Significantly refactored. Renamed a bunch of variables, removed useless parameters. Corrected various minor bugs. Changed the semantics of quality weighting (was bugged!)
This commit is contained in:
parent
a58040cf9c
commit
73b0576edf
|
@ -20,56 +20,6 @@
|
|||
* for more details. *
|
||||
* *
|
||||
****************************************************************************/
|
||||
/****************************************************************************
|
||||
History
|
||||
|
||||
$Log: not supported by cvs2svn $
|
||||
Revision 1.14 2007/03/22 11:07:16 cignoni
|
||||
Solved an issue related to different casting double-float between gcc 3 and gcc 4
|
||||
|
||||
Revision 1.13 2007/02/25 09:20:10 cignoni
|
||||
Added Rad to the NormalThr Option and removed a bug in multiple exectuion of non optimal simplification (missing an isD check)
|
||||
|
||||
Revision 1.12 2007/01/19 09:13:14 cignoni
|
||||
Added Finalize() method to the interface, corrected minor bugs on border preserving and postsimplification cleanup
|
||||
Avoided double make_heap (it is done only in the local_optimization init)
|
||||
|
||||
Revision 1.11 2006/10/15 07:31:21 cignoni
|
||||
typenames and qualifiers for gcc compliance
|
||||
|
||||
Revision 1.10 2006/10/09 20:12:55 cignoni
|
||||
Heavyly restructured for meshlab inclusion. Now the access to the quadric elements are mediated by a static helper class.
|
||||
|
||||
Revision 1.9 2006/10/07 17:20:25 cignoni
|
||||
Updated to the new style face->Normal() becomes Normal(face)
|
||||
|
||||
Revision 1.8 2005/10/02 23:19:36 cignoni
|
||||
Changed the sign of the priority of a collapse. Now it is its the error as it should (and not -error)
|
||||
|
||||
Revision 1.7 2005/04/14 11:35:07 ponchio
|
||||
*** empty log message ***
|
||||
|
||||
Revision 1.6 2005/01/19 10:35:28 cignoni
|
||||
Better management of symmetric/asymmetric edge collapses
|
||||
|
||||
Revision 1.5 2004/12/10 01:07:15 cignoni
|
||||
Moved param classes inside; added support for optimal placement and symmetric; added update heap also here (not only in the base class)
|
||||
|
||||
Revision 1.4 2004/11/23 10:34:23 cignoni
|
||||
passed parameters by reference in many funcs and gcc cleaning
|
||||
|
||||
Revision 1.3 2004/10/25 07:07:56 ganovelli
|
||||
A vcg.::Pos was used to implement the collapse type. CHanged
|
||||
to vcg::Edge
|
||||
|
||||
Revision 1.2 2004/09/29 17:08:16 ganovelli
|
||||
corrected error in -error (see localoptimization)
|
||||
|
||||
|
||||
****************************************************************************/
|
||||
|
||||
|
||||
|
||||
|
||||
#ifndef __VCG_TRIMESHCOLLAPSE_QUADRIC__
|
||||
#define __VCG_TRIMESHCOLLAPSE_QUADRIC__
|
||||
|
@ -81,6 +31,7 @@ corrected error in -error (see localoptimization)
|
|||
#include<vcg/complex/algorithms/update/bounding.h>
|
||||
#include<vcg/complex/algorithms/local_optimization/tri_edge_collapse.h>
|
||||
#include<vcg/complex/algorithms/local_optimization.h>
|
||||
#include<vcg/complex/algorithms/stat.h>
|
||||
|
||||
|
||||
namespace vcg{
|
||||
|
@ -147,9 +98,9 @@ public:
|
|||
double QuadricEpsilon;
|
||||
bool QualityCheck;
|
||||
bool QualityQuadric; // During the initialization manage all the edges as border edges adding a set of additional quadrics that are useful mostly for keeping face aspect ratio good.
|
||||
double QualityThr; // all
|
||||
double QualityThr; // Collapsed that generate faces with quality LOWER than this value are penalized. So
|
||||
bool QualityWeight;
|
||||
bool SafeHeapUpdate;
|
||||
double QualityWeightFactor;
|
||||
double ScaleFactor;
|
||||
bool ScaleIndependent;
|
||||
bool UseArea;
|
||||
|
@ -168,9 +119,9 @@ public:
|
|||
QuadricEpsilon =1e-15;
|
||||
QualityCheck=true;
|
||||
QualityQuadric=false;
|
||||
QualityThr=.1;
|
||||
QualityThr=.3; // higher the value -> better the quality of the accepted triangles
|
||||
QualityWeight=false;
|
||||
SafeHeapUpdate =false;
|
||||
QualityWeightFactor=100.0;
|
||||
ScaleFactor=1.0;
|
||||
ScaleIndependent=true;
|
||||
UseArea=true;
|
||||
|
@ -185,38 +136,35 @@ template<class TriMeshType, class VertexPair, class MYTYPE, class HelperType = Q
|
|||
class TriEdgeCollapseQuadric: public TriEdgeCollapse< TriMeshType, VertexPair, MYTYPE>
|
||||
{
|
||||
public:
|
||||
typedef typename vcg::tri::TriEdgeCollapse< TriMeshType, VertexPair, MYTYPE > TEC;
|
||||
// typedef typename TEC::EdgeType EdgeType;
|
||||
typedef typename TriEdgeCollapse<TriMeshType, VertexPair, MYTYPE>::HeapType HeapType;
|
||||
typedef typename TriEdgeCollapse<TriMeshType, VertexPair, MYTYPE>::HeapElem HeapElem;
|
||||
typedef typename TriMeshType::CoordType CoordType;
|
||||
typedef typename TriMeshType::ScalarType ScalarType;
|
||||
typedef math::Quadric< double > QuadricType;
|
||||
typedef typename TriMeshType::FaceType FaceType;
|
||||
typedef typename TriMeshType::VertexType VertexType;
|
||||
typedef TriEdgeCollapseQuadricParameter QParameter;
|
||||
typedef HelperType QH;
|
||||
|
||||
// static QParameter & Params(){
|
||||
// static QParameter p;
|
||||
// return p;
|
||||
// }
|
||||
|
||||
|
||||
// puntatori ai vertici che sono stati messi non-w per preservare il boundary
|
||||
static std::vector<typename TriMeshType::VertexPointer> & WV(){
|
||||
static std::vector<typename TriMeshType::VertexPointer> _WV; return _WV;
|
||||
};
|
||||
|
||||
inline TriEdgeCollapseQuadric(){}
|
||||
|
||||
inline TriEdgeCollapseQuadric(const VertexPair &p, int i, BaseParameterClass *pp)
|
||||
{
|
||||
this->localMark = i;
|
||||
this->pos=p;
|
||||
this->_priority = ComputePriority(pp);
|
||||
}
|
||||
|
||||
typedef typename vcg::tri::TriEdgeCollapse< TriMeshType, VertexPair, MYTYPE > TEC;
|
||||
typedef typename TriEdgeCollapse<TriMeshType, VertexPair, MYTYPE>::HeapType HeapType;
|
||||
typedef typename TriEdgeCollapse<TriMeshType, VertexPair, MYTYPE>::HeapElem HeapElem;
|
||||
typedef typename TriMeshType::CoordType CoordType;
|
||||
typedef typename TriMeshType::ScalarType ScalarType;
|
||||
typedef typename TriMeshType::FaceType FaceType;
|
||||
typedef typename TriMeshType::VertexType VertexType;
|
||||
typedef typename TriMeshType::VertexIterator VertexIterator;
|
||||
typedef typename TriMeshType::FaceIterator FaceIterator;
|
||||
typedef typename vcg::face::VFIterator<FaceType> VFIterator;
|
||||
typedef math::Quadric< double > QuadricType;
|
||||
typedef TriEdgeCollapseQuadricParameter QParameter;
|
||||
typedef HelperType QH;
|
||||
|
||||
|
||||
// puntatori ai vertici che sono stati messi non-w per preservare il boundary
|
||||
static std::vector<typename TriMeshType::VertexPointer> & WV(){
|
||||
static std::vector<typename TriMeshType::VertexPointer> _WV; return _WV;
|
||||
}
|
||||
|
||||
inline TriEdgeCollapseQuadric(){}
|
||||
|
||||
inline TriEdgeCollapseQuadric(const VertexPair &p, int i, BaseParameterClass *pp)
|
||||
{
|
||||
this->localMark = i;
|
||||
this->pos=p;
|
||||
this->_priority = ComputePriority(pp);
|
||||
}
|
||||
|
||||
|
||||
inline bool IsFeasible(BaseParameterClass *_pp){
|
||||
QParameter *pp=(QParameter *)_pp;
|
||||
|
@ -227,15 +175,23 @@ public:
|
|||
return res;
|
||||
}
|
||||
|
||||
CoordType ComputePosition(BaseParameterClass *_pp)
|
||||
{
|
||||
QParameter *pp=(QParameter *)_pp;
|
||||
CoordType newPos = (this->pos.V(0)->P()+this->pos.V(1)->P())/2.0;
|
||||
if(pp->OptimalPlacement)
|
||||
{
|
||||
if((QH::Qd(this->pos.V(0)).Apply(newPos) + QH::Qd(this->pos.V(1)).Apply(newPos)) > 200.0*pp->QuadricEpsilon)
|
||||
newPos = ComputeMinimal();
|
||||
}
|
||||
else newPos=this->pos.V(1)->P();
|
||||
return newPos;
|
||||
}
|
||||
|
||||
void Execute(TriMeshType &m, BaseParameterClass *_pp)
|
||||
{
|
||||
QParameter *pp=(QParameter *)_pp;
|
||||
CoordType newPos;
|
||||
if(pp->OptimalPlacement) newPos= static_cast<MYTYPE*>(this)->ComputeMinimal();
|
||||
else newPos=this->pos.V(1)->P();
|
||||
|
||||
QH::Qd(this->pos.V(1))+=QH::Qd(this->pos.V(0));
|
||||
EdgeCollapser<TriMeshType,VertexPair>::Do(m, this->pos, newPos); // v0 is deleted and v1 take the new position
|
||||
EdgeCollapser<TriMeshType,VertexPair>::Do(m, this->pos, ComputePosition(_pp)); // v0 is deleted and v1 take the new position
|
||||
}
|
||||
|
||||
|
||||
|
@ -349,235 +305,219 @@ public:
|
|||
static bool IsVertexStable(BaseParameterClass *_pp) {return !((QParameter *)_pp)->OptimalPlacement;}
|
||||
|
||||
|
||||
///*
|
||||
// Funzione principale di valutazione dell'errore del collasso.
|
||||
// In pratica simula il collasso vero e proprio.
|
||||
//
|
||||
// Da ottimizzare il ciclo sulle normali (deve sparire on e si deve usare per face normals)
|
||||
//*/
|
||||
/** Evaluate the priority (error) for an edge collapse
|
||||
*
|
||||
* It simulate the collapse and compute the quadric error
|
||||
* generated by this collapse. This error is weighted with
|
||||
* - aspect ratio of involved triangles
|
||||
* - normal variation
|
||||
*/
|
||||
ScalarType ComputePriority(BaseParameterClass *_pp)
|
||||
{
|
||||
QParameter *pp=(QParameter *)_pp;
|
||||
ScalarType error;
|
||||
typename vcg::face::VFIterator<FaceType> x;
|
||||
std::vector<CoordType> on; // original normals
|
||||
typename TriMeshType::VertexType * v[2];
|
||||
v[0] = this->pos.V(0);
|
||||
v[1] = this->pos.V(1);
|
||||
|
||||
std::vector<CoordType> onVec; // vector with incident faces original normals
|
||||
VertexType * v[2];
|
||||
v[0] = this->pos.V(0);
|
||||
v[1] = this->pos.V(1);
|
||||
|
||||
if(pp->NormalCheck){ // Compute maximal normal variation
|
||||
// store the old normals for non-collapsed face in v0
|
||||
for(x.F() = v[0]->VFp(), x.I() = v[0]->VFi(); x.F()!=0; ++x ) // for all faces in v0
|
||||
if(x.F()->V(0)!=v[1] && x.F()->V(1)!=v[1] && x.F()->V(2)!=v[1] ) // skip faces with v1
|
||||
on.push_back(TriangleNormal(*x.F()).Normalize());
|
||||
// store the old normals for non-collapsed face in v1
|
||||
for(x.F() = v[1]->VFp(), x.I() = v[1]->VFi(); x.F()!=0; ++x ) // for all faces in v1
|
||||
if(x.F()->V(0)!=v[0] && x.F()->V(1)!=v[0] && x.F()->V(2)!=v[0] ) // skip faces with v0
|
||||
on.push_back(TriangleNormal(*x.F()).Normalize());
|
||||
}
|
||||
|
||||
//// Move the two vertexe into new position (storing the old ones)
|
||||
CoordType OldPos0=v[0]->P();
|
||||
CoordType OldPos1=v[1]->P();
|
||||
if(pp->OptimalPlacement) { v[0]->P() = ComputeMinimal(); v[1]->P()=v[0]->P();}
|
||||
else v[0]->P() = v[1]->P();
|
||||
|
||||
//// Rescan faces and compute quality and difference between normals
|
||||
int i;
|
||||
double ndiff,MinCos = 1e100; // minimo coseno di variazione di una normale della faccia
|
||||
// (e.g. max angle) Mincos varia da 1 (normali coincidenti) a
|
||||
// -1 (normali opposte);
|
||||
double qt, MinQual = 1e100;
|
||||
CoordType nn;
|
||||
for(x.F() = v[0]->VFp(), x.I() = v[0]->VFi(),i=0; x.F()!=0; ++x ) // for all faces in v0
|
||||
if(x.F()->V(0)!=v[1] && x.F()->V(1)!=v[1] && x.F()->V(2)!=v[1] ) // skip faces with v1
|
||||
{
|
||||
// store the old normals for non-collapsed face in v0
|
||||
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
|
||||
if( x.V1()!=v[1] && x.V2()!=v[1] ) // skip faces with v1
|
||||
onVec.push_back(TriangleNormal(*x.F()).Normalize());
|
||||
// store the old normals for non-collapsed face in v1
|
||||
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
|
||||
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
|
||||
onVec.push_back(TriangleNormal(*x.F()).Normalize());
|
||||
}
|
||||
|
||||
//// Move the two vertexes into new position (storing the old ones)
|
||||
CoordType OldPos0=v[0]->P();
|
||||
CoordType OldPos1=v[1]->P();
|
||||
CoordType newPos = ComputePosition(_pp);
|
||||
v[0]->P() = v[1]->P() = newPos;
|
||||
|
||||
//// Rescan faces and compute quality and difference between normals
|
||||
int i=0;
|
||||
double MinCos = std::numeric_limits<double>::max(); // minimo coseno di variazione di una normale della faccia
|
||||
// (e.g. max angle) Mincos varia da 1 (normali coincidenti) a
|
||||
// -1 (normali opposte);
|
||||
double MinQual = std::numeric_limits<double>::max();
|
||||
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
|
||||
if( x.V1()!=v[1] && x.V2()!=v[1] ) // skiping faces with v1
|
||||
{
|
||||
if(pp->NormalCheck){
|
||||
nn=TriangleNormal(*x.F()).Normalize();
|
||||
ndiff=nn.dot(on[i++]);
|
||||
if(ndiff<MinCos) MinCos=ndiff;
|
||||
}
|
||||
if(pp->QualityCheck){
|
||||
qt= QualityFace(*x.F());
|
||||
if(qt<MinQual) MinQual=qt;
|
||||
}
|
||||
}
|
||||
for(x.F() = v[1]->VFp(), x.I() = v[1]->VFi(),i=0; x.F()!=0; ++x ) // for all faces in v1
|
||||
if(x.F()->V(0)!=v[0] && x.F()->V(1)!=v[0] && x.F()->V(2)!=v[0] ) // skip faces with v0
|
||||
{
|
||||
CoordType nn=NormalizedTriangleNormal(*x.F());
|
||||
double ndiff=nn.dot(onVec[i++]);
|
||||
MinCos=std::min(MinCos,ndiff);
|
||||
}
|
||||
if(pp->QualityCheck){
|
||||
double qt= QualityFace(*x.F());
|
||||
MinQual=std::min(MinQual,qt);
|
||||
}
|
||||
}
|
||||
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
|
||||
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
|
||||
{
|
||||
if(pp->NormalCheck){
|
||||
nn=TriangleNormal(*x.F()).Normalize();
|
||||
ndiff=nn.dot(on[i++]);
|
||||
if(ndiff<MinCos) MinCos=ndiff;
|
||||
}
|
||||
CoordType nn=NormalizedTriangleNormal(*x.F());
|
||||
double ndiff=nn.dot(onVec[i++]);
|
||||
MinCos=std::min(MinCos,ndiff);
|
||||
}
|
||||
if(pp->QualityCheck){
|
||||
qt= QualityFace(*x.F());
|
||||
if(qt<MinQual) MinQual=qt;
|
||||
}
|
||||
}
|
||||
|
||||
double qt= QualityFace(*x.F());
|
||||
MinQual=std::min(MinQual,qt);
|
||||
}
|
||||
}
|
||||
|
||||
QuadricType qq=QH::Qd(v[0]);
|
||||
qq+=QH::Qd(v[1]);
|
||||
Point3d tpd=Point3d::Construct(v[1]->P());
|
||||
double QuadErr = pp->ScaleFactor*qq.Apply(tpd);
|
||||
|
||||
// All collapses involving triangles with quality larger than <QualityThr> has no penalty;
|
||||
double QuadErr = pp->ScaleFactor*qq.Apply(Point3d::Construct(v[1]->P()));
|
||||
|
||||
assert(!math::IsNAN(QuadErr));
|
||||
// All collapses involving triangles with quality larger than <QualityThr> have no penalty;
|
||||
if(MinQual>pp->QualityThr) MinQual=pp->QualityThr;
|
||||
|
||||
if(pp->NormalCheck){
|
||||
// All collapses where the normal vary less than <NormalThr> (e.g. more than CosineThr)
|
||||
// have no penalty
|
||||
|
||||
if(pp->NormalCheck){
|
||||
// All collapses where the normal vary less than <NormalThr> (e.g. more than CosineThr)
|
||||
// have no penalty
|
||||
if(MinCos>pp->CosineThr) MinCos=pp->CosineThr;
|
||||
MinCos=(MinCos+1)/2.0; // Now it is in the range 0..1 with 0 very dangerous!
|
||||
}
|
||||
MinCos=fabs((MinCos+1)/2.0); // Now it is in the range 0..1 with 0 very dangerous!
|
||||
}
|
||||
|
||||
if(QuadErr<pp->QuadricEpsilon) QuadErr=pp->QuadricEpsilon;
|
||||
QuadErr= std::max(QuadErr,pp->QuadricEpsilon);
|
||||
if(QuadErr <= pp->QuadricEpsilon)
|
||||
{
|
||||
QuadErr = - 1/Distance(OldPos0,OldPos1);
|
||||
}
|
||||
|
||||
if( pp->UseVertexWeight ) QuadErr *= (QH::W(v[1])+QH::W(v[0]))/2;
|
||||
|
||||
|
||||
ScalarType error;
|
||||
if(!pp->QualityCheck && !pp->NormalCheck) error = (ScalarType)(QuadErr);
|
||||
if( pp->QualityCheck && !pp->NormalCheck) error = (ScalarType)(QuadErr / MinQual);
|
||||
if(!pp->QualityCheck && pp->NormalCheck) error = (ScalarType)(QuadErr / MinCos);
|
||||
if( pp->QualityCheck && pp->NormalCheck) error = (ScalarType)(QuadErr / (MinQual*MinCos));
|
||||
|
||||
//Rrestore old position of v0 and v1
|
||||
v[0]->P()=OldPos0;
|
||||
v[1]->P()=OldPos1;
|
||||
this->_priority = error;
|
||||
return this->_priority;
|
||||
}
|
||||
|
||||
|
||||
// Restore old position of v0 and v1
|
||||
v[0]->P()=OldPos0;
|
||||
v[1]->P()=OldPos1;
|
||||
|
||||
this->_priority = error;
|
||||
return this->_priority;
|
||||
}
|
||||
|
||||
//
|
||||
//static double MaxError() {return 1e100;}
|
||||
//
|
||||
inline void UpdateHeap(HeapType & h_ret,BaseParameterClass *_pp)
|
||||
inline void AddCollapseToHeap(HeapType & h_ret, VertexType *v0, VertexType *v1, BaseParameterClass *_pp)
|
||||
{
|
||||
QParameter *pp=(QParameter *)_pp;
|
||||
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(v0,v1), this->GlobalMark(),_pp)));
|
||||
std::push_heap(h_ret.begin(),h_ret.end());
|
||||
if(!IsSymmetric(pp)){
|
||||
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(v1,v0), this->GlobalMark(),_pp)));
|
||||
std::push_heap(h_ret.begin(),h_ret.end());
|
||||
}
|
||||
}
|
||||
|
||||
inline void UpdateHeap(HeapType & h_ret, BaseParameterClass *_pp)
|
||||
{
|
||||
QParameter *pp=(QParameter *)_pp;
|
||||
this->GlobalMark()++;
|
||||
VertexType *v[2];
|
||||
v[0]= this->pos.V(0);
|
||||
v[1]= this->pos.V(1);
|
||||
v[1]->IMark() = this->GlobalMark();
|
||||
|
||||
// First loop around the remaining vertex to unmark visited flags
|
||||
vcg::face::VFIterator<FaceType> vfi(v[1]);
|
||||
while (!vfi.End()){
|
||||
// First loop around the surviving vertex to unmark the Visit flags
|
||||
for(VFIterator vfi(v[1]); !vfi.End(); ++vfi ) {
|
||||
vfi.V1()->ClearV();
|
||||
vfi.V2()->ClearV();
|
||||
++vfi;
|
||||
}
|
||||
|
||||
// Second Loop
|
||||
vfi = face::VFIterator<FaceType>(v[1]);
|
||||
while (!vfi.End())
|
||||
{
|
||||
assert(!vfi.F()->IsD());
|
||||
for(VFIterator vfi(v[1]); !vfi.End(); ++vfi ) {
|
||||
if( !(vfi.V1()->IsV()) && vfi.V1()->IsRW())
|
||||
{
|
||||
vfi.V1()->SetV();
|
||||
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(vfi.V0(),vfi.V1()), this->GlobalMark(),_pp)));
|
||||
std::push_heap(h_ret.begin(),h_ret.end());
|
||||
if(!IsSymmetric(pp)){
|
||||
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(vfi.V1(),vfi.V0()), this->GlobalMark(),_pp)));
|
||||
std::push_heap(h_ret.begin(),h_ret.end());
|
||||
}
|
||||
AddCollapseToHeap(h_ret,vfi.V0(),vfi.V1(),_pp);
|
||||
}
|
||||
if( !(vfi.V2()->IsV()) && vfi.V2()->IsRW())
|
||||
{
|
||||
vfi.V2()->SetV();
|
||||
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(vfi.V0(),vfi.V2()),this->GlobalMark(),_pp)));
|
||||
std::push_heap(h_ret.begin(),h_ret.end());
|
||||
if(!IsSymmetric(pp)){
|
||||
h_ret.push_back( HeapElem(new MYTYPE(VertexPair(vfi.V2(),vfi.V0()), this->GlobalMark(),_pp) ) );
|
||||
std::push_heap(h_ret.begin(),h_ret.end());
|
||||
}
|
||||
AddCollapseToHeap(h_ret,vfi.V2(),vfi.V0(),_pp);
|
||||
}
|
||||
if(pp->SafeHeapUpdate && vfi.V1()->IsRW() && vfi.V2()->IsRW() )
|
||||
{
|
||||
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(vfi.V1(),vfi.V2()),this->GlobalMark(),_pp)));
|
||||
std::push_heap(h_ret.begin(),h_ret.end());
|
||||
if(!IsSymmetric(pp)){
|
||||
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(vfi.V2(),vfi.V1()), this->GlobalMark(),_pp)));
|
||||
std::push_heap(h_ret.begin(),h_ret.end());
|
||||
}
|
||||
}
|
||||
|
||||
++vfi;
|
||||
}
|
||||
|
||||
if(vfi.V1()->IsRW() && vfi.V2()->IsRW() )
|
||||
AddCollapseToHeap(h_ret,vfi.V1(),vfi.V2(),_pp);
|
||||
} // end second loop around surviving vertex.
|
||||
}
|
||||
|
||||
static void InitQuadric(TriMeshType &m,BaseParameterClass *_pp)
|
||||
{
|
||||
QParameter *pp=(QParameter *)_pp;
|
||||
typename TriMeshType::FaceIterator pf;
|
||||
typename TriMeshType::VertexIterator pv;
|
||||
int j;
|
||||
QH::Init();
|
||||
{
|
||||
QParameter *pp=(QParameter *)_pp;
|
||||
QH::Init();
|
||||
// m.ClearFlags();
|
||||
for(pv=m.vert.begin();pv!=m.vert.end();++pv) // Azzero le quadriche
|
||||
if( ! (*pv).IsD() && (*pv).IsW())
|
||||
QH::Qd(*pv).SetZero();
|
||||
for(VertexIterator pv=m.vert.begin();pv!=m.vert.end();++pv) // Azzero le quadriche
|
||||
if( ! (*pv).IsD() && (*pv).IsW())
|
||||
QH::Qd(*pv).SetZero();
|
||||
|
||||
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
if( !(*fi).IsD() && (*fi).IsR() )
|
||||
if((*fi).V(0)->IsR() &&(*fi).V(1)->IsR() &&(*fi).V(2)->IsR())
|
||||
{
|
||||
Plane3<ScalarType,false> facePlane;
|
||||
facePlane.SetDirection( ( (*fi).V(1)->cP() - (*fi).V(0)->cP() ) ^ ( (*fi).V(2)->cP() - (*fi).V(0)->cP() ));
|
||||
if(!pp->UseArea)
|
||||
facePlane.Normalize();
|
||||
facePlane.SetOffset( facePlane.Direction().dot((*fi).V(0)->cP()));
|
||||
|
||||
|
||||
for(pf=m.face.begin();pf!=m.face.end();++pf)
|
||||
if( !(*pf).IsD() && (*pf).IsR() )
|
||||
if((*pf).V(0)->IsR() &&(*pf).V(1)->IsR() &&(*pf).V(2)->IsR())
|
||||
{
|
||||
QuadricType q;
|
||||
Plane3<ScalarType,false> p;
|
||||
// Calcolo piano
|
||||
p.SetDirection( ( (*pf).V(1)->cP() - (*pf).V(0)->cP() ) ^ ( (*pf).V(2)->cP() - (*pf).V(0)->cP() ));
|
||||
// Se normalizzo non dipende dall'area
|
||||
|
||||
if(!pp->UseArea)
|
||||
p.Normalize();
|
||||
|
||||
p.SetOffset( p.Direction().dot((*pf).V(0)->cP()));
|
||||
|
||||
// Calcolo quadrica delle facce
|
||||
q.ByPlane(p);
|
||||
|
||||
for(j=0;j<3;++j)
|
||||
if( (*pf).V(j)->IsW() )
|
||||
{
|
||||
if(pp->QualityWeight)
|
||||
q*=(*pf).V(j)->Q();
|
||||
QH::Qd((*pf).V(j)) += q; // Sommo la quadrica ai vertici
|
||||
}
|
||||
|
||||
for(j=0;j<3;++j)
|
||||
if( (*pf).IsB(j) || pp->QualityQuadric ) // Bordo!
|
||||
{
|
||||
Plane3<ScalarType,false> pb; // Piano di bordo
|
||||
|
||||
// Calcolo la normale al piano di bordo e la sua distanza
|
||||
// Nota che la lunghezza dell'edge DEVE essere Normalizzata
|
||||
// poiche' la pesatura in funzione dell'area e'gia fatta in p.Direction()
|
||||
// Senza la normalize il bordo e' pesato in funzione della grandezza della mesh (mesh grandi non decimano sul bordo)
|
||||
pb.SetDirection(p.Direction() ^ ( (*pf).V1(j)->cP() - (*pf).V(j)->cP() ).normalized());
|
||||
if( (*pf).IsB(j) ) pb.SetDirection(pb.Direction()* (ScalarType)pp->BoundaryWeight); // amplify border planes
|
||||
else pb.SetDirection(pb.Direction()* (ScalarType)(pp->BoundaryWeight/100.0)); // and consider much less quadric for quality
|
||||
pb.SetOffset(pb.Direction().dot((*pf).V(j)->cP()));
|
||||
q.ByPlane(pb);
|
||||
|
||||
if( (*pf).V (j)->IsW() ) QH::Qd((*pf).V (j)) += q; // Sommo le quadriche
|
||||
if( (*pf).V1(j)->IsW() ) QH::Qd((*pf).V1(j)) += q;
|
||||
}
|
||||
}
|
||||
|
||||
if(pp->ScaleIndependent)
|
||||
QuadricType q;
|
||||
q.ByPlane(facePlane);
|
||||
|
||||
// The basic < add face quadric to each vertex > loop
|
||||
for(int j=0;j<3;++j)
|
||||
if( (*fi).V(j)->IsW() )
|
||||
QH::Qd((*fi).V(j)) += q;
|
||||
|
||||
for(int j=0;j<3;++j)
|
||||
if( (*fi).IsB(j) || pp->QualityQuadric )
|
||||
{
|
||||
Plane3<ScalarType,false> borderPlane;
|
||||
QuadricType bq;
|
||||
// Border quadric record the squared distance from the plane orthogonal to the face and passing
|
||||
// through the edge.
|
||||
borderPlane.SetDirection(facePlane.Direction() ^ ( (*fi).V1(j)->cP() - (*fi).V(j)->cP() ).normalized());
|
||||
if( (*fi).IsB(j) ) borderPlane.SetDirection(borderPlane.Direction()* (ScalarType)(pp->BoundaryWeight )); // amplify border planes
|
||||
else borderPlane.SetDirection(borderPlane.Direction()* (ScalarType)(pp->BoundaryWeight/100.0)); // and consider much less quadric for quality
|
||||
borderPlane.SetOffset(borderPlane.Direction().dot((*fi).V(j)->cP()));
|
||||
bq.ByPlane(borderPlane);
|
||||
|
||||
if( (*fi).V (j)->IsW() ) QH::Qd((*fi).V (j)) += bq;
|
||||
if( (*fi).V1(j)->IsW() ) QH::Qd((*fi).V1(j)) += bq;
|
||||
}
|
||||
}
|
||||
|
||||
if(pp->ScaleIndependent)
|
||||
{
|
||||
vcg::tri::UpdateBounding<TriMeshType>::Box(m);
|
||||
//Make all quadric independent from mesh size
|
||||
pp->ScaleFactor = 1e8*pow(1.0/m.bbox.Diag(),6); // scaling factor
|
||||
//pp->ScaleFactor *=pp->ScaleFactor ;
|
||||
//pp->ScaleFactor *=pp->ScaleFactor ;
|
||||
//printf("Scale factor =%f\n",pp->ScaleFactor );
|
||||
//printf("bb (%5.2f %5.2f %5.2f)-(%5.2f %5.2f %5.2f) Diag %f\n",m.bbox.min[0],m.bbox.min[1],m.bbox.min[2],m.bbox.max[0],m.bbox.max[1],m.bbox.max[2],m.bbox.Diag());
|
||||
vcg::tri::UpdateBounding<TriMeshType>::Box(m);
|
||||
//Make all quadric independent from mesh size
|
||||
pp->ScaleFactor = 1e8*pow(1.0/m.bbox.Diag(),6); // scaling factor
|
||||
}
|
||||
}
|
||||
|
||||
if(pp->QualityWeight) // we map quality range into a squared 01 and than this into the 1..QualityWeightFactor range
|
||||
{
|
||||
float minQ, maxQ;
|
||||
tri::Stat<TriMeshType>::ComputePerVertexQualityMinMax(m,minQ,maxQ);
|
||||
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||||
if( ! (*vi).IsD() && (*vi).IsW())
|
||||
{
|
||||
const double quality01squared = pow((vi->Q()-minQ)/(maxQ-minQ),2.0);
|
||||
QH::Qd(*vi) *= 1.0 + quality01squared * (pp->QualityWeightFactor-1.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//
|
||||
|
@ -595,28 +535,28 @@ public:
|
|||
//
|
||||
CoordType ComputeMinimal()
|
||||
{
|
||||
typename TriMeshType::VertexType * v[2];
|
||||
v[0] = this->pos.V(0);
|
||||
v[1] = this->pos.V(1);
|
||||
QuadricType q=QH::Qd(v[0]);
|
||||
q+=QH::Qd(v[1]);
|
||||
|
||||
Point3<QuadricType::ScalarType> x;
|
||||
|
||||
bool rt=q.Minimum(x);
|
||||
if(!rt) { // if the computation of the minimum fails we choose between the two edge points and the middle one.
|
||||
Point3<QuadricType::ScalarType> x0=Point3d::Construct(v[0]->P());
|
||||
Point3<QuadricType::ScalarType> x1=Point3d::Construct(v[1]->P());
|
||||
x.Import((v[0]->P()+v[1]->P())/2);
|
||||
double qvx=q.Apply(x);
|
||||
double qv0=q.Apply(x0);
|
||||
double qv1=q.Apply(x1);
|
||||
if(qv0<qvx) x=x0;
|
||||
if(qv1<qvx && qv1<qv0) x=x1;
|
||||
}
|
||||
|
||||
return CoordType::Construct(x);
|
||||
}
|
||||
typename TriMeshType::VertexType * v[2];
|
||||
v[0] = this->pos.V(0);
|
||||
v[1] = this->pos.V(1);
|
||||
QuadricType q=QH::Qd(v[0]);
|
||||
q+=QH::Qd(v[1]);
|
||||
|
||||
Point3<QuadricType::ScalarType> x;
|
||||
|
||||
bool rt=q.Minimum(x);
|
||||
if(!rt) { // if the computation of the minimum fails we choose between the two edge points and the middle one.
|
||||
Point3<QuadricType::ScalarType> x0=Point3d::Construct(v[0]->P());
|
||||
Point3<QuadricType::ScalarType> x1=Point3d::Construct(v[1]->P());
|
||||
x.Import((v[0]->P()+v[1]->P())/2);
|
||||
double qvx=q.Apply(x);
|
||||
double qv0=q.Apply(x0);
|
||||
double qv1=q.Apply(x1);
|
||||
if(qv0<qvx) x=x0;
|
||||
if(qv1<qvx && qv1<qv0) x=x1;
|
||||
}
|
||||
|
||||
return CoordType::Construct(x);
|
||||
}
|
||||
//
|
||||
//
|
||||
|
||||
|
|
Loading…
Reference in New Issue