Moved delaunay mesh creation function from voronoi remesher to voronoi processing

Added better runtime info (by callback use)
This commit is contained in:
Paolo Cignoni 2020-02-13 19:00:30 +01:00
parent d3b9aa83c1
commit 74c7b308ed
2 changed files with 158 additions and 151 deletions

View File

@ -82,6 +82,8 @@ struct VoronoiProcessingParameter
float collapseShortEdgePerc = 0.01f;
bool geodesicRelaxFlag= true;
CallBackPos *lcb=DummyCallBackPos;
};
template <class MeshType, class DistanceFunctor = EuclideanDistance<MeshType> >
@ -97,7 +99,7 @@ class VoronoiProcessing
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FaceContainer FaceContainer;
typedef typename tri::Geodesic<MeshType>::VertDist VertDist;
typedef typename face::Pos<FaceType> PosType;
public:
static math::MarsenneTwisterRNG &RandomGenerator()
@ -1118,7 +1120,7 @@ static bool GeodesicRelax(MeshType &m, std::vector<VertexType *> &seedVec, std::
tri::UpdateColor<MeshType>::PerVertexQualityRamp(m);
// Search the local maxima for each region and use them as new seeds
std::pair<float,VertexPointer> zz(0.0f,static_cast<VertexPointer>(NULL));
std::pair<float,VertexPointer> zz(0.0f,nullptr);
std::vector< std::pair<float,VertexPointer> > seedMaximaVec(m.vert.size(),zz);
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
@ -1193,8 +1195,7 @@ static void MarkVertexVectorAsFixed(MeshType &m, std::vector<VertexType *> &vert
static int RestrictedVoronoiRelaxing(MeshType &m, std::vector<CoordType> &seedPosVec,
std::vector<bool> &fixedVec,
int relaxStep,
VoronoiProcessingParameter &vpp,
vcg::CallBackPos *cb=0)
VoronoiProcessingParameter &vpp)
{
PerVertexFloatHandle area = tri::Allocator<MeshType>:: template GetPerVertexAttribute<float> (m,"area");
@ -1213,7 +1214,7 @@ static int RestrictedVoronoiRelaxing(MeshType &m, std::vector<CoordType> &seedPo
ScalarType perturb = m.bbox.Diag()*vpp.seedPerturbationAmount;
for(i=0;i<relaxStep;++i)
{
if(cb) cb(i*100/relaxStep,"RestrictedVoronoiRelaxing ");
vpp.lcb(i*100/relaxStep,StrFormat("RestrictedVoronoiRelaxing %i on %i",i,relaxStep));
// Kdtree for the seeds must be rebuilt at each step;
VectorConstDataWrapper<std::vector<CoordType> > vdw(seedPosVec);
KdTree<ScalarType> seedTree(vdw);
@ -1656,6 +1657,7 @@ static void PreprocessForVoronoi(MeshType &m, ScalarType radius,
for(int i=0;i<maxSubDiv;++i)
{
vpp.lcb(0,StrFormat("Subdividing %i vn %i",i,m.vn));
bool ret = tri::Refine<MeshType, MidPointType >(m,mid,min(edgeLen*2.0f,radius/vpp.refinementRatio));
if(!ret) break;
}
@ -1788,6 +1790,145 @@ static void RelaxRefineTriangulationLaplacian(MeshType &m, MeshType &delaMesh, i
}
for(int i=origVertNum;i<delaMesh.vn;++i) delaMesh.vert[i].C()=Color4b::LightBlue;
}
static void ConvertDelaunayTriangulationExtendedToMesh(MeshType &m,
MeshType &outMesh,
std::vector<VertexType *> &seedVec)
{
RequirePerVertexAttribute(m ,"sources");
RequireCompactness(m);
RequireVFAdjacency(m);
auto sources = Allocator<MeshType>::template GetPerVertexAttribute<VertexPointer> (m,"sources");
outMesh.Clear();
UpdateTopology<MeshType>::FaceFace(m);
UpdateFlags<MeshType>::FaceBorderFromFF(m);
std::map<VertexPointer, int> seedMap; // It says if a given vertex of m is a seed (and its index in seedVec)
BuildSeedMap(m, seedVec, seedMap);
std::vector<FacePointer> innerCornerVec, // Faces adjacent to three different regions
borderCornerVec; // Faces that are on the border and adjacent to at least two regions.
GetFaceCornerVec(m, sources, innerCornerVec, borderCornerVec);
// First add all the needed vertices: seeds and corners
for(size_t i=0;i<seedVec.size();++i)
{
Allocator<MeshType>::AddVertex(outMesh, seedVec[i]->P(), vcg::Color4b::White);
}
// Now just add one face for each inner corner
for(size_t i=0; i<innerCornerVec.size(); ++i)
{
VertexPointer s0 = sources[innerCornerVec[i]->V(0)];
VertexPointer s1 = sources[innerCornerVec[i]->V(1)];
VertexPointer s2 = sources[innerCornerVec[i]->V(2)];
assert ( (s0!=s1) && (s0!=s2) && (s1!=s2) );
VertexPointer v0 = & outMesh.vert[seedMap[s0]];
VertexPointer v1 = & outMesh.vert[seedMap[s1]];
VertexPointer v2 = & outMesh.vert[seedMap[s2]];
Allocator<MeshType>::AddFace(outMesh, v0, v1, v2);
}
// Now loop around the borders and find the missing delaunay triangles
// select border seed vertices only and pick one
UpdateFlags<MeshType>::VertexBorderFromFaceAdj(m);
UpdateFlags<MeshType>::VertexClearS(m);
UpdateFlags<MeshType>::VertexClearV(m);
std::vector<VertexPointer> borderSeeds;
for (auto & s : seedVec)
{
if (s->IsB())
{
s->SetS();
borderSeeds.emplace_back(s);
}
}
for (VertexPointer startBorderVertex : borderSeeds)
{
if (startBorderVertex->IsV())
{
continue;
}
// unvisited border seed found
// put the pos on the border
PosType pos(startBorderVertex->VFp(), startBorderVertex->VFi());
do {
pos.NextE();
} while (!pos.IsBorder() || (pos.VInd() != pos.E()));
// check all border edges between each consecutive border seeds pair
do {
std::vector<VertexPointer> edgeVoroVertices(1, sources[pos.V()]);
// among all sources found
do {
pos.NextB();
VertexPointer source = sources[pos.V()];
if (edgeVoroVertices.empty() || edgeVoroVertices.back() != source)
{
edgeVoroVertices.push_back(source);
}
} while (!pos.V()->IsS());
pos.V()->SetV();
// assert(edgeVoroVertices.size() >= 2);
if (edgeVoroVertices.size() >= 3)
{
std::vector<VertexPointer> v;
for (size_t i=0; i<edgeVoroVertices.size(); i++)
{
v.push_back(&outMesh.vert[seedMap[edgeVoroVertices[i]]]);
}
// also handles N>3 vertices holes
for (size_t i=0; i<edgeVoroVertices.size()-2; i++)
{
Allocator<MeshType>::AddFace(outMesh, v[0],v[i+1],v[i+2]);
}
// if (edgeVoroVertices.size() > 3)
// {
// std::cout << "Weird case: " << edgeVoroVertices.size() << " voroseeds on one border" << std::endl;
// }
}
// // add face if 3 different voronoi regions are crossed by the edge
// if (edgeVoroVertices.size() == 3)
// {
// VertexPointer v0 = & outMesh.vert[seedMap[edgeVoroVertices[0]]];
// VertexPointer v1 = & outMesh.vert[seedMap[edgeVoroVertices[1]]];
// VertexPointer v2 = & outMesh.vert[seedMap[edgeVoroVertices[2]]];
// Allocator<MeshType>::AddFace(outMesh, v0,v1,v2);
// }
// else
// {
// std::cout << "Weird case!! " << edgeVoroVertices.size() << " voroseeds on one border" << std::endl;
// if (edgeVoroVertices.size() == 4)
// {
// VertexPointer v0 = & outMesh.vert[seedMap[edgeVoroVertices[0]]];
// VertexPointer v1 = & outMesh.vert[seedMap[edgeVoroVertices[1]]];
// VertexPointer v2 = & outMesh.vert[seedMap[edgeVoroVertices[2]]];
// VertexPointer v3 = & outMesh.vert[seedMap[edgeVoroVertices[3]]];
// Allocator<MeshType>::AddFace(outMesh, v0,v1,v2);
// Allocator<MeshType>::AddFace(outMesh, v0,v2,v3);
// }
// }
} while ((pos.V() != startBorderVertex));
}
Clean<MeshType>::RemoveUnreferencedVertex(outMesh);
Allocator<MeshType>::CompactVertexVector(outMesh);
}
}; // end class VoronoiProcessing
} // end namespace tri

View File

@ -45,11 +45,11 @@
//#define DEBUG_VORO 1
//#include <QElapsedTimer>
#ifdef DEBUG_VORO
#include <wrap/io_trimesh/export.h>
#include <QString>
#include <QElapsedTimer>
#endif
namespace vcg {
@ -62,6 +62,7 @@ class VoroEdgeMeshAux
class EUsedTypes : public vcg::UsedTypes<vcg::Use<EmVertexType>::AsVertexType,
vcg::Use<EmEdgeType>::AsEdgeType> {};
class EmVertexType : public vcg::Vertex<EUsedTypes
,vcg::vertex::Normal3d
, vcg::vertex::Coord3d
, vcg::vertex::BitFlags
, vcg::vertex::VEAdj> {};
@ -133,12 +134,12 @@ protected:
}
public:
static const int VoroRelaxationStep = 40;
static const int VoroRelaxationStep = 10;
///
/// \brief Remesh the main function that remeshes a mesh preserving creases.
/// \param original the mesh
/// \param samplingRadius is the sampling ragius for remeshing
/// \param samplingRadius is the sampling radius for remeshing
/// \param borderCreaseAngleDeg is the angle treshold for preserving corner points on the mesh boundary
/// \param internalCreaseAngleDeg is the angle treshold for preserving creases on the mesh surface (if this value is < 0 it is set to borderCreaseAngleDeg)
/// \return the remeshed mesh
@ -246,6 +247,7 @@ public:
}
protected:
static bool debugCallBack(const int pos, const char * str) { printf("Processing: %s \n",str); fflush(stdout); return true;}
///
/// \brief RemeshOneCC the function that remeshes a single connected component mesh preserving its boundary (consistently for eventually adjacent meshes).
@ -355,7 +357,9 @@ protected:
// refine to obtain a base mesh
VoronoiProcessingParameter vpp;
vpp.refinementRatio = 8.0f;
vpp.refinementRatio = 5.0f;
vpp.lcb = debugCallBack;
Voronoi::PreprocessForVoronoi(baseMesh, samplingRadius, vpp);
// Poisson sampling preserving border
@ -406,7 +410,7 @@ protected:
pp.preGenMesh = &poissonEdgeMesh;
pp.preGenFlag = true;
pp.bestSampleChoiceFlag = true;
pp.bestSamplePoolSize = 100;
pp.bestSamplePoolSize = 10;
pp.randomSeed = 7;
SurfaceFixSampler::PoissonDiskPruning(fix_sampler, montecarloMesh, samplingRadius, pp);
@ -461,7 +465,7 @@ protected:
// traditional
// Voronoi::ConvertDelaunayTriangulationToMesh(baseMesh, *finalMeshPtr, seedVertexVec, false);
// border-preserving
ThisType::ConvertDelaunayTriangulationExtendedToMesh(baseMesh, *finalMeshPtr, seedVertexVec);
Voronoi::ConvertDelaunayTriangulationExtendedToMesh(baseMesh, *finalMeshPtr, seedVertexVec);
#ifdef DEBUG_VORO
io::ExporterPLY<MeshType>::Save(*finalMeshPtr, QString("voroMesh_%1.ply").arg(idx).toStdString().c_str());
@ -623,145 +627,7 @@ protected:
}
}
static void ConvertDelaunayTriangulationExtendedToMesh(MeshType &m,
MeshType &outMesh,
std::vector<VertexType *> &seedVec)
{
typedef VoronoiProcessing<MeshType> Voronoi;
RequirePerVertexAttribute(m ,"sources");
RequireCompactness(m);
RequireVFAdjacency(m);
auto sources = Allocator<MeshType>::template GetPerVertexAttribute<VertexPointer> (m,"sources");
outMesh.Clear();
UpdateTopology<MeshType>::FaceFace(m);
UpdateFlags<MeshType>::FaceBorderFromFF(m);
std::map<VertexPointer, int> seedMap; // It says if a given vertex of m is a seed (and its index in seedVec)
Voronoi::BuildSeedMap(m, seedVec, seedMap);
std::vector<FacePointer> innerCornerVec, // Faces adjacent to three different regions
borderCornerVec; // Faces that are on the border and adjacent to at least two regions.
Voronoi::GetFaceCornerVec(m, sources, innerCornerVec, borderCornerVec);
// First add all the needed vertices: seeds and corners
for(size_t i=0;i<seedVec.size();++i)
{
Allocator<MeshType>::AddVertex(outMesh, seedVec[i]->P(), vcg::Color4b::White);
}
// Now just add one face for each inner corner
std::vector<std::array<VertexPointer, 3> > toAdd;
for(size_t i=0; i<innerCornerVec.size(); ++i)
{
VertexPointer s0 = sources[innerCornerVec[i]->V(0)];
VertexPointer s1 = sources[innerCornerVec[i]->V(1)];
VertexPointer s2 = sources[innerCornerVec[i]->V(2)];
assert ( (s0!=s1) && (s0!=s2) && (s1!=s2) );
VertexPointer v0 = & outMesh.vert[seedMap[s0]];
VertexPointer v1 = & outMesh.vert[seedMap[s1]];
VertexPointer v2 = & outMesh.vert[seedMap[s2]];
Allocator<MeshType>::AddFace(outMesh, v0, v1, v2);
}
// Now loop around the borders and find the missing delaunay triangles
// select border seed vertices only and pick one
UpdateFlags<Mesh>::VertexBorderFromFaceAdj(m);
UpdateFlags<Mesh>::VertexClearS(m);
UpdateFlags<Mesh>::VertexClearV(m);
std::vector<VertexPointer> borderSeeds;
for (auto & s : seedVec)
{
if (s->IsB())
{
s->SetS();
borderSeeds.emplace_back(s);
}
}
for (VertexPointer startBorderVertex : borderSeeds)
{
if (startBorderVertex->IsV())
{
continue;
}
// unvisited border seed found
// put the pos on the border
PosType pos(startBorderVertex->VFp(), startBorderVertex->VFi());
do {
pos.NextE();
} while (!pos.IsBorder() || (pos.VInd() != pos.E()));
// check all border edges between each consecutive border seeds pair
do {
std::vector<VertexPointer> edgeVoroVertices(1, sources[pos.V()]);
// among all sources found
do {
pos.NextB();
VertexPointer source = sources[pos.V()];
if (edgeVoroVertices.empty() || edgeVoroVertices.back() != source)
{
edgeVoroVertices.push_back(source);
}
} while (!pos.V()->IsS());
pos.V()->SetV();
// assert(edgeVoroVertices.size() >= 2);
if (edgeVoroVertices.size() >= 3)
{
std::vector<VertexPointer> v;
for (size_t i=0; i<edgeVoroVertices.size(); i++)
{
v.push_back(&outMesh.vert[seedMap[edgeVoroVertices[i]]]);
}
// also handles N>3 vertices holes
for (size_t i=0; i<edgeVoroVertices.size()-2; i++)
{
Allocator<MeshType>::AddFace(outMesh, v[0],v[i+1],v[i+2]);
}
// if (edgeVoroVertices.size() > 3)
// {
// std::cout << "Weird case: " << edgeVoroVertices.size() << " voroseeds on one border" << std::endl;
// }
}
// // add face if 3 different voronoi regions are crossed by the edge
// if (edgeVoroVertices.size() == 3)
// {
// VertexPointer v0 = & outMesh.vert[seedMap[edgeVoroVertices[0]]];
// VertexPointer v1 = & outMesh.vert[seedMap[edgeVoroVertices[1]]];
// VertexPointer v2 = & outMesh.vert[seedMap[edgeVoroVertices[2]]];
// Allocator<MeshType>::AddFace(outMesh, v0,v1,v2);
// }
// else
// {
// std::cout << "Weird case!! " << edgeVoroVertices.size() << " voroseeds on one border" << std::endl;
// if (edgeVoroVertices.size() == 4)
// {
// VertexPointer v0 = & outMesh.vert[seedMap[edgeVoroVertices[0]]];
// VertexPointer v1 = & outMesh.vert[seedMap[edgeVoroVertices[1]]];
// VertexPointer v2 = & outMesh.vert[seedMap[edgeVoroVertices[2]]];
// VertexPointer v3 = & outMesh.vert[seedMap[edgeVoroVertices[3]]];
// Allocator<MeshType>::AddFace(outMesh, v0,v1,v2);
// Allocator<MeshType>::AddFace(outMesh, v0,v2,v3);
// }
// }
} while ((pos.V() != startBorderVertex));
}
Clean<MeshType>::RemoveUnreferencedVertex(outMesh);
Allocator<MeshType>::CompactVertexVector(outMesh);
}
///
/// \brief The FixSampler class is used with poisson disk pruning to preserve selected vertices and