Bugfix and added a new type of ear (Liepa like)
This commit is contained in:
parent
605c4d2f04
commit
6e09ed9458
vcg/complex/trimesh
|
@ -24,6 +24,9 @@
|
|||
History
|
||||
|
||||
$Log: not supported by cvs2svn $
|
||||
Revision 1.6 2006/10/09 10:07:07 giec
|
||||
Optimized version of "EAR HOLE FILLING", the Ear is selected according to its dihedral angle.
|
||||
|
||||
Revision 1.5 2006/10/06 15:28:14 giec
|
||||
first working implementationof "EAR HOLE FILLING".
|
||||
|
||||
|
@ -273,8 +276,8 @@ namespace vcg {
|
|||
template<class MSH_TYPE> class TrivialEar
|
||||
{
|
||||
public:
|
||||
face::Pos<typename MSH_TYPE::FaceType> e0; //
|
||||
face::Pos<typename MSH_TYPE::FaceType> e1; //
|
||||
face::Pos<typename MSH_TYPE::FaceType> e0;
|
||||
face::Pos<typename MSH_TYPE::FaceType> e1;
|
||||
typename MSH_TYPE::ScalarType quality;
|
||||
TrivialEar(){}
|
||||
TrivialEar(const face::Pos<typename MSH_TYPE::FaceType> & ep)
|
||||
|
@ -296,43 +299,16 @@ namespace vcg {
|
|||
|
||||
bool IsNull(){return e0.IsNull() || e1.IsNull();}
|
||||
void SetNull(){e0.SetNull();e1.SetNull();}
|
||||
//void ComputeQuality(){ quality = Distance(e0.VFlip()->P(),e1.v->P());}; //metodo vecchio per il calcolo della qualita
|
||||
void ComputeQuality()
|
||||
{
|
||||
//comute quality by max(dihedral ancgle)
|
||||
Point3f n1 = (e0.v->N() + e1.v->N() + e0.VFlip()->N() ) / 3;
|
||||
face::Pos<typename MSH_TYPE::FaceType> tmp = e1;
|
||||
tmp.FlipE();tmp.FlipV();
|
||||
Point3f n2= ( e1.VFlip()->N(), e1.v->N(), tmp.v->N());
|
||||
Point3f n2= ( e1.VFlip()->N()+ e1.v->N()+ tmp.v->N())/3;
|
||||
MSH_TYPE::ScalarType qt;
|
||||
qt = Angle(n1,n2);
|
||||
quality = qt * -1000;
|
||||
|
||||
////calcolo della qualita' come angolo dell'orecchio per il lato opposto
|
||||
//MSH_TYPE::ScalarType qt;
|
||||
//MSH_TYPE::ScalarType k0 = e0.VFlip()->P().X()*e1.v->P().X();
|
||||
//MSH_TYPE::ScalarType k1 = e0.VFlip()->P().Y()*e1.v->P().Y();
|
||||
//MSH_TYPE::ScalarType k2 = e0.VFlip()->P().Z()*e1.v->P().Z();
|
||||
//int exp0,exp1,exp2;
|
||||
//frexp( double(k0), &exp0 );
|
||||
//frexp( double(k1), &exp1 );
|
||||
//frexp( double(k2), &exp2 );
|
||||
//if( exp0<exp1 )
|
||||
//{
|
||||
// if(exp0<exp2)
|
||||
// qt = (MSH_TYPE::ScalarType) (k1+k2)+k0;
|
||||
// else
|
||||
// qt = (MSH_TYPE::ScalarType) (k0+k1)+k2;
|
||||
//}
|
||||
//else
|
||||
//{
|
||||
// if(exp1<exp2)
|
||||
// qt = (MSH_TYPE::ScalarType)(k0+k2)+k1;
|
||||
// else
|
||||
// qt = (MSH_TYPE::ScalarType) (k0+k1)+k2;
|
||||
//}
|
||||
//quality = qt * Distance(e0.VFlip()->P(),e1.v->P());
|
||||
|
||||
};//dovrebbe
|
||||
bool IsUpToDate() {return (e0.IsBorder() && e1.IsBorder());};
|
||||
|
||||
|
@ -383,7 +359,6 @@ namespace vcg {
|
|||
// caso ear degenere per buco triangolare
|
||||
if(ep==en)
|
||||
{
|
||||
//TRACE("Closing the last triangle");
|
||||
printf("Closing the last triangle");
|
||||
f->FFp(2)=en.f;
|
||||
f->FFi(2)=en.z;
|
||||
|
@ -395,7 +370,6 @@ namespace vcg {
|
|||
// Caso ear non manifold a
|
||||
else if(ep.v==en.v)
|
||||
{
|
||||
//TRACE("Ear Non manif A\n");
|
||||
printf("Ear Non manif A\n");
|
||||
face::Pos<typename MSH_TYPE::FaceType> enold=en;
|
||||
en.NextB();
|
||||
|
@ -409,7 +383,6 @@ namespace vcg {
|
|||
// Caso ear non manifold b
|
||||
else if(ep.VFlip()==e1.v)
|
||||
{
|
||||
//TRACE("Ear Non manif B\n");
|
||||
printf("Ear Non manif B\n");
|
||||
face::Pos<typename MSH_TYPE::FaceType> epold=ep;
|
||||
ep.FlipV(); ep.NextB(); ep.FlipV();
|
||||
|
@ -432,6 +405,156 @@ namespace vcg {
|
|||
};
|
||||
|
||||
|
||||
template<class MSH_TYPE> class LeipaEar
|
||||
|
||||
{
|
||||
public:
|
||||
face::Pos<typename MSH_TYPE::FaceType> e0;
|
||||
face::Pos<typename MSH_TYPE::FaceType> e1;
|
||||
typename MSH_TYPE::ScalarType dihedral;
|
||||
typename MSH_TYPE::ScalarType area;
|
||||
LeipaEar(){}
|
||||
LeipaEar(const face::Pos<typename MSH_TYPE::FaceType> & ep)
|
||||
{
|
||||
e0=ep;
|
||||
assert(e0.IsBorder());
|
||||
e1=e0;
|
||||
e1.NextB();
|
||||
ComputeQuality();
|
||||
}
|
||||
|
||||
// Nota: minori invertiti
|
||||
inline bool operator < ( const LeipaEar & c ) const
|
||||
{
|
||||
if(dihedral < c.dihedral)return true;
|
||||
else return ((dihedral == c.dihedral) && (area < c.area));
|
||||
}
|
||||
inline bool operator > ( const LeipaEar & c ) const
|
||||
{
|
||||
if(dihedral > c.dihedral)return true;
|
||||
else return ((dihedral == c.dihedral) && (area > c.area));
|
||||
}
|
||||
inline bool operator == ( const LeipaEar & c ) const
|
||||
{
|
||||
return ((dihedral == c.dihedral) && (area == c.area));
|
||||
}
|
||||
inline bool operator != ( const LeipaEar & c ) const
|
||||
{
|
||||
return ((dihedral != c.dihedral)&& (area != c.area));
|
||||
}
|
||||
|
||||
bool IsNull(){return e0.IsNull() || e1.IsNull();}
|
||||
void SetNull(){e0.SetNull();e1.SetNull();}
|
||||
void ComputeQuality()
|
||||
{
|
||||
//comute quality by (dihedral ancgle, area)
|
||||
Point3f n1 = (e0.v->N() + e1.v->N() + e0.VFlip()->N() ) / 3;
|
||||
face::Pos<typename MSH_TYPE::FaceType> tmp = e1;
|
||||
tmp.FlipE();tmp.FlipV();
|
||||
Point3f n2=(e1.VFlip()->N() + e1.v->N() + tmp.v->N() ) / 3;
|
||||
MSH_TYPE::ScalarType qt;
|
||||
qt = Angle(n1,n2);
|
||||
|
||||
dihedral = qt * -1000;
|
||||
|
||||
MSH_TYPE::ScalarType ar;
|
||||
ar = ( (e0.VFlip()->P() - e0.v->P()) ^ ( e1.v->P() - e0.v->P()) ).Norm() ;
|
||||
area = (ar)*1000;
|
||||
|
||||
};//dovrebbe
|
||||
bool IsUpToDate() {return (e0.IsBorder() && e1.IsBorder());};
|
||||
|
||||
bool Degen()
|
||||
{
|
||||
face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
|
||||
face::Pos<typename MSH_TYPE::FaceType> en=e1; en.NextB(); // he successivo a e1
|
||||
|
||||
// caso ear degenere per buco triangolare
|
||||
if(ep==en) return true;//provo a togliere sto controllo
|
||||
// Caso ear non manifold a
|
||||
if(ep.v==en.v) return true;
|
||||
// Caso ear non manifold b
|
||||
if(ep.VFlip()==e1.v) return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool Close(LeipaEar &ne0, LeipaEar &ne1, typename MSH_TYPE::FaceType * f)
|
||||
{
|
||||
// simple topological check
|
||||
if(e0.f==e1.f) {
|
||||
printf("Avoided bad ear");
|
||||
return false;
|
||||
}
|
||||
|
||||
//usato per generare una delle due nuove orecchie.
|
||||
face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
|
||||
face::Pos<typename MSH_TYPE::FaceType> en=e1; en.NextB(); // he successivo a e1
|
||||
|
||||
(*f).V(0) = e0.VFlip();
|
||||
(*f).V(1) = e0.v;
|
||||
(*f).V(2) = e1.v;
|
||||
|
||||
(*f).FFp(0) = e0.f;
|
||||
(*f).FFi(0) = e0.z;
|
||||
(*f).FFp(1) = e1.f;
|
||||
(*f).FFi(1) = e1.z;
|
||||
(*f).FFp(2) = f;
|
||||
(*f).FFi(2) = 2;
|
||||
|
||||
e0.f->FFp(e0.z)=f;
|
||||
e0.f->FFi(e0.z)=0;
|
||||
|
||||
e1.f->FFp(e1.z)=f;
|
||||
e1.f->FFi(e1.z)=1;
|
||||
|
||||
// caso ear degenere per buco triangolare
|
||||
if(ep==en)
|
||||
{
|
||||
printf("Closing the last triangle");
|
||||
f->FFp(2)=en.f;
|
||||
f->FFi(2)=en.z;
|
||||
en.f->FFp(en.z)=f;
|
||||
en.f->FFi(en.z)=2;
|
||||
ne0.SetNull();
|
||||
ne1.SetNull();
|
||||
}
|
||||
// Caso ear non manifold a
|
||||
else if(ep.v==en.v)
|
||||
{
|
||||
printf("Ear Non manif A\n");
|
||||
face::Pos<typename MSH_TYPE::FaceType> enold=en;
|
||||
en.NextB();
|
||||
f->FFp(2)=enold.f;
|
||||
f->FFi(2)=enold.z;
|
||||
enold.f->FFp(enold.z)=f;
|
||||
enold.f->FFi(enold.z)=2;
|
||||
ne0=LeipaEar(ep);
|
||||
ne1=LeipaEar(en);
|
||||
}
|
||||
// Caso ear non manifold b
|
||||
else if(ep.VFlip()==e1.v)
|
||||
{
|
||||
printf("Ear Non manif B\n");
|
||||
face::Pos<typename MSH_TYPE::FaceType> epold=ep;
|
||||
ep.FlipV(); ep.NextB(); ep.FlipV();
|
||||
f->FFp(2)=epold.f;
|
||||
f->FFi(2)=epold.z;
|
||||
epold.f->FFp(epold.z)=f;
|
||||
epold.f->FFi(epold.z)=2;
|
||||
ne0=LeipaEar(ep);
|
||||
ne1=LeipaEar(en);
|
||||
}
|
||||
else // caso standard
|
||||
// Now compute the new ears;
|
||||
{
|
||||
ne0=LeipaEar(ep);
|
||||
ne1=LeipaEar(face::Pos<typename MSH_TYPE::FaceType>(f,2,e1.v));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Funzione principale per chiudier un buco in maniera topologicamente corretta.
|
||||
|
@ -462,8 +585,6 @@ namespace vcg {
|
|||
return tri::HoleInfo<MESH>(sp,holesize,hbox, tmp );
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<class MESH,class EAR , class VECTOR_EAR>
|
||||
void refreshHole(MESH &m, VECTOR_EAR &ve, face::Pos<typename MESH::FaceType> &fp, std::vector<typename MESH::VertexType > &vv)
|
||||
{
|
||||
|
@ -478,22 +599,17 @@ namespace vcg {
|
|||
|
||||
}
|
||||
|
||||
|
||||
template <class MESH, class EAR>
|
||||
void fillHoleEar(MESH &m, tri::HoleInfo<MESH> &h ,int UBIT)
|
||||
{
|
||||
//Aggiungo le facce e aggiorno il puntatore alla faccia!
|
||||
std::vector<MESH::FacePointer *> app;
|
||||
app.push_back( &h.p.f );
|
||||
|
||||
MESH::FaceIterator f = tri::Allocator<MESH>::AddFaces(m, h.size-2, app);
|
||||
|
||||
h.Refresh(m); //rinfresco il puntatore tramite l'indice precedentemente salvato.
|
||||
|
||||
h.Refresh(m);
|
||||
assert(h.p.IsBorder());//test fondamentale altrimenti qualcosa s'e' rotto!
|
||||
|
||||
std::vector<MESH::VertexType > vv; //vettore di vertici
|
||||
|
||||
std::vector<EAR > H; //vettore di orecchie
|
||||
|
||||
H.reserve(h.size);
|
||||
|
@ -505,7 +621,6 @@ namespace vcg {
|
|||
int cnt=h.size;
|
||||
MESH::FaceIterator tmp;
|
||||
|
||||
|
||||
make_heap(H.begin(), H.end());
|
||||
|
||||
while( cnt > 2 && !H.empty() ) //finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare
|
||||
|
@ -567,7 +682,7 @@ namespace vcg {
|
|||
}
|
||||
|
||||
|
||||
template<class MESH>
|
||||
template<class MESH, class EAR>
|
||||
void holeFillingEar(MESH &m, int sizeHole,bool Selected = false)
|
||||
{
|
||||
MESH::FaceIterator fi;
|
||||
|
@ -613,7 +728,7 @@ namespace vcg {
|
|||
app=(tri::HoleInfo<MESH>)*ith;
|
||||
if(app.size < sizeHole){
|
||||
//app.Refresh(m);//non so se serve
|
||||
fillHoleEar<MESH, typename tri::TrivialEar<MESH> >(m, app,UBIT);
|
||||
fillHoleEar<MESH, EAR >(m, app,UBIT);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue