft::ScalarType ScalarLeft;
|
||||
typedef typename MeshLeft::CoordType CoordLeft;
|
||||
typedef typename MeshLeft::VertexType VertexLeft;
|
||||
typedef typename MeshLeft::EdgeType EdgeLeft;
|
||||
typedef typename MeshLeft::FaceType FaceLeft;
|
||||
typedef typename MeshLeft::TetraType TetraLeft;
|
||||
// typedef typename MeshLeft::HEdgeType HEdgeLeft;
|
||||
typedef typename MeshLeft::VertexPointer VertexPointerLeft;
|
||||
typedef typename MeshLeft::VertexIterator VertexIteratorLeft;
|
||||
typedef typename MeshLeft::EdgeIterator EdgeIteratorLeft;
|
||||
// typedef typename MeshLeft::HEdgeIterator HEdgeIteratorLeft;
|
||||
typedef typename MeshLeft::FaceIterator FaceIteratorLeft;
|
||||
typedef typename MeshLeft::TetraIterator TetraIteratorLeft;
|
||||
typedef typename MeshLeft::TetraPointer TetraPointerLeft;
|
||||
|
||||
|
||||
typedef typename ConstMeshRight::ScalarType ScalarRight;
|
||||
typedef typename ConstMeshRight::CoordType CoordRight;
|
||||
typedef typename ConstMeshRight::VertexType VertexRight;
|
||||
typedef typename ConstMeshRight::EdgeType EdgeRight;
|
||||
// typedef typename ConstMeshRight::HEdgeType HEdgeRight;
|
||||
typedef typename ConstMeshRight::FaceType FaceRight;
|
||||
typedef typename ConstMeshRight::VertexPointer VertexPointerRight;
|
||||
typedef typename ConstMeshRight::VertexIterator VertexIteratorRight;
|
||||
typedef typename ConstMeshRight::EdgeIterator EdgeIteratorRight;
|
||||
// typedef typename ConstMeshRight::HEdgeIterator HEdgeIteratorRight;
|
||||
typedef typename ConstMeshRight::FaceIterator FaceIteratorRight;
|
||||
typedef typename ConstMeshRight::FacePointer FacePointerRight;
|
||||
typedef typename ConstMeshRight::TetraType TetraTypeRight;
|
||||
typedef typename ConstMeshRight::TetraPointer TetraPointerRight;
|
||||
typedef typename ConstMeshRight::TetraIterator TetraIteratorRight;
|
||||
|
||||
|
||||
struct Remap{
|
||||
static size_t InvalidIndex() { return std::numeric_limits<size_t>::max(); }
|
||||
std::vector<size_t> vert,face,edge, /*hedge,*/ tetra;
|
||||
};
|
||||
|
||||
static void ImportVertexAdj(MeshLeft &ml, ConstMeshRight &mr, VertexLeft &vl, VertexRight &vr, Remap &remap ){
|
||||
// Vertex to Edge Adj
|
||||
if(HasVEAdjacency(ml) && HasVEAdjacency(mr) && vr.cVEp() != 0){
|
||||
size_t i = Index(mr,vr.cVEp());
|
||||
vl.VEp() = (i>ml.edge.size())? 0 : &ml.edge[remap.edge[i]];
|
||||
vl.VEi() = vr.VEi();
|
||||
}
|
||||
|
||||
// Vertex to Face Adj
|
||||
if(HasPerVertexVFAdjacency(ml) && HasPerVertexVFAdjacency(mr) && vr.cVFp() != 0 ){
|
||||
size_t i = Index(mr,vr.cVFp());
|
||||
vl.VFp() = (i>ml.face.size())? 0 :&ml.face[remap.face[i]];
|
||||
vl.VFi() = vr.VFi();
|
||||
}
|
||||
|
||||
if (HasPerVertexVTAdjacency(ml) && HasPerVertexVTAdjacency(mr) && vr.cVTp() != 0) {
|
||||
size_t i = Index(mr, vr.cVTp());
|
||||
vl.VTp() = (i > ml.tetra.size()) ? 0 : &ml.tetra[remap.tetra[i]];
|
||||
vl.VTi() = vt.VTi();
|
||||
}
|
||||
// // Vertex to HEdge Adj
|
||||
// if(HasVHAdjacency(ml) && HasVHAdjacency(mr) && vr.cVHp() != 0){
|
||||
// vl.VHp() = &ml.hedge[remap.hedge[Index(mr,vr.cVHp())]];
|
||||
// vl.VHi() = vr.VHi();
|
||||
// }
|
||||
}
|
||||
|
||||
static void ImportEdgeAdj(MeshLeft &ml, ConstMeshRight &mr, EdgeLeft &el, const EdgeRight &er, Remap &remap)
|
||||
{
|
||||
// Edge to Edge Adj
|
||||
if(HasEEAdjacency(ml) && HasEEAdjacency(mr))
|
||||
for(unsigned int vi = 0; vi < 2; ++vi)
|
||||
{
|
||||
size_t idx = Index(mr,er.cEEp(vi));
|
||||
el.EEp(vi) = (idx>ml.edge.size())? 0 : &ml.edge[remap.edge[idx]];
|
||||
el.EEi(vi) = er.cEEi(vi);
|
||||
}
|
||||
|
||||
// Edge to Face Adj
|
||||
if(HasEFAdjacency(ml) && HasEFAdjacency(mr)){
|
||||
size_t idx = Index(mr,er.cEFp());
|
||||
el.EFp() = (idx>ml.face.size())? 0 :&ml.face[remap.face[idx]];
|
||||
el.EFi() = er.cEFi();
|
||||
}
|
||||
|
||||
// // Edge to HEdge Adj
|
||||
// if(HasEHAdjacency(ml) && HasEHAdjacency(mr))
|
||||
// el.EHp() = &ml.hedge[remap.hedge[Index(mr,er.cEHp())]];
|
||||
}
|
||||
|
||||
|
||||
static void ImportFaceAdj(MeshLeft &ml, ConstMeshRight &mr, FaceLeft &fl, const FaceRight &fr, Remap &remap )
|
||||
{
|
||||
// Face to Edge Adj
|
||||
if(HasFEAdjacency(ml) && HasFEAdjacency(mr)){
|
||||
assert(fl.VN() == fr.VN());
|
||||
for( int vi = 0; vi < fl.VN(); ++vi ){
|
||||
size_t idx = remap.edge[Index(mr,fr.cFEp(vi))];
|
||||
if(idx!=Remap::InvalidIndex())
|
||||
fl.FEp(vi) = &ml.edge[idx];
|
||||
}
|
||||
}
|
||||
|
||||
// Face to Face Adj
|
||||
if(HasFFAdjacency(ml) && HasFFAdjacency(mr)){
|
||||
assert(fl.VN() == fr.VN());
|
||||
for( int vi = 0; vi < fl.VN(); ++vi ){
|
||||
size_t idx = remap.face[Index(mr,fr.cFFp(vi))];
|
||||
if(idx!=Remap::InvalidIndex()){
|
||||
fl.FFp(vi) = &ml.face[idx];
|
||||
fl.FFi(vi) = fr.cFFi(vi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// // Face to HEedge Adj
|
||||
// if(HasFHAdjacency(ml) && HasFHAdjacency(mr))
|
||||
// fl.FHp() = &ml.hedge[remap.hedge[Index(mr,fr.cFHp())]];
|
||||
}
|
||||
|
||||
static void ImportTetraAdj(MeshLeft & ml, ConstMeshRight & mr, TetraLeft & tl, const TetraTypeRight &tr, Remap &remap )
|
||||
{
|
||||
// TT Adj
|
||||
if(HasTTAdjacency(ml) && HasTTAdjacency(mr)){
|
||||
for( int vi = 0; vi < 4; ++vi ){
|
||||
size_t idx = remap.tetra[Index(mr,tr.cTTp(vi))];
|
||||
if(idx!=Remap::InvalidIndex()){
|
||||
tl.TTp(vi) = &ml.tetra[idx];
|
||||
tl.TTi(vi) = fr.cTTi(vi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// // Face to HEedge Adj
|
||||
// if(HasFHAdjacency(ml) && HasFHAdjacency(mr))
|
||||
// fl.FHp() = &ml.hedge[remap.hedge[Index(mr,fr.cFHp())]];
|
||||
}
|
||||
|
||||
// static void ImportHEdgeAdj(MeshLeft &ml, ConstMeshRight &mr, HEdgeLeft &hl, const HEdgeRight &hr, Remap &remap, bool /*sel*/ ){
|
||||
// // HEdge to Vertex Adj
|
||||
// if(HasHVAdjacency(ml) && HasHVAdjacency(mr))
|
||||
// hl.HVp() = &ml.vert[remap.vert[Index(mr,hr.cHVp())]];
|
||||
|
||||
// // HEdge to Edge Adj
|
||||
// if(HasHEAdjacency(ml) && HasHEAdjacency(mr)){
|
||||
// size_t idx = Index(mr,hr.cHEp()) ;
|
||||
// hl.HEp() = (idx>ml.edge.size())? 0 : &ml.edge[remap.edge[idx]];
|
||||
// }
|
||||
|
||||
// // HEdge to Face Adj
|
||||
// if(HasHFAdjacency(ml) && HasHFAdjacency(mr)){
|
||||
// size_t idx = Index(mr,hr.cHFp());
|
||||
// hl.HFp() = (idx>ml.face.size())? 0 :&ml.face[remap.face[idx]];
|
||||
// }
|
||||
|
||||
|
||||
// // HEdge to Opposite HEdge Adj
|
||||
// if(HasHOppAdjacency(ml) && HasHOppAdjacency(mr))
|
||||
// hl.HOp() = &ml.hedge[remap.hedge[Index(mr,hr.cHOp())]];
|
||||
|
||||
// // HEdge to Next HEdge Adj
|
||||
// if(HasHNextAdjacency(ml) && HasHNextAdjacency(mr))
|
||||
// hl.HNp() = &ml.hedge[remap.hedge[Index(mr,hr.cHNp())]];
|
||||
|
||||
// // HEdge to Next HEdge Adj
|
||||
// if(HasHPrevAdjacency(ml) && HasHPrevAdjacency(mr))
|
||||
// hl.HPp() = &ml.hedge[remap.hedge[Index(mr,hr.cHPp())]];
|
||||
// }
|
||||
|
||||
// Append Right Mesh to the Left Mesh
|
||||
// Append::Mesh(ml, mr) is equivalent to ml += mr.
|
||||
// Note MeshRigth could be costant...
|
||||
/*! \brief %Append the second mesh to the first one.
|
||||
|
||||
The first mesh is not destroyed and no attempt of avoid duplication of already present elements is done.
|
||||
If requested only the selected elements are appended to the first one.
|
||||
The second mesh is not changed at all (it could be constant) with the exception of the selection (see below note).
|
||||
|
||||
\note If the the selection of the vertexes is not consistent with the face selection
|
||||
the append could build faces referencing non existent vertices
|
||||
so it is mandatory that the selection of the vertices reflects the loose selection
|
||||
from edges and faces (e.g. if a face is selected then all its vertices must be selected).
|
||||
|
||||
\note Attributes. This function will copy only those attributes that are present in both meshes.
|
||||
Two attributes in different meshes are considered the same iff they have the same
|
||||
name and the same type. This may be deceiving because they could in fact have
|
||||
different semantic, but this is up to the developer.
|
||||
If the left mesh has attributes that are not in the right mesh, their values for the elements
|
||||
of the right mesh will be uninitialized
|
||||
|
||||
*/
|
||||
|
||||
//TODO:
|
||||
static void Mesh(MeshLeft& ml, ConstMeshRight& mr, const bool selected = false, const bool adjFlag = false)
|
||||
{
|
||||
// Note that if the the selection of the vertexes is not consistent with the face selection
|
||||
// the append could build faces referencing non existent vertices
|
||||
// so it is mandatory that the selection of the vertices reflects the loose selection
|
||||
// from edges and faces (e.g. if a face is selected all its vertices must be selected).
|
||||
// note the use of the parameter for preserving existing vertex selection.
|
||||
if(selected)
|
||||
{
|
||||
assert(adjFlag == false || ml.IsEmpty()); // It is rather meaningless to partially copy adj relations.
|
||||
tri::UpdateSelection<ConstMeshRight>::VertexFromEdgeLoose(mr,true);
|
||||
tri::UpdateSelection<ConstMeshRight>::VertexFromFaceLoose(mr,true);
|
||||
}
|
||||
|
||||
// phase 1. allocate on ml vert,edge,face, hedge to accomodat those of mr
|
||||
// and build the remapping for all
|
||||
|
||||
Remap remap;
|
||||
|
||||
// vertex
|
||||
remap.vert.resize(mr.vert.size(), Remap::InvalidIndex());
|
||||
VertexIteratorLeft vp;
|
||||
size_t svn = UpdateSelection<ConstMeshRight>::VertexCount(mr);
|
||||
if(selected)
|
||||
vp=Allocator<MeshLeft>::AddVertices(ml,int(svn));
|
||||
else
|
||||
vp=Allocator<MeshLeft>::AddVertices(ml,mr.vn);
|
||||
|
||||
for(VertexIteratorRight vi=mr.vert.begin(); vi!=mr.vert.end(); ++vi)
|
||||
{
|
||||
if(!(*vi).IsD() && (!selected || (*vi).IsS()))
|
||||
{
|
||||
size_t ind=Index(mr,*vi);
|
||||
remap.vert[ind]=int(Index(ml,*vp));
|
||||
++vp;
|
||||
}
|
||||
}
|
||||
// edge
|
||||
remap.edge.resize(mr.edge.size(), Remap::InvalidIndex());
|
||||
EdgeIteratorLeft ep;
|
||||
size_t sen = UpdateSelection<ConstMeshRight>::EdgeCount(mr);
|
||||
if(selected) ep=Allocator<MeshLeft>::AddEdges(ml,sen);
|
||||
else ep=Allocator<MeshLeft>::AddEdges(ml,mr.en);
|
||||
|
||||
for(EdgeIteratorRight ei=mr.edge.begin(); ei!=mr.edge.end(); ++ei)
|
||||
if(!(*ei).IsD() && (!selected || (*ei).IsS())){
|
||||
size_t ind=Index(mr,*ei);
|
||||
remap.edge[ind]=int(Index(ml,*ep));
|
||||
++ep;
|
||||
}
|
||||
|
||||
// face
|
||||
remap.face.resize(mr.face.size(), Remap::InvalidIndex());
|
||||
FaceIteratorLeft fp;
|
||||
size_t sfn = UpdateSelection<ConstMeshRight>::FaceCount(mr);
|
||||
if(selected) fp=Allocator<MeshLeft>::AddFaces(ml,sfn);
|
||||
else fp=Allocator<MeshLeft>::AddFaces(ml,mr.fn);
|
||||
|
||||
for(FaceIteratorRight fi=mr.face.begin(); fi!=mr.face.end(); ++fi)
|
||||
if(!(*fi).IsD() && (!selected || (*fi).IsS())){
|
||||
size_t ind=Index(mr,*fi);
|
||||
remap.face[ind]=int(Index(ml,*fp));
|
||||
++fp;
|
||||
}
|
||||
|
||||
// hedge
|
||||
remap.hedge.resize(mr.hedge.size(),Remap::InvalidIndex());
|
||||
for(HEdgeIteratorRight hi=mr.hedge.begin(); hi!=mr.hedge.end(); ++hi)
|
||||
if(!(*hi).IsD() && (!selected || (*hi).IsS())){
|
||||
size_t ind=Index(mr,*hi);
|
||||
assert(remap.hedge[ind]==Remap::InvalidIndex());
|
||||
HEdgeIteratorLeft hp = Allocator<MeshLeft>::AddHEdges(ml,1);
|
||||
(*hp).ImportData(*(hi));
|
||||
remap.hedge[ind]=Index(ml,*hp);
|
||||
}
|
||||
|
||||
// phase 2.
|
||||
// copy data from ml to its corresponding elements in ml and adjacencies
|
||||
|
||||
// vertex
|
||||
for(VertexIteratorRight vi=mr.vert.begin();vi!=mr.vert.end();++vi)
|
||||
if( !(*vi).IsD() && (!selected || (*vi).IsS())){
|
||||
ml.vert[remap.vert[Index(mr,*vi)]].ImportData(*vi);
|
||||
if(adjFlag) ImportVertexAdj(ml,mr,ml.vert[remap.vert[Index(mr,*vi)]],*vi,remap);
|
||||
}
|
||||
|
||||
// edge
|
||||
for(EdgeIteratorRight ei=mr.edge.begin();ei!=mr.edge.end();++ei)
|
||||
if(!(*ei).IsD() && (!selected || (*ei).IsS())){
|
||||
ml.edge[remap.edge[Index(mr,*ei)]].ImportData(*ei);
|
||||
// Edge to Vertex Adj
|
||||
EdgeLeft &el = ml.edge[remap.edge[Index(mr,*ei)]];
|
||||
if(HasEVAdjacency(ml) && HasEVAdjacency(mr)){
|
||||
el.V(0) = &ml.vert[remap.vert[Index(mr,ei->cV(0))]];
|
||||
el.V(1) = &ml.vert[remap.vert[Index(mr,ei->cV(1))]];
|
||||
}
|
||||
if(adjFlag) ImportEdgeAdj(ml,mr,el,*ei,remap);
|
||||
}
|
||||
|
||||
// face
|
||||
const size_t textureOffset = ml.textures.size();
|
||||
bool WTFlag = HasPerWedgeTexCoord(mr) && (textureOffset>0);
|
||||
for(FaceIteratorRight fi=mr.face.begin();fi!=mr.face.end();++fi)
|
||||
if(!(*fi).IsD() && (!selected || (*fi).IsS()))
|
||||
{
|
||||
FaceLeft &fl = ml.face[remap.face[Index(mr,*fi)]];
|
||||
fl.Alloc(fi->VN());
|
||||
if(HasFVAdjacency(ml) && HasFVAdjacency(mr)){
|
||||
for(int i = 0; i < fl.VN(); ++i)
|
||||
fl.V(i) = &ml.vert[remap.vert[Index(mr,fi->cV(i))]];
|
||||
}
|
||||
fl.ImportData(*fi);
|
||||
if(WTFlag)
|
||||
for(int i = 0; i < fl.VN(); ++i)
|
||||
fl.WT(i).n() += short(textureOffset);
|
||||
if(adjFlag) ImportFaceAdj(ml,mr,ml.face[remap.face[Index(mr,*fi)]],*fi,remap);
|
||||
|
||||
}
|
||||
|
||||
// hedge
|
||||
for(HEdgeIteratorRight hi=mr.hedge.begin();hi!=mr.hedge.end();++hi)
|
||||
if(!(*hi).IsD() && (!selected || (*hi).IsS())){
|
||||
ml.hedge[remap.hedge[Index(mr,*hi)]].ImportData(*hi);
|
||||
ImportHEdgeAdj(ml,mr,ml.hedge[remap.hedge[Index(mr,*hi)]],*hi,remap,selected);
|
||||
}
|
||||
|
||||
// phase 3.
|
||||
// take care of other per mesh data: textures, attributes
|
||||
|
||||
// At the end concatenate the vector with texture names.
|
||||
ml.textures.insert(ml.textures.end(),mr.textures.begin(),mr.textures.end());
|
||||
|
||||
// Attributes. Copy only those attributes that are present in both meshes
|
||||
// Two attributes in different meshes are considered the same if they have the same
|
||||
// name and the same type. This may be deceiving because they could in fact have
|
||||
// different semantic, but this is up to the developer.
|
||||
// If the left mesh has attributes that are not in the right mesh, their values for the elements
|
||||
// of the right mesh will be uninitialized
|
||||
|
||||
unsigned int id_r;
|
||||
typename std::set< PointerToAttribute >::iterator al, ar;
|
||||
|
||||
// per vertex attributes
|
||||
for(al = ml.vert_attr.begin(); al != ml.vert_attr.end(); ++al)
|
||||
if(!(*al)._name.empty()){
|
||||
ar = mr.vert_attr.find(*al);
|
||||
if(ar!= mr.vert_attr.end()){
|
||||
id_r = 0;
|
||||
for(VertexIteratorRight vi=mr.vert.begin();vi!=mr.vert.end();++vi,++id_r)
|
||||
if( !(*vi).IsD() && (!selected || (*vi).IsS()))
|
||||
memcpy((*al)._handle->At(remap.vert[Index(mr,*vi)]),(*ar)._handle->At(id_r),
|
||||
(*al)._handle->SizeOf());
|
||||
}
|
||||
}
|
||||
|
||||
// per edge attributes
|
||||
for(al = ml.edge_attr.begin(); al != ml.edge_attr.end(); ++al)
|
||||
if(!(*al)._name.empty()){
|
||||
ar = mr.edge_attr.find(*al);
|
||||
if(ar!= mr.edge_attr.end()){
|
||||
id_r = 0;
|
||||
for(EdgeIteratorRight ei=mr.edge.begin();ei!=mr.edge.end();++ei,++id_r)
|
||||
if( !(*ei).IsD() && (!selected || (*ei).IsS()))
|
||||
memcpy((*al)._handle->At(remap.edge[Index(mr,*ei)]),(*ar)._handle->At(id_r),
|
||||
(*al)._handle->SizeOf());
|
||||
}
|
||||
}
|
||||
|
||||
// per face attributes
|
||||
for(al = ml.face_attr.begin(); al != ml.face_attr.end(); ++al)
|
||||
if(!(*al)._name.empty()){
|
||||
ar = mr.face_attr.find(*al);
|
||||
if(ar!= mr.face_attr.end()){
|
||||
id_r = 0;
|
||||
for(FaceIteratorRight fi=mr.face.begin();fi!=mr.face.end();++fi,++id_r)
|
||||
if( !(*fi).IsD() && (!selected || (*fi).IsS()))
|
||||
memcpy((*al)._handle->At(remap.face[Index(mr,*fi)]),(*ar)._handle->At(id_r),
|
||||
(*al)._handle->SizeOf());
|
||||
}
|
||||
}
|
||||
|
||||
// per mesh attributes
|
||||
// if both ml and mr have an attribute with the same name, no action is done
|
||||
// if mr has an attribute that is NOT present in ml, the attribute is added to ml
|
||||
//for(ar = mr.mesh_attr.begin(); ar != mr.mesh_attr.end(); ++ar)
|
||||
// if(!(*ar)._name.empty()){
|
||||
// al = ml.mesh_attr.find(*ar);
|
||||
// if(al== ml.mesh_attr.end())
|
||||
// //...
|
||||
// }
|
||||
}
|
||||
|
||||
/*! \brief Copy the second mesh over the first one.
|
||||
The first mesh is destroyed. If requested only the selected elements are copied.
|
||||
*/
|
||||
static void MeshCopy(MeshLeft& ml, ConstMeshRight& mr, bool selected=false, const bool adjFlag = false)
|
||||
{
|
||||
ml.Clear();
|
||||
Mesh(ml,mr,selected,adjFlag);
|
||||
ml.bbox.Import(mr.bbox);
|
||||
}
|
||||
/*! \brief %Append only the selected elements of second mesh to the first one.
|
||||
|
||||
It is just a wrap of the main Append::Mesh()
|
||||
*/
|
||||
static void Selected(MeshLeft& ml, ConstMeshRight& mr)
|
||||
{
|
||||
Mesh(ml,mr,true);
|
||||
}
|
||||
|
||||
}; // end of class Append
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
} // End Namespace tri
|
||||
} // End Namespace vcg
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
|
@ -81,8 +81,8 @@ public:
|
|||
|
||||
static bool HasQuality() { return false; }
|
||||
static bool HasQuality3() { return false; }
|
||||
bool IsQualityEnabled() const { return T::TetraType::HasQuality(); }
|
||||
bool IsQuality3Enabled() const { return T::TetraType::HasQuality3(); }
|
||||
inline bool IsQualityEnabled() const { return T::TetraType::HasQuality(); }
|
||||
inline bool IsQuality3Enabled() const { return T::TetraType::HasQuality3(); }
|
||||
|
||||
//Empty flags
|
||||
int &Flags() { static int dummyflags(0); assert(0); return dummyflags; }
|
||||
|
@ -103,10 +103,10 @@ public:
|
|||
|
||||
//Empty Adjacency
|
||||
typedef int VFAdjType;
|
||||
typename T::TetraPointer & VTp( const int ) { static typename T::TetraPointer tp=0; assert(0); return tp; }
|
||||
typename T::TetraPointer & VTp ( const int ) { static typename T::TetraPointer tp=0; assert(0); return tp; }
|
||||
typename T::TetraPointer const cVTp( const int ) const { static typename T::TetraPointer const tp=0; assert(0); return tp; }
|
||||
|
||||
typename T::TetraPointer & TTp( const int ) { static typename T::TetraPointer tp=0; assert(0); return tp; }
|
||||
typename T::TetraPointer & TTp ( const int ) { static typename T::TetraPointer tp=0; assert(0); return tp; }
|
||||
typename T::TetraPointer const cTTp( const int ) const { static typename T::TetraPointer const tp=0; assert(0); return tp; }
|
||||
|
||||
char & VTi( const int j ) { static char z=0; assert(0); return z; }
|
||||
|
@ -122,8 +122,8 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
static bool HasVTAdjacency() { return false; }
|
||||
static bool HasTTAdjacency() { return false; }
|
||||
static bool HasVTAdjacency() { return false; }
|
||||
static bool HasTTAdjacency() { return false; }
|
||||
static bool HasTTAdjacencyOcc() { return false; }
|
||||
static bool HasVTAdjacencyOcc() { return false; }
|
||||
|
||||
|
@ -154,20 +154,39 @@ public:
|
|||
v[1]=0;
|
||||
v[2]=0;
|
||||
v[3]=0;
|
||||
|
||||
/******* vertex and faces indices scheme*********
|
||||
*
|
||||
* /2\`
|
||||
* / \ `
|
||||
* / \ `
|
||||
* / \ _ 3`
|
||||
* / _ \ '
|
||||
* / _ \ '
|
||||
* /0___________1\'
|
||||
*
|
||||
*/
|
||||
findices[0][0] = 0; findices[0][1] = 1; findices[0][2] = 2;
|
||||
findices[1][0] = 0; findices[1][1] = 3; findices[1][2] = 1;
|
||||
findices[2][0] = 0; findices[2][1] = 2; findices[2][2] = 3;
|
||||
findices[3][0] = 1; findices[3][1] = 3; findices[3][2] = 2;
|
||||
}
|
||||
typedef typename T::VertexType::CoordType CoordType;
|
||||
typedef typename T::VertexType::ScalarType ScalarType;
|
||||
|
||||
typedef typename T::VertexType::CoordType CoordType;
|
||||
typedef typename T::VertexType::ScalarType ScalarType;
|
||||
|
||||
inline typename T::VertexType * & V( const int j ) { assert(j>=0 && j<4); return v[j]; }
|
||||
inline typename T::VertexType * const & V( const int j ) const { assert(j>=0 && j<4); return v[j]; }
|
||||
inline typename T::VertexType * const cV( const int j ) const { assert(j>=0 && j<4); return v[j]; }
|
||||
inline typename T::VertexType * & V( const int j ) { assert(j>=0 && j<4); return v[j]; }
|
||||
inline typename T::VertexType * const & V( const int j ) const { assert(j>=0 && j<4); return v[j]; }
|
||||
inline typename T::VertexType * const cV( const int j ) const { assert(j>=0 && j<4); return v[j]; }
|
||||
|
||||
// Shortcut per accedere ai punti delle facce
|
||||
inline typename CoordType & P( const int j ) { assert(j>=0 && j<4); return v[j]->P(); }
|
||||
inline const typename CoordType & P( const int j ) const { assert(j>=0 && j<4); return v[j]->cP(); }
|
||||
inline const typename CoordType &cP( const int j ) const { assert(j>=0 && j<4); return v[j]->cP(); }
|
||||
inline typename size_t const cFtoVi (const int f, const int j) const { assert(f >= 0 && f < 4); assert(j >= 0 && j < 3); return findices[f][j]; }
|
||||
|
||||
/** Return the pointer to the ((j+1)%3)-th vertex of the face.
|
||||
// Shortcut for tetra points
|
||||
inline typename CoordType & P( const int j ) { assert(j>=0 && j<4); return v[j]->P(); }
|
||||
inline const typename CoordType & P( const int j ) const { assert(j>=0 && j<4); return v[j]->cP(); }
|
||||
inline const typename CoordType &cP( const int j ) const { assert(j>=0 && j<4); return v[j]->cP(); }
|
||||
|
||||
/** Return the pointer to the ((j+1)%4)-th vertex of the tetra.
|
||||
@param j Index of the face vertex.
|
||||
*/
|
||||
inline typename T::VertexType * & V0( const int j ) { return V(j);}
|
||||
|
@ -184,18 +203,18 @@ public:
|
|||
inline const typename T::VertexType * const & cV3( const int j ) const { return cV((j+3)%4);}
|
||||
|
||||
/// Shortcut to get vertex values
|
||||
inline typename CoordType & P0( const int j ) { return V(j)->P();}
|
||||
inline typename CoordType & P1( const int j ) { return V((j+1)%4)->P();}
|
||||
inline typename CoordType & P2( const int j ) { return V((j+2)%4)->P();}
|
||||
inline typename CoordType & P3( const int j ) { return V((j+3)%4)->P();}
|
||||
inline const typename CoordType & P0( const int j ) const { return V(j)->P();}
|
||||
inline const typename CoordType & P1( const int j ) const { return V((j+1)%4)->P();}
|
||||
inline const typename CoordType & P2( const int j ) const { return V((j+2)%4)->P();}
|
||||
inline const typename CoordType & P3( const int j ) const { return V((j+3)%4)->P();}
|
||||
inline const typename CoordType & cP0( const int j ) const { return cV(j)->P();}
|
||||
inline const typename CoordType & cP1( const int j ) const { return cV((j+1)%4)->P();}
|
||||
inline const typename CoordType & cP2( const int j ) const { return cV((j+2)%4)->P();}
|
||||
inline const typename CoordType & cP3( const int j ) const { return cV((j+3)%4)->P();}
|
||||
inline typename CoordType &P0 (const int j) { return V(j)->P(); }
|
||||
inline typename CoordType &P2 (const int j) { return V((j + 2) % 4)->P(); }
|
||||
inline typename CoordType &P3 (const int j) { return V((j + 3) % 4)->P(); }
|
||||
inline typename CoordType &P1 (const int j) { return V((j + 1) % 4)->P(); }
|
||||
inline const typename CoordType &P0 (const int j) const { return V(j)->P(); }
|
||||
inline const typename CoordType &P1 (const int j) const { return V((j + 1) % 4)->P(); }
|
||||
inline const typename CoordType &P2 (const int j) const { return V((j + 2) % 4)->P(); }
|
||||
inline const typename CoordType &P3 (const int j) const { return V((j + 3) % 4)->P(); }
|
||||
inline const typename CoordType &cP0(const int j) const { return cV(j)->P(); }
|
||||
inline const typename CoordType &cP1(const int j) const { return cV((j + 1) % 4)->P(); }
|
||||
inline const typename CoordType &cP2(const int j) const { return cV((j + 2) % 4)->P(); }
|
||||
inline const typename CoordType &cP3(const int j) const { return cV((j + 3) % 4)->P(); }
|
||||
|
||||
static bool HasVertexRef() { return true; }
|
||||
static bool HasTVAdjacency() { return true; }
|
||||
|
@ -207,6 +226,7 @@ public:
|
|||
|
||||
private:
|
||||
typename T::VertexType *v[4];
|
||||
size_t findices[4][3];
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -21,48 +21,28 @@
|
|||
* *
|
||||
****************************************************************************/
|
||||
|
||||
#ifndef __VCG_TETRA_MESH_H
|
||||
#define __VCG_TETRA_MESH_H
|
||||
#define __VCG_TETRA_MESH
|
||||
#define __VCG_MESH
|
||||
#ifndef _VCG_TETRA_TOPOLOGY
|
||||
#define _VCG_TETRA_TOPOLOGY
|
||||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
#include <ctime>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <stack>
|
||||
#include <queue>
|
||||
#include <map>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
#include <limits>
|
||||
#include <iterator>
|
||||
#include <typeindex>
|
||||
#include <wrap/callback.h>
|
||||
#include <vcg/complex/exception.h>
|
||||
#include <vcg/container/simple_temporary_data.h>
|
||||
#include <vcg/complex/used_types.h>
|
||||
#include <vcg/complex/tetrahedron/base.h>
|
||||
#include <vcg/complex/tetrahedron/allocate.h>
|
||||
#include <vcg/simplex/face/pos.h>
|
||||
#include <vcg/simplex/face/topology.h>
|
||||
#include <vcg/simplex/edge/pos.h>
|
||||
#include <vcg/simplex/edge/topology.h>
|
||||
#include <vcg/simplex/tetrahedron/pos.h>
|
||||
#include <vcg/complex/foreach.h>
|
||||
#include <vcg/complex/algorithms/update/flag.h>
|
||||
#include <vcg/complex/algorithms/update/selection.h>
|
||||
#include <vcg/complex/algorithms/update/topology.h>
|
||||
#include <vcg/complex/algorithms/update/normal.h>
|
||||
#include <vcg/complex/algorithms/update/bounding.h>
|
||||
#include <vcg/complex/algorithms/mesh_assert.h>
|
||||
#include <vcg/complex/append.h>
|
||||
namespace vcg {
|
||||
namespace tetrahedron {
|
||||
/** \addtogroup tetrahedron */
|
||||
/*@{*/
|
||||
|
||||
#undef __VCG_TETRA_MESH
|
||||
#undef __VCG_MESH
|
||||
/** Return a boolean that indicate if the j-th face of the tetra is a border.
|
||||
@param j Index of the face
|
||||
@return true if j is an face of border, false otherwise
|
||||
*/
|
||||
template <class TetraType>
|
||||
inline bool IsBorder(TetraType const & t, const int j )
|
||||
{
|
||||
if(TetraType::HasTTAdjacency())
|
||||
return t.cTTp(j)==&t;
|
||||
assert(0);
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
|
@ -98,8 +98,16 @@ public:
|
|||
|
||||
typename TT::TetraPointer &VTp() { static typename TT::TetraPointer tp = 0; assert(0); return tp; }
|
||||
typename TT::TetraPointer cVTp() const { static typename TT::TetraPointer tp = 0; assert(0); return tp; }
|
||||
int &VTi() { static int z = 0; return z; }
|
||||
int &VTi() { static int z = 0; assert(0); return z; }
|
||||
int cVTi() const { static int z = 0; assert(0); return z; }
|
||||
static bool HasVTAdjacency() { return false; }
|
||||
bool IsVTInitialized() const {return static_cast<const typename TT::VertexType *>(this)->cVTi()!=-1;}
|
||||
void VTClear() {
|
||||
if(IsVTInitialized()) {
|
||||
static_cast<typename TT::VertexPointer>(this)->VTp()=0;
|
||||
static_cast<typename TT::VertexPointer>(this)->VTi()=-1;
|
||||
}
|
||||
}
|
||||
|
||||
typename TT::FacePointer &VFp() { static typename TT::FacePointer fp=0; assert(0); return fp; }
|
||||
typename TT::FacePointer cVFp() const { static typename TT::FacePointer fp=0; assert(0); return fp; }
|
||||
|
@ -589,6 +597,7 @@ public:
|
|||
typename T::TetraPointer &VTp() { return _tp; }
|
||||
typename T::TetraPointer cVTp() const { return _tp; }
|
||||
int &VTi() {return _zp; }
|
||||
int cVTi() const { return _zp; }
|
||||
static bool HasVTAdjacency() { return true; }
|
||||
static void Name( std::vector< std::string > & name ) { name.push_back( std::string("VTAdj") ); T::Name(name); }
|
||||
|
||||
|
|
|
@ -298,6 +298,27 @@ static int FofEE(const int &indexE0,const int &indexE1)
|
|||
|
||||
return edgesface[indexE0][indexE1];
|
||||
}
|
||||
|
||||
// compute the barycenter
|
||||
template<class TetraType>
|
||||
static Point3<typename TetraType::ScalarType> Barycenter(const TetraType & t)
|
||||
{
|
||||
return ((t.cP(0)+t.cP(1)+t.cP(2)+t.cP(3))/(TetraType::ScalarType) 4.0);
|
||||
}
|
||||
|
||||
// compute and return the volume of a tetrahedron
|
||||
template<class TetraType>
|
||||
static typename TetraType::ScalarType ComputeVolume( const TetraType & t){
|
||||
return (typename TetraType::ScalarType)((( t.cP(2)-t.cP(0))^(t.cP(1)-t.cP(0) ))*(t.cP(3)-t.cP(0))/6.0);
|
||||
}
|
||||
|
||||
/// Returns the normal to the face face of the tetrahedron t
|
||||
template<class TetraType>
|
||||
static Point3<typename TetraType::ScalarType> Normal( const TetraType &t,const int & face)
|
||||
{
|
||||
return(((t.cP(Tetra::VofF(face,1))-t.cP(Tetra::VofF(face,0)))^(t.cP(Tetra::VofF(face,2))-t.cP(Tetra::VofF(face,0)))).Normalize());
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -488,25 +509,7 @@ ScalarType ComputeAspectRatio()
|
|||
|
||||
}; //end Class
|
||||
|
||||
// compute the barycenter
|
||||
template<class ScalarType>
|
||||
Point3<ScalarType> Barycenter(const Tetra3<ScalarType> &t)
|
||||
{
|
||||
return ((t.cP(0)+t.cP(1)+t.cP(2)+t.cP(3))/(ScalarType) 4.0);
|
||||
}
|
||||
|
||||
// compute and return the volume of a tetrahedron
|
||||
template<class TetraType>
|
||||
typename TetraType::ScalarType ComputeVolume( const TetraType & t){
|
||||
return (typename TetraType::ScalarType)((( t.cP(2)-t.cP(0))^(t.cP(1)-t.cP(0) ))*(t.cP(3)-t.cP(0))/6.0);
|
||||
}
|
||||
|
||||
/// Returns the normal to the face face of the tetrahedron t
|
||||
template<class TetraType>
|
||||
Point3<typename TetraType::ScalarType> Normal( const TetraType &t,const int &face)
|
||||
{
|
||||
return(((t.cP(Tetra::VofF(face,1))-t.cP(Tetra::VofF(face,0)))^(t.cP(Tetra::VofF(face,2))-t.cP(Tetra::VofF(face,0)))).Normalize());
|
||||
}
|
||||
/*@}*/
|
||||
} // end namespace
|
||||
|
||||
|
|
|
@ -403,6 +403,7 @@ public:
|
|||
vv[2]=indices[fp->cV(2)];
|
||||
vv[3]=indices[fp->cV(3)];
|
||||
|
||||
|
||||
fwrite(&c,1,1,fpout);
|
||||
fwrite(vv,sizeof(int),4,fpout);
|
||||
|
||||
|
@ -432,6 +433,7 @@ public:
|
|||
}
|
||||
else // ***** ASCII *****
|
||||
{
|
||||
fprintf(fpout,"%d " , 4);
|
||||
fprintf(fpout,"%d %d %d %d ",
|
||||
indices[fp->cV(0)], indices[fp->cV(1)], indices[fp->cV(2)], indices[fp->cV(3)]);
|
||||
|
||||
|
|
Loading…
Reference in New Issue