First Version of the Voronoi Atlas parametrizator.

This commit is contained in:
Paolo Cignoni 2012-07-02 16:41:28 +00:00
parent 539de75614
commit 776fbe45a0
2 changed files with 300 additions and 13 deletions

View File

@ -0,0 +1,206 @@
#ifndef VORONOI_ATLAS_H
#define VORONOI_ATLAS_H
#include<vcg/complex/algorithms/parametrization/poisson_solver.h>
#include<vcg/complex/algorithms/parametrization/uv_utils.h>
#include<vcg/complex/algorithms/parametrization/distortion.h>
#include<vcg/space/poly_packer.h>
#include<vcg/complex/algorithms/update/texture.h>
#include<vcg/complex/algorithms/point_sampling.h>
#include<vcg/complex/algorithms/voronoi_clustering.h>
namespace vcg {
namespace tri {
template <class MeshType>
class VoronoiAtlas
{
//private:
public:
class VoroEdge;
class VoroFace;
class VoroVertex;
struct VoroUsedTypes : public UsedTypes< Use<VoroVertex> ::template AsVertexType,
Use<VoroEdge> ::template AsEdgeType,
Use<VoroFace> ::template AsFaceType>{};
class VoroVertex : public Vertex< VoroUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::TexCoord2f, vertex::VFAdj , vertex::Qualityf, vertex::Color4b, vertex::BitFlags >{};
class VoroFace : public Face< VoroUsedTypes, face::VertexRef, face::BitFlags, face::FFAdj ,face::VFAdj , face::WedgeTexCoord2f> {};
class VoroEdge : public Edge< VoroUsedTypes>{};
class VoroMesh : public tri::TriMesh< std::vector<VoroVertex>, std::vector<VoroFace> , std::vector<VoroEdge> > {};
typedef typename VoroMesh::FaceIterator FaceIterator;
typedef typename VoroMesh::VertexType VertexType;
typedef typename VoroMesh::FaceType FaceType;
static void CollectUVBorder(VoroMesh *rm, std::vector<Point2f> &uvBorder)
{
tri::UpdateTopology<VoroMesh>::FaceFace(*rm);
tri::UpdateFlags<VoroMesh>::FaceClearV(*rm);
for(FaceIterator fi=rm->face.begin();fi!=rm->face.end();++fi)
{
for(int j=0;j<3;++j)
if(face::IsBorder(*fi,j) && !(fi->IsV()))
{
face::Pos<FaceType> pp(&*fi,j,fi->V(j));
assert(pp.IsBorder());
face::Pos<FaceType> startPos = pp;
do
{
uvBorder.push_back( pp.F()->WT(pp.VInd()).P() );
pp.F()->SetV();
pp.NextB();
} while(pp != startPos);
}
}
}
// take a mesh and rescale its uv so that they are in the 0..1 range
static void RegularizeTexArea(VoroMesh &m)
{
float areaTex=0;
float areaGeo=0;
vcg::Box2f UVBox = tri::UV_Utils<VoroMesh>::PerWedgeUVBox(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
areaTex+= fabs((fi->WT(1).P() - fi->WT(0).P()) ^ (fi->WT(2).P() - fi->WT(0).P())) ;
areaGeo+= DoubleArea(*fi);
}
float ratio = sqrt(areaGeo/areaTex);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
for(int j=0;j<3;++j)
fi->WT(j).P() = (fi->WT(j).P()-UVBox.min) *ratio;
}
}
public:
// Main parametrization function:
// it takes a startMesh, copy it and
static void Build( MeshType &startMesh, MeshType &paraMesh, int sampleNum, bool overlap)
{
VoroMesh m; // the mesh used for the processing is a copy of the passed one.
tri::Append<VoroMesh, MeshType>::Mesh(m, startMesh);
tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m);
tri::Allocator<VoroMesh>::CompactVertexVector(m);
tri::Allocator<VoroMesh>::CompactFaceVector(m);
tri::UpdateBounding<VoroMesh>::Box(m);
std::vector<VoroMesh *> meshRegionVec;
std::vector< std::vector<Point2f> > uvBorders;
do
{
std::vector<Point3f> PoissonSamples;
float diskRadius=0;
tri::PoissonSampling(m,PoissonSamples,sampleNum,diskRadius);
printf("Sampling created a new mesh of %lu points\n",PoissonSamples.size());
std::vector<VertexType *> seedVec;
tri::VoronoiProcessing<VoroMesh>::SeedToVertexConversion(m,PoissonSamples,seedVec);
tri::UpdateTopology<VoroMesh>::VertexFace(m);
tri::VoronoiProcessing<VoroMesh>::ComputePerVertexSources(m,seedVec);
tri::VoronoiProcessing<VoroMesh>::FaceAssociateRegion(m);
tri::VoronoiProcessing<VoroMesh>::VoronoiColoring(m,seedVec,true);
tri::io::ExporterPLY<VoroMesh>::Save(m,"dd.ply",tri::io::Mask::IOM_VERTCOLOR);
std::vector<VoroMesh *> badRegionVec;
for(size_t i=0; i<seedVec.size();++i)
{
VoroMesh *rm = new VoroMesh();
int selCnt = tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,seedVec[i]);
assert(selCnt>0);
if(overlap){
tri::UpdateSelection<VoroMesh>::VertexFromFaceLoose(m);
tri::UpdateSelection<VoroMesh>::FaceFromVertexLoose(m);
}
tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true);
char buf[100]; sprintf(buf,"reg%02i.ply",i);
tri::io::ExporterPLY<VoroMesh>::Save(*rm,buf,tri::io::Mask::IOM_VERTCOLOR|tri::io::Mask::IOM_WEDGTEXCOORD );
tri::PoissonSolver<VoroMesh> PS(*rm);
if(PS.IsFeaseable())
{
PS.Init();
PS.FixDefaultVertices();
PS.SolvePoisson(false);
tri::UpdateTexture<VoroMesh>::WedgeTexFromVertexTex(*rm);
RegularizeTexArea(*rm);
std::vector<Point2f> uvBorder;
CollectUVBorder(rm,uvBorder);
meshRegionVec.push_back(rm);
uvBorders.push_back(uvBorder);
} else
{
qDebug("ACH - mesh %i is NOT homeomorphic to a disk\n",i);
badRegionVec.push_back(rm);
}
}
VoroMesh *rm = new VoroMesh();
tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,0);
tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true);
if(rm->fn>0)
{
qDebug("ACH - unreached faces %i fn\n",rm->fn);
badRegionVec.push_back(rm);
}
m.Clear();
sampleNum = 10;
if(!badRegionVec.empty())
{
for(size_t i=0;i<badRegionVec.size();++i)
if(badRegionVec[i]->fn>10)
tri::Append<VoroMesh,VoroMesh>::Mesh(m, *badRegionVec[i], false);
// tri::io::ExporterPLY<VoroMesh>::Save(m,"buf.ply",tri::io::Mask::IOM_VERTCOLOR|tri::io::Mask::IOM_WEDGTEXCOORD );
tri::Clean<VoroMesh>::RemoveDuplicateFace(m);
tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m);
tri::UpdateNormals<VoroMesh>::PerVertexPerFace(m);
tri::Allocator<VoroMesh>::CompactVertexVector(m);
tri::Allocator<VoroMesh>::CompactFaceVector(m);
qDebug("Still %i faces (from %i regions) to process\n",m.fn,badRegionVec.size());
}
} while (m.fn>0);
// tri::io::ExporterPLY<VoroMesh>::Save(m,"vorocolor.ply",tri::io::Mask::IOM_VERTCOLOR);
std::vector<Similarity2f> trVec;
Point2f finalSize;
PolyPacker<float>::PackAsObjectOrientedRect(uvBorders,Point2f(1024.0f,1024.0f),trVec,finalSize);
// loop again over all the patches
for(size_t i=0; i<meshRegionVec.size();++i)
{
VoroMesh *rm = meshRegionVec[i];
for(FaceIterator fi=rm->face.begin();fi!=rm->face.end();++fi)
{
for(int j=0;j<3;++j)
{
Point2f pp(fi->WT(j).U(),fi->WT(j).V());
Point2f newpp=trVec[i]*pp;
fi->WT(j).U()=newpp[0]/1024.0f;
fi->WT(j).V()=newpp[1]/1024.0f;
}
}
char buf[32]; sprintf(buf,"region_aa_%03i.ply",i);
// tri::io::ExporterPLY<VoroMesh>::Save(*rm,buf,tri::io::Mask::IOM_VERTCOLOR|tri::io::Mask::IOM_WEDGTEXCOORD );
tri::Append<MeshType,VoroMesh>::Mesh(paraMesh, *rm, false);
}
}
};
} // end namespace vcg
} // end namespace tri
#endif // VORONOI_ATLAS_H

View File

@ -97,15 +97,18 @@ static void SeedToVertexConversion(MeshType &m,std::vector<CoordType> &seedPVec,
}
typedef typename MeshType::template PerVertexAttributeHandle<VertexPointer> PerVertexPointerHandle;
typedef typename MeshType::template PerFaceAttributeHandle<VertexPointer> PerFacePointerHandle;
static void ComputePerVertexSources(MeshType &m, std::vector<VertexType *> &seedVec)
{
tri::Geo<MeshType> g;
VertexPointer farthest;
tri::Allocator<MeshType>::DeletePerVertexAttribute(m,"sources"); // delete any conflicting handle regardless of the type...
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template AddPerVertexAttribute<VertexPointer> (m,"sources");
assert(tri::Allocator<MeshType>::IsValidHandle(m,sources));
g.FarthestVertex(m,seedVec,farthest,std::numeric_limits<ScalarType>::max(),&sources);
PerVertexPointerHandle vertexSources = tri::Allocator<MeshType>:: template AddPerVertexAttribute<VertexPointer> (m,"sources");
tri::Allocator<MeshType>::DeletePerFaceAttribute(m,"sources"); // delete any conflicting handle regardless of the type...
PerFacePointerHandle faceSources = tri::Allocator<MeshType>:: template AddPerFaceAttribute<VertexPointer> (m,"sources");
assert(tri::Allocator<MeshType>::IsValidHandle(m,vertexSources));
g.FarthestVertex(m,seedVec,farthest,std::numeric_limits<ScalarType>::max(),&vertexSources);
}
static void VoronoiColoring(MeshType &m, std::vector<VertexType *> &seedVec, bool frontierFlag=true)
@ -127,24 +130,102 @@ static void VoronoiColoring(MeshType &m, std::vector<VertexType *> &seedVec, boo
tri::UpdateColor<MeshType>::VertexQualityRamp(m);
}
// Given a seed, it selects all the faces such with at least one vertex sourced by the passed VertexPointer.
// Faces are selected more than once.
static void SelectRegion(MeshType &m, VertexPointer vp)
static void FaceAssociateRegion(MeshType &m)
{
PerFacePointerHandle faceSources = tri::Allocator<MeshType>:: template GetPerFaceAttribute<VertexPointer> (m,"sources");
PerVertexPointerHandle vertexSources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
faceSources[fi]=0;
std::vector<VertexPointer> vp(3);
for(int i=0;i<3;++i) vp[i]=vertexSources[fi->V(i)];
for(int i=0;i<3;++i) // First try to assoiciate to the most reached vertex
{
if(vp[0]==vp[1] && vp[0]==vp[2]) faceSources[fi] = vp[0];
else
{
if(vp[0]==vp[1] && vp[0]->Q()< vp[2]->Q()) faceSources[fi] = vp[0];
if(vp[0]==vp[2] && vp[0]->Q()< vp[1]->Q()) faceSources[fi] = vp[0];
if(vp[1]==vp[2] && vp[1]->Q()< vp[0]->Q()) faceSources[fi] = vp[1];
}
}
}
tri::UpdateTopology<MeshType>::FaceFace(m);
int unassCnt=0;
do
{
unassCnt=0;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if(faceSources[fi]==0)
{
std::vector<VertexPointer> vp(3);
for(int i=0;i<3;++i)
vp[i]=faceSources[fi->FFp(i)];
int cnt[3]={0,0,0};
if(vp[0]!=0 && (vp[0]==vp[1] || vp[0]==vp[2]))
faceSources[fi] = vp[0];
else if(vp[1]!=0 && (vp[1]==vp[2]))
faceSources[fi] = vp[1];
else
faceSources[fi] = std::max(vp[0],std::max(vp[1],vp[2]));
if(faceSources[fi]==0) unassCnt++;
}
}
}
while(unassCnt>0);
}
static int FaceSelectAssociateRegion(MeshType &m, VertexPointer vp)
{
PerFacePointerHandle sources = tri::Allocator<MeshType>:: template GetPerFaceAttribute<VertexPointer> (m,"sources");
assert(tri::Allocator<MeshType>::IsValidHandle(m,sources));
tri::UpdateSelection<MeshType>::FaceClear(m);
tri::UpdateSelection<MeshType>::VertexClear(m);
int selCnt=0;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if(sources[fi]==vp)
{
fi->SetS();
++selCnt;
}
}
return selCnt;
}
// Given a seed, it selects all the faces that have at least one vertex sourced by the given VertexPointer.
// vp can be null (it search for unreached faces...)
// returns the number of selected faces;
static int FaceSelectRegion(MeshType &m, VertexPointer vp)
{
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
assert(tri::Allocator<MeshType>::IsValidHandle(m,sources));
tri::UpdateSelection<MeshType>::FaceClear(m);
tri::UpdateSelection<MeshType>::VertexClear(m);
int selCnt=0;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if( sources[(*fi).V(0)] == vp ||
sources[(*fi).V(1)] == vp ||
sources[(*fi).V(2)] == vp)
fi->SetS();
}
tri::UpdateSelection<MeshType>::VertexFromFaceLoose(m);
int minInd = 0; float minVal=std::numeric_limits<float>::max();
for(int i=0;i<3;++i)
{
if((*fi).V(i)->Q()<minVal)
{
minInd=i;
minVal=(*fi).V(i)->Q();
}
}
if( sources[(*fi).V(minInd)] == vp)
{
fi->SetS();
selCnt++;
}
}
return selCnt;
}
// find the vertexes of frontier faces