First Version of the Voronoi Atlas parametrizator.
This commit is contained in:
parent
539de75614
commit
776fbe45a0
|
@ -0,0 +1,206 @@
|
|||
#ifndef VORONOI_ATLAS_H
|
||||
#define VORONOI_ATLAS_H
|
||||
#include<vcg/complex/algorithms/parametrization/poisson_solver.h>
|
||||
#include<vcg/complex/algorithms/parametrization/uv_utils.h>
|
||||
#include<vcg/complex/algorithms/parametrization/distortion.h>
|
||||
#include<vcg/space/poly_packer.h>
|
||||
#include<vcg/complex/algorithms/update/texture.h>
|
||||
#include<vcg/complex/algorithms/point_sampling.h>
|
||||
#include<vcg/complex/algorithms/voronoi_clustering.h>
|
||||
|
||||
namespace vcg {
|
||||
namespace tri {
|
||||
|
||||
template <class MeshType>
|
||||
class VoronoiAtlas
|
||||
{
|
||||
//private:
|
||||
public:
|
||||
class VoroEdge;
|
||||
class VoroFace;
|
||||
class VoroVertex;
|
||||
struct VoroUsedTypes : public UsedTypes< Use<VoroVertex> ::template AsVertexType,
|
||||
Use<VoroEdge> ::template AsEdgeType,
|
||||
Use<VoroFace> ::template AsFaceType>{};
|
||||
|
||||
class VoroVertex : public Vertex< VoroUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::TexCoord2f, vertex::VFAdj , vertex::Qualityf, vertex::Color4b, vertex::BitFlags >{};
|
||||
class VoroFace : public Face< VoroUsedTypes, face::VertexRef, face::BitFlags, face::FFAdj ,face::VFAdj , face::WedgeTexCoord2f> {};
|
||||
class VoroEdge : public Edge< VoroUsedTypes>{};
|
||||
class VoroMesh : public tri::TriMesh< std::vector<VoroVertex>, std::vector<VoroFace> , std::vector<VoroEdge> > {};
|
||||
|
||||
|
||||
|
||||
typedef typename VoroMesh::FaceIterator FaceIterator;
|
||||
typedef typename VoroMesh::VertexType VertexType;
|
||||
typedef typename VoroMesh::FaceType FaceType;
|
||||
|
||||
static void CollectUVBorder(VoroMesh *rm, std::vector<Point2f> &uvBorder)
|
||||
{
|
||||
tri::UpdateTopology<VoroMesh>::FaceFace(*rm);
|
||||
tri::UpdateFlags<VoroMesh>::FaceClearV(*rm);
|
||||
for(FaceIterator fi=rm->face.begin();fi!=rm->face.end();++fi)
|
||||
{
|
||||
for(int j=0;j<3;++j)
|
||||
if(face::IsBorder(*fi,j) && !(fi->IsV()))
|
||||
{
|
||||
face::Pos<FaceType> pp(&*fi,j,fi->V(j));
|
||||
assert(pp.IsBorder());
|
||||
face::Pos<FaceType> startPos = pp;
|
||||
do
|
||||
{
|
||||
uvBorder.push_back( pp.F()->WT(pp.VInd()).P() );
|
||||
pp.F()->SetV();
|
||||
pp.NextB();
|
||||
} while(pp != startPos);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// take a mesh and rescale its uv so that they are in the 0..1 range
|
||||
static void RegularizeTexArea(VoroMesh &m)
|
||||
{
|
||||
float areaTex=0;
|
||||
float areaGeo=0;
|
||||
|
||||
vcg::Box2f UVBox = tri::UV_Utils<VoroMesh>::PerWedgeUVBox(m);
|
||||
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
{
|
||||
areaTex+= fabs((fi->WT(1).P() - fi->WT(0).P()) ^ (fi->WT(2).P() - fi->WT(0).P())) ;
|
||||
areaGeo+= DoubleArea(*fi);
|
||||
}
|
||||
|
||||
float ratio = sqrt(areaGeo/areaTex);
|
||||
|
||||
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
{
|
||||
for(int j=0;j<3;++j)
|
||||
fi->WT(j).P() = (fi->WT(j).P()-UVBox.min) *ratio;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
// Main parametrization function:
|
||||
// it takes a startMesh, copy it and
|
||||
|
||||
|
||||
static void Build( MeshType &startMesh, MeshType ¶Mesh, int sampleNum, bool overlap)
|
||||
{
|
||||
VoroMesh m; // the mesh used for the processing is a copy of the passed one.
|
||||
tri::Append<VoroMesh, MeshType>::Mesh(m, startMesh);
|
||||
tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m);
|
||||
tri::Allocator<VoroMesh>::CompactVertexVector(m);
|
||||
tri::Allocator<VoroMesh>::CompactFaceVector(m);
|
||||
|
||||
tri::UpdateBounding<VoroMesh>::Box(m);
|
||||
std::vector<VoroMesh *> meshRegionVec;
|
||||
std::vector< std::vector<Point2f> > uvBorders;
|
||||
do
|
||||
{
|
||||
std::vector<Point3f> PoissonSamples;
|
||||
float diskRadius=0;
|
||||
tri::PoissonSampling(m,PoissonSamples,sampleNum,diskRadius);
|
||||
printf("Sampling created a new mesh of %lu points\n",PoissonSamples.size());
|
||||
std::vector<VertexType *> seedVec;
|
||||
tri::VoronoiProcessing<VoroMesh>::SeedToVertexConversion(m,PoissonSamples,seedVec);
|
||||
tri::UpdateTopology<VoroMesh>::VertexFace(m);
|
||||
tri::VoronoiProcessing<VoroMesh>::ComputePerVertexSources(m,seedVec);
|
||||
tri::VoronoiProcessing<VoroMesh>::FaceAssociateRegion(m);
|
||||
tri::VoronoiProcessing<VoroMesh>::VoronoiColoring(m,seedVec,true);
|
||||
tri::io::ExporterPLY<VoroMesh>::Save(m,"dd.ply",tri::io::Mask::IOM_VERTCOLOR);
|
||||
|
||||
std::vector<VoroMesh *> badRegionVec;
|
||||
|
||||
for(size_t i=0; i<seedVec.size();++i)
|
||||
{
|
||||
VoroMesh *rm = new VoroMesh();
|
||||
int selCnt = tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,seedVec[i]);
|
||||
assert(selCnt>0);
|
||||
if(overlap){
|
||||
tri::UpdateSelection<VoroMesh>::VertexFromFaceLoose(m);
|
||||
tri::UpdateSelection<VoroMesh>::FaceFromVertexLoose(m);
|
||||
}
|
||||
tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true);
|
||||
char buf[100]; sprintf(buf,"reg%02i.ply",i);
|
||||
tri::io::ExporterPLY<VoroMesh>::Save(*rm,buf,tri::io::Mask::IOM_VERTCOLOR|tri::io::Mask::IOM_WEDGTEXCOORD );
|
||||
|
||||
tri::PoissonSolver<VoroMesh> PS(*rm);
|
||||
if(PS.IsFeaseable())
|
||||
{
|
||||
PS.Init();
|
||||
PS.FixDefaultVertices();
|
||||
PS.SolvePoisson(false);
|
||||
tri::UpdateTexture<VoroMesh>::WedgeTexFromVertexTex(*rm);
|
||||
RegularizeTexArea(*rm);
|
||||
|
||||
std::vector<Point2f> uvBorder;
|
||||
CollectUVBorder(rm,uvBorder);
|
||||
meshRegionVec.push_back(rm);
|
||||
uvBorders.push_back(uvBorder);
|
||||
} else
|
||||
{
|
||||
qDebug("ACH - mesh %i is NOT homeomorphic to a disk\n",i);
|
||||
badRegionVec.push_back(rm);
|
||||
}
|
||||
}
|
||||
|
||||
VoroMesh *rm = new VoroMesh();
|
||||
tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,0);
|
||||
tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true);
|
||||
|
||||
if(rm->fn>0)
|
||||
{
|
||||
qDebug("ACH - unreached faces %i fn\n",rm->fn);
|
||||
badRegionVec.push_back(rm);
|
||||
}
|
||||
m.Clear();
|
||||
sampleNum = 10;
|
||||
if(!badRegionVec.empty())
|
||||
{
|
||||
for(size_t i=0;i<badRegionVec.size();++i)
|
||||
if(badRegionVec[i]->fn>10)
|
||||
tri::Append<VoroMesh,VoroMesh>::Mesh(m, *badRegionVec[i], false);
|
||||
|
||||
// tri::io::ExporterPLY<VoroMesh>::Save(m,"buf.ply",tri::io::Mask::IOM_VERTCOLOR|tri::io::Mask::IOM_WEDGTEXCOORD );
|
||||
|
||||
tri::Clean<VoroMesh>::RemoveDuplicateFace(m);
|
||||
tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m);
|
||||
tri::UpdateNormals<VoroMesh>::PerVertexPerFace(m);
|
||||
tri::Allocator<VoroMesh>::CompactVertexVector(m);
|
||||
tri::Allocator<VoroMesh>::CompactFaceVector(m);
|
||||
qDebug("Still %i faces (from %i regions) to process\n",m.fn,badRegionVec.size());
|
||||
}
|
||||
} while (m.fn>0);
|
||||
// tri::io::ExporterPLY<VoroMesh>::Save(m,"vorocolor.ply",tri::io::Mask::IOM_VERTCOLOR);
|
||||
|
||||
std::vector<Similarity2f> trVec;
|
||||
Point2f finalSize;
|
||||
PolyPacker<float>::PackAsObjectOrientedRect(uvBorders,Point2f(1024.0f,1024.0f),trVec,finalSize);
|
||||
// loop again over all the patches
|
||||
for(size_t i=0; i<meshRegionVec.size();++i)
|
||||
{
|
||||
VoroMesh *rm = meshRegionVec[i];
|
||||
for(FaceIterator fi=rm->face.begin();fi!=rm->face.end();++fi)
|
||||
{
|
||||
for(int j=0;j<3;++j)
|
||||
{
|
||||
Point2f pp(fi->WT(j).U(),fi->WT(j).V());
|
||||
Point2f newpp=trVec[i]*pp;
|
||||
fi->WT(j).U()=newpp[0]/1024.0f;
|
||||
fi->WT(j).V()=newpp[1]/1024.0f;
|
||||
}
|
||||
}
|
||||
|
||||
char buf[32]; sprintf(buf,"region_aa_%03i.ply",i);
|
||||
// tri::io::ExporterPLY<VoroMesh>::Save(*rm,buf,tri::io::Mask::IOM_VERTCOLOR|tri::io::Mask::IOM_WEDGTEXCOORD );
|
||||
tri::Append<MeshType,VoroMesh>::Mesh(paraMesh, *rm, false);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // end namespace vcg
|
||||
} // end namespace tri
|
||||
|
||||
|
||||
#endif // VORONOI_ATLAS_H
|
|
@ -97,15 +97,18 @@ static void SeedToVertexConversion(MeshType &m,std::vector<CoordType> &seedPVec,
|
|||
}
|
||||
|
||||
typedef typename MeshType::template PerVertexAttributeHandle<VertexPointer> PerVertexPointerHandle;
|
||||
typedef typename MeshType::template PerFaceAttributeHandle<VertexPointer> PerFacePointerHandle;
|
||||
|
||||
static void ComputePerVertexSources(MeshType &m, std::vector<VertexType *> &seedVec)
|
||||
{
|
||||
tri::Geo<MeshType> g;
|
||||
VertexPointer farthest;
|
||||
tri::Allocator<MeshType>::DeletePerVertexAttribute(m,"sources"); // delete any conflicting handle regardless of the type...
|
||||
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template AddPerVertexAttribute<VertexPointer> (m,"sources");
|
||||
assert(tri::Allocator<MeshType>::IsValidHandle(m,sources));
|
||||
g.FarthestVertex(m,seedVec,farthest,std::numeric_limits<ScalarType>::max(),&sources);
|
||||
PerVertexPointerHandle vertexSources = tri::Allocator<MeshType>:: template AddPerVertexAttribute<VertexPointer> (m,"sources");
|
||||
tri::Allocator<MeshType>::DeletePerFaceAttribute(m,"sources"); // delete any conflicting handle regardless of the type...
|
||||
PerFacePointerHandle faceSources = tri::Allocator<MeshType>:: template AddPerFaceAttribute<VertexPointer> (m,"sources");
|
||||
assert(tri::Allocator<MeshType>::IsValidHandle(m,vertexSources));
|
||||
g.FarthestVertex(m,seedVec,farthest,std::numeric_limits<ScalarType>::max(),&vertexSources);
|
||||
}
|
||||
|
||||
static void VoronoiColoring(MeshType &m, std::vector<VertexType *> &seedVec, bool frontierFlag=true)
|
||||
|
@ -127,24 +130,102 @@ static void VoronoiColoring(MeshType &m, std::vector<VertexType *> &seedVec, boo
|
|||
tri::UpdateColor<MeshType>::VertexQualityRamp(m);
|
||||
}
|
||||
|
||||
// Given a seed, it selects all the faces such with at least one vertex sourced by the passed VertexPointer.
|
||||
// Faces are selected more than once.
|
||||
static void SelectRegion(MeshType &m, VertexPointer vp)
|
||||
|
||||
static void FaceAssociateRegion(MeshType &m)
|
||||
{
|
||||
PerFacePointerHandle faceSources = tri::Allocator<MeshType>:: template GetPerFaceAttribute<VertexPointer> (m,"sources");
|
||||
PerVertexPointerHandle vertexSources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
||||
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
{
|
||||
faceSources[fi]=0;
|
||||
std::vector<VertexPointer> vp(3);
|
||||
for(int i=0;i<3;++i) vp[i]=vertexSources[fi->V(i)];
|
||||
|
||||
for(int i=0;i<3;++i) // First try to assoiciate to the most reached vertex
|
||||
{
|
||||
if(vp[0]==vp[1] && vp[0]==vp[2]) faceSources[fi] = vp[0];
|
||||
else
|
||||
{
|
||||
if(vp[0]==vp[1] && vp[0]->Q()< vp[2]->Q()) faceSources[fi] = vp[0];
|
||||
if(vp[0]==vp[2] && vp[0]->Q()< vp[1]->Q()) faceSources[fi] = vp[0];
|
||||
if(vp[1]==vp[2] && vp[1]->Q()< vp[0]->Q()) faceSources[fi] = vp[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
tri::UpdateTopology<MeshType>::FaceFace(m);
|
||||
int unassCnt=0;
|
||||
do
|
||||
{
|
||||
unassCnt=0;
|
||||
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
{
|
||||
if(faceSources[fi]==0)
|
||||
{
|
||||
std::vector<VertexPointer> vp(3);
|
||||
for(int i=0;i<3;++i)
|
||||
vp[i]=faceSources[fi->FFp(i)];
|
||||
|
||||
int cnt[3]={0,0,0};
|
||||
if(vp[0]!=0 && (vp[0]==vp[1] || vp[0]==vp[2]))
|
||||
faceSources[fi] = vp[0];
|
||||
else if(vp[1]!=0 && (vp[1]==vp[2]))
|
||||
faceSources[fi] = vp[1];
|
||||
else
|
||||
faceSources[fi] = std::max(vp[0],std::max(vp[1],vp[2]));
|
||||
if(faceSources[fi]==0) unassCnt++;
|
||||
}
|
||||
}
|
||||
}
|
||||
while(unassCnt>0);
|
||||
}
|
||||
|
||||
static int FaceSelectAssociateRegion(MeshType &m, VertexPointer vp)
|
||||
{
|
||||
PerFacePointerHandle sources = tri::Allocator<MeshType>:: template GetPerFaceAttribute<VertexPointer> (m,"sources");
|
||||
assert(tri::Allocator<MeshType>::IsValidHandle(m,sources));
|
||||
tri::UpdateSelection<MeshType>::FaceClear(m);
|
||||
tri::UpdateSelection<MeshType>::VertexClear(m);
|
||||
int selCnt=0;
|
||||
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
{
|
||||
if(sources[fi]==vp)
|
||||
{
|
||||
fi->SetS();
|
||||
++selCnt;
|
||||
}
|
||||
}
|
||||
return selCnt;
|
||||
}
|
||||
|
||||
// Given a seed, it selects all the faces that have at least one vertex sourced by the given VertexPointer.
|
||||
// vp can be null (it search for unreached faces...)
|
||||
// returns the number of selected faces;
|
||||
static int FaceSelectRegion(MeshType &m, VertexPointer vp)
|
||||
{
|
||||
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
||||
assert(tri::Allocator<MeshType>::IsValidHandle(m,sources));
|
||||
tri::UpdateSelection<MeshType>::FaceClear(m);
|
||||
tri::UpdateSelection<MeshType>::VertexClear(m);
|
||||
|
||||
int selCnt=0;
|
||||
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
{
|
||||
if( sources[(*fi).V(0)] == vp ||
|
||||
sources[(*fi).V(1)] == vp ||
|
||||
sources[(*fi).V(2)] == vp)
|
||||
fi->SetS();
|
||||
}
|
||||
tri::UpdateSelection<MeshType>::VertexFromFaceLoose(m);
|
||||
int minInd = 0; float minVal=std::numeric_limits<float>::max();
|
||||
for(int i=0;i<3;++i)
|
||||
{
|
||||
if((*fi).V(i)->Q()<minVal)
|
||||
{
|
||||
minInd=i;
|
||||
minVal=(*fi).V(i)->Q();
|
||||
}
|
||||
}
|
||||
|
||||
if( sources[(*fi).V(minInd)] == vp)
|
||||
{
|
||||
fi->SetS();
|
||||
selCnt++;
|
||||
}
|
||||
}
|
||||
return selCnt;
|
||||
}
|
||||
|
||||
// find the vertexes of frontier faces
|
||||
|
|
Loading…
Reference in New Issue