first version tested with marching cubes
This commit is contained in:
parent
28da494fe3
commit
7057ec7352
|
@ -0,0 +1,450 @@
|
|||
#ifndef __VCG_MESH_RESAMPLER
|
||||
#define __VCG_MESH_RESAMPLER
|
||||
|
||||
#include <vcg/complex/trimesh/update/normal.h>
|
||||
#include <vcg/complex/trimesh/update/bounding.h>
|
||||
#include <vcg/complex/trimesh/update/edges.h>
|
||||
#include <vcg/complex/trimesh/create/extended_marching_cubes.h>
|
||||
#include <vcg/complex/trimesh/create/marching_cubes.h>
|
||||
#include <vcg/space/index/grid_static_ptr.h>
|
||||
#include <vcg/complex/trimesh/closest.h>
|
||||
#include <vcg/space/box3.h>
|
||||
|
||||
namespace vcg {
|
||||
namespace trimesh {
|
||||
|
||||
class RES
|
||||
{
|
||||
public:
|
||||
|
||||
enum MarchMode {MMarchingCubes,MExtendedMarchingCubes} ;
|
||||
};
|
||||
|
||||
/** \addtogroup trimesh */
|
||||
/*@{*/
|
||||
/*@{*/
|
||||
/** Class Resampler.
|
||||
This is class reasmpling a mesh using marching cubes methods
|
||||
@param OLD_MESH_TYPE (Template Parameter) Specifies the type of mesh to be resampled
|
||||
@param NEW_MESH_TYPE (Template Parameter) Specifies the type of output mesh.
|
||||
@param MARCHING_ALGORITHM (Template Parameter) Specifies the type of marching cube algorithm (extended or not).
|
||||
*/
|
||||
|
||||
template <class OLD_MESH_TYPE,class NEW_MESH_TYPE>
|
||||
class Resampler:RES
|
||||
{
|
||||
typedef typename OLD_MESH_TYPE Old_Mesh;
|
||||
typedef typename NEW_MESH_TYPE New_Mesh;
|
||||
|
||||
template <class OLD_MESH_TYPE,class NEW_MESH_TYPE>
|
||||
class Walker
|
||||
{
|
||||
private:
|
||||
typedef int VertexIndex;
|
||||
typedef typename OLD_MESH_TYPE Old_Mesh;
|
||||
typedef typename NEW_MESH_TYPE New_Mesh;
|
||||
typedef typename New_Mesh::CoordType NewCoordType;
|
||||
typedef typename New_Mesh::VertexType* VertexPointer;
|
||||
typedef typename Old_Mesh::FaceContainer FaceCont;
|
||||
typedef typename GridStaticPtr<FaceCont> Grid;
|
||||
typedef typename vcg::Box3<int> BoundingBox;
|
||||
typedef vcg::tri::Allocator< New_Mesh > Allocator;
|
||||
|
||||
protected:
|
||||
BoundingBox _bbox;
|
||||
vcg::Point3i _resolution;
|
||||
vcg::Point3i _cell_size;
|
||||
|
||||
float max_dim;
|
||||
|
||||
int _slice_dimension;
|
||||
int _current_slice;
|
||||
|
||||
|
||||
VertexIndex *_x_cs; // indici dell'intersezioni della superficie lungo gli Xedge della fetta corrente
|
||||
VertexIndex *_y_cs; // indici dell'intersezioni della superficie lungo gli Yedge della fetta corrente
|
||||
VertexIndex *_z_cs; // indici dell'intersezioni della superficie lungo gli Zedge della fetta corrente
|
||||
VertexIndex *_x_ns; // indici dell'intersezioni della superficie lungo gli Xedge della prossima fetta
|
||||
VertexIndex *_z_ns; // indici dell'intersezioni della superficie lungo gli Zedge della prossima fetta
|
||||
|
||||
New_Mesh *_newM;
|
||||
Old_Mesh *_oldM;
|
||||
Grid _g;
|
||||
|
||||
public:
|
||||
|
||||
Walker(const BoundingBox &bbox,vcg::Point3i &resolution)
|
||||
{
|
||||
assert (resolution.V(0)<=bbox.DimX());
|
||||
assert (resolution.V(1)<=bbox.DimY());
|
||||
assert (resolution.V(2)<=bbox.DimZ());
|
||||
|
||||
_bbox= bbox;
|
||||
_resolution = resolution;
|
||||
_cell_size.X() = _bbox.DimX()/_resolution.X();
|
||||
_cell_size.Y() = _bbox.DimY()/_resolution.Y();
|
||||
_cell_size.Z() = _bbox.DimZ()/_resolution.Z();
|
||||
|
||||
///extend bb until the box - resolution and cell matches
|
||||
while ((_bbox.DimX()%_cell_size.X())!=0)
|
||||
_bbox.max.X()++;
|
||||
|
||||
while ((_bbox.DimY()%_cell_size.Y())!=0)
|
||||
_bbox.max.Y()++;
|
||||
|
||||
while ((_bbox.DimZ()%_cell_size.Z())!=0)
|
||||
_bbox.max.Z()++;
|
||||
|
||||
//exetend bb to 1 cell for each side
|
||||
_bbox.max+=_cell_size;
|
||||
_bbox.min-=_cell_size;
|
||||
|
||||
///resetting resolution values
|
||||
_resolution.X()=_bbox.DimX()/_cell_size.X();
|
||||
_resolution.Y()=_bbox.DimY()/_cell_size.Y();
|
||||
_resolution.Z()=_bbox.DimZ()/_cell_size.Z();
|
||||
|
||||
///asserting values
|
||||
assert(_bbox.DimX()%_cell_size.X()==0);
|
||||
assert(_bbox.DimY()%_cell_size.Y()==0);
|
||||
assert(_bbox.DimZ()%_cell_size.Z()==0);
|
||||
|
||||
assert(_cell_size.X()*_resolution.X()==_bbox.DimX());
|
||||
assert(_cell_size.Y()*_resolution.Y()==_bbox.DimY());
|
||||
assert(_cell_size.Z()*_resolution.Z()==_bbox.DimZ());
|
||||
|
||||
_slice_dimension = _resolution.X()*_resolution.Z();
|
||||
|
||||
Point3f diag=Point3f((float)_cell_size.V(0),(float)_cell_size.V(1),(float)_cell_size.V(2));
|
||||
max_dim=diag.Norm();///diagonal of a cell
|
||||
|
||||
_x_cs = new VertexIndex[ _slice_dimension ];
|
||||
_y_cs = new VertexIndex[ _slice_dimension ];
|
||||
_z_cs = new VertexIndex[ _slice_dimension ];
|
||||
_x_ns = new VertexIndex[ _slice_dimension ];
|
||||
_z_ns = new VertexIndex[ _slice_dimension ];
|
||||
|
||||
};
|
||||
|
||||
~Walker()
|
||||
{}
|
||||
|
||||
template<class EXTRACTOR_TYPE>
|
||||
void BuildMesh(Old_Mesh &old_mesh,New_Mesh &new_mesh,EXTRACTOR_TYPE &extractor)
|
||||
{
|
||||
_newM=&new_mesh;
|
||||
_oldM=&old_mesh;
|
||||
|
||||
Point3f min=Point3f((float)_bbox.min.V(0),(float)_bbox.min.V(1),(float)_bbox.min.V(2));
|
||||
Point3f max=Point3f((float)_bbox.max.V(0),(float)_bbox.max.V(1),(float)_bbox.max.V(2));
|
||||
|
||||
vcg::Box3<float> BBf=vcg::Box3<float>(min,max);
|
||||
|
||||
_g.SetBBox(BBf);
|
||||
|
||||
_g.Set(_oldM->face);
|
||||
|
||||
_newM->Clear();
|
||||
vcg::Point3i p1, p2;
|
||||
|
||||
Begin();
|
||||
extractor.Initialize();
|
||||
for (int j=_bbox.min.Y(); j<_bbox.max.Y()-_cell_size.Y(); j+=_cell_size.Y())
|
||||
{
|
||||
for (int i=_bbox.min.X(); i<_bbox.max.X()-_cell_size.X(); i+=_cell_size.X())
|
||||
{
|
||||
for (int k=_bbox.min.Z(); k<_bbox.max.Z()-_cell_size.Z(); k+=_cell_size.Z())
|
||||
{
|
||||
p1.X()=i;
|
||||
p1.Y()=j;
|
||||
p1.Z()=k;
|
||||
p2.X()=i+_cell_size.X();
|
||||
p2.Y()=j+_cell_size.Y();
|
||||
p2.Z()=k+_cell_size.Z();
|
||||
if (ExistIntersection(p1,p2))
|
||||
extractor.ProcessCell(p1, p2);
|
||||
}
|
||||
}
|
||||
NextSlice();
|
||||
}
|
||||
extractor.Finalize();
|
||||
|
||||
/*_newM= NULL;*/
|
||||
};
|
||||
|
||||
float V(Point3i p)
|
||||
{
|
||||
return (V(p.V(0),p.V(1),p.V(2)));
|
||||
}
|
||||
|
||||
///control if exist any intersection with the mesh using all points of the cell
|
||||
bool ExistIntersection(Point3i min,Point3i max)
|
||||
{
|
||||
vcg::Point3i _corners[8];
|
||||
|
||||
_corners[0].X()=min.X(); _corners[0].Y()=min.Y(); _corners[0].Z()=min.Z();
|
||||
_corners[1].X()=max.X(); _corners[1].Y()=min.Y(); _corners[1].Z()=min.Z();
|
||||
_corners[2].X()=max.X(); _corners[2].Y()=max.Y(); _corners[2].Z()=min.Z();
|
||||
_corners[3].X()=min.X(); _corners[3].Y()=max.Y(); _corners[3].Z()=min.Z();
|
||||
_corners[4].X()=min.X(); _corners[4].Y()=min.Y(); _corners[4].Z()=max.Z();
|
||||
_corners[5].X()=max.X(); _corners[5].Y()=min.Y(); _corners[5].Z()=max.Z();
|
||||
_corners[6].X()=max.X(); _corners[6].Y()=max.Y(); _corners[6].Z()=max.Z();
|
||||
_corners[7].X()=min.X(); _corners[7].Y()=max.Y(); _corners[7].Z()=max.Z();
|
||||
|
||||
////control if there is a face
|
||||
vcg::Point3f Norm;
|
||||
Old_Mesh::FaceType *f=NULL;
|
||||
float distm;
|
||||
Point3f pip;
|
||||
Point3f Target;
|
||||
vcg::Point3f test;
|
||||
for (int i=0;i<8;i++)
|
||||
{
|
||||
f=NULL;
|
||||
distm=max_dim;
|
||||
test=vcg::Point3f((float)_corners[i].X(),(float)_corners[i].Y(),(float)_corners[i].Z());
|
||||
vcg::trimesh::Closest<Old_Mesh,Grid,float>((*_oldM),test,_g,distm,Norm,Target,f,pip);
|
||||
if (f==NULL)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
///si potrebbe ottimizzare sfruttando valori che in realta' ho gia' calcolato
|
||||
float V(int pi, int pj, int pk)
|
||||
{
|
||||
vcg::Point3f Norm;
|
||||
Old_Mesh::FaceType *f=NULL;
|
||||
float dist=max_dim;;
|
||||
vcg::Point3f test=vcg::Point3f((float)pi,(float)pj,(float)pk);
|
||||
|
||||
Point3f pip;
|
||||
Point3f Target;
|
||||
vcg::trimesh::Closest<Old_Mesh,Grid,float>((*_oldM),test,_g,dist,Norm,Target,f,pip);
|
||||
|
||||
assert(f!=NULL);
|
||||
|
||||
Point3f dir=(test-Target);
|
||||
|
||||
//dist=dir.Norm();
|
||||
dir=dir.Normalize();
|
||||
|
||||
//direction of normal inside or outside the mesh
|
||||
if ((f->N()*dir)>0)
|
||||
return (dist);
|
||||
else
|
||||
return (-dist);
|
||||
}
|
||||
|
||||
bool Exist(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
|
||||
{
|
||||
return false;
|
||||
//int i_idx = p1.X()-_bbox.min.X();
|
||||
//int k_idx = p2.Z()-_bbox.min.Z();
|
||||
//int index = i_idx+k_idx*_resolution.X();
|
||||
//if (p1.X()!=p2.X()) //intersezione della superficie con un Xedge
|
||||
// return (p1.Y()==_current_slice)? _x_cs[index]!=-1 : _x_ns[index]!=-1;
|
||||
//else if (p1.Y()!=p2.Y()) //intersezione della superficie con un Yedge
|
||||
// return _y_cs[index]!=-1;
|
||||
//else if (p1.Z()!=p2.Z()) //intersezione della superficie con un Zedge
|
||||
// return (p1.Y()==_current_slice)? _z_cs[index]!=-1 : _z_ns[index]!=-1;
|
||||
}
|
||||
|
||||
|
||||
NewCoordType Interpolate(const vcg::Point3i &p1, const vcg::Point3i &p2,int dir)
|
||||
{
|
||||
float f1 = V(p1);
|
||||
float f2 = V(p2);
|
||||
float u = (float) f1/(f1-f2);
|
||||
NewCoordType ret=vcg::Point3f((float)p1.V(0),(float)p1.V(1),(float)p1.V(2));
|
||||
ret.V(dir) = (float) p1.V(dir)*(1-u) + u*p2.V(dir);
|
||||
return (ret);
|
||||
}
|
||||
|
||||
void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
|
||||
{
|
||||
int i = (p1.X() - _bbox.min.X())/_cell_size.X();
|
||||
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
||||
VertexIndex index = i+z*_resolution.X();
|
||||
VertexIndex pos;
|
||||
if (p1.Y()==_current_slice)
|
||||
{
|
||||
if ((pos=_x_cs[index])==-1)
|
||||
{
|
||||
_x_cs[index] = (VertexIndex) _newM->vert.size();
|
||||
pos = _x_cs[index];
|
||||
Allocator::AddVertices( *_newM, 1 );
|
||||
v = &_newM->vert[pos];
|
||||
v->P()=Interpolate(p1,p2,0);
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (p1.Y()==_current_slice+_cell_size.Y())
|
||||
{
|
||||
if ((pos=_x_ns[index])==-1)
|
||||
{
|
||||
_x_ns[index] = (VertexIndex) _newM->vert.size();
|
||||
pos = _x_ns[index];
|
||||
Allocator::AddVertices( *_newM, 1 );
|
||||
v = &_newM->vert[pos];
|
||||
v->P()=Interpolate(p1,p2,0);
|
||||
return;
|
||||
}
|
||||
}
|
||||
v = &_newM->vert[pos];
|
||||
}
|
||||
|
||||
void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
|
||||
{
|
||||
int i = (p1.X() - _bbox.min.X())/_cell_size.X();
|
||||
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
||||
VertexIndex index = i+z*_resolution.X();
|
||||
VertexIndex pos;
|
||||
if ((pos=_y_cs[index])==-1)
|
||||
{
|
||||
_y_cs[index] = (VertexIndex) _newM->vert.size();
|
||||
pos = _y_cs[index];
|
||||
Allocator::AddVertices( *_newM, 1);
|
||||
v = &_newM->vert[ pos ];
|
||||
v->P()=Interpolate(p1,p2,1);
|
||||
}
|
||||
v = &_newM->vert[pos];
|
||||
}
|
||||
|
||||
void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
|
||||
{
|
||||
int i = (p1.X() - _bbox.min.X())/_cell_size.X();
|
||||
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
||||
VertexIndex index = i+z*_resolution.X();
|
||||
|
||||
VertexIndex pos;
|
||||
if (p1.Y()==_current_slice)
|
||||
{
|
||||
if ((pos=_z_cs[index])==-1)
|
||||
{
|
||||
_z_cs[index] = (VertexIndex) _newM->vert.size();
|
||||
pos = _z_cs[index];
|
||||
Allocator::AddVertices( *_newM, 1 );
|
||||
v = &_newM->vert[pos];
|
||||
v->P()=Interpolate(p1,p2,2);
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (p1.Y()==_current_slice+_cell_size.Y())
|
||||
{
|
||||
if ((pos=_z_ns[index])==-1)
|
||||
{
|
||||
_z_ns[index] = (VertexIndex) _newM->vert.size();
|
||||
pos = _z_ns[index];
|
||||
Allocator::AddVertices( *_newM, 1 );
|
||||
v = &_newM->vert[pos];
|
||||
v->P()=Interpolate(p1,p2,2);
|
||||
return;
|
||||
}
|
||||
}
|
||||
v = &_newM->vert[pos];
|
||||
}
|
||||
|
||||
|
||||
|
||||
void NextSlice()
|
||||
{
|
||||
memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
|
||||
std::swap(_x_cs, _x_ns);
|
||||
std::swap(_z_cs, _z_ns);
|
||||
|
||||
_current_slice += _cell_size.Y();
|
||||
}
|
||||
|
||||
void Begin()
|
||||
{
|
||||
_current_slice = _bbox.min.Y();
|
||||
|
||||
memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_x_ns, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_z_ns, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
|
||||
}
|
||||
};//end class walker
|
||||
|
||||
public:
|
||||
|
||||
typedef typename Walker< Old_Mesh,New_Mesh> MyWalker;
|
||||
|
||||
typedef typename vcg::tri::MarchingCubes<New_Mesh, MyWalker> MarchingCubes;
|
||||
typedef typename vcg::tri::ExtendedMarchingCubes<New_Mesh, MyWalker> ExtendedMarchingCubes;
|
||||
|
||||
///resample the mesh using marching cube algorithm ,the accuracy is the dimension of one cell the parameter
|
||||
template <RES::MarchMode mm>
|
||||
static void Resample(Old_Mesh &old_mesh,New_Mesh &new_mesh,vcg::Point3<int> accuracy)
|
||||
{
|
||||
new_mesh.Clear();
|
||||
if (Old_Mesh::HasPerFaceNormal())
|
||||
vcg::tri::UpdateNormals<Old_Mesh>::PerFaceNormalized(old_mesh);
|
||||
if (Old_Mesh::HasPerVertexNormal())
|
||||
vcg::tri::UpdateNormals<Old_Mesh>::PerVertexNormalized(old_mesh);
|
||||
///the mesh must have plane for ugrid
|
||||
if (!Old_Mesh::FaceType::HasEdgePlane())
|
||||
assert(0);
|
||||
else
|
||||
vcg::tri::UpdateEdges<Old_Mesh>::Set(old_mesh);
|
||||
|
||||
///be sure that the bounding box is updated
|
||||
vcg::tri::UpdateBounding<Old_Mesh>::Box(old_mesh);
|
||||
|
||||
|
||||
// MARCHING CUBES CALLS
|
||||
Point3i min=Point3i((int)ceil(old_mesh.bbox.min.V(0)),(int)ceil(old_mesh.bbox.min.V(1)),(int)ceil(old_mesh.bbox.min.V(2)));
|
||||
Point3i max=Point3i((int)ceil(old_mesh.bbox.max.V(0)),(int)ceil(old_mesh.bbox.max.V(1)),(int)ceil(old_mesh.bbox.max.V(2)));
|
||||
|
||||
///exetend out to BB for resample the limits of the mesh
|
||||
/*min-=Point3i(1,1,1);
|
||||
max+=Point3i(1,1,1);*/
|
||||
vcg::Box3<int> boxInt=Box3<int>(min,max);
|
||||
|
||||
float rx=((float)boxInt.DimX())/(float)accuracy.X();
|
||||
float ry=((float)boxInt.DimY())/(float)accuracy.Y();
|
||||
float rz=((float)boxInt.DimZ())/(float)accuracy.Z();
|
||||
|
||||
int rxi=(int)ceil(rx);
|
||||
int ryi=(int)ceil(ry);
|
||||
int rzi=(int)ceil(rz);
|
||||
|
||||
Point3i res=Point3i(rxi,ryi,rzi);
|
||||
|
||||
MyWalker walker(boxInt,res);
|
||||
if (mm==MMarchingCubes)
|
||||
{
|
||||
MarchingCubes mc(new_mesh, walker);
|
||||
walker.BuildMesh<MarchingCubes>(old_mesh,new_mesh,mc);
|
||||
}
|
||||
else if (mm==MExtendedMarchingCubes)
|
||||
{
|
||||
ExtendedMarchingCubes mc(new_mesh, walker,30);
|
||||
walker.BuildMesh<ExtendedMarchingCubes>(old_mesh,new_mesh,mc);
|
||||
}
|
||||
|
||||
|
||||
|
||||
if (New_Mesh::HasFFTopology())
|
||||
vcg::tri::UpdateTopology<New_Mesh>::FaceFace(new_mesh);
|
||||
if (New_Mesh::HasVFTopology())
|
||||
vcg::tri::UpdateTopology<New_Mesh>::VertexFace(new_mesh);
|
||||
if (New_Mesh::HasPerFaceNormal())
|
||||
vcg::tri::UpdateNormals<New_Mesh>::PerFaceNormalized(new_mesh);
|
||||
if (New_Mesh::HasPerVertexNormal())
|
||||
vcg::tri::UpdateNormals<New_Mesh>::PerVertexNormalized(new_mesh);
|
||||
|
||||
}
|
||||
|
||||
|
||||
};//end class resampler
|
||||
|
||||
};//end namespace trimesh
|
||||
};//end namespace vcg
|
||||
#endif
|
Loading…
Reference in New Issue