diff --git a/vcg/math/point_matching.h b/vcg/math/point_matching.h new file mode 100644 index 00000000..54b4571a --- /dev/null +++ b/vcg/math/point_matching.h @@ -0,0 +1,494 @@ +/**************************************************************************** +* VCGLib o o * +* Visual and Computer Graphics Library o o * +* _ O _ * +* Copyright(C) 2004 \/)\/ * +* Visual Computing Lab /\/| * +* ISTI - Italian National Research Council | * +* \ * +* All rights reserved. * +* * +* This program is free software; you can redistribute it and/or modify * +* it under the terms of the GNU General Public License as published by * +* the Free Software Foundation; either version 2 of the License, or * +* (at your option) any later version. * +* * +* This program is distributed in the hope that it will be useful, * +* but WITHOUT ANY WARRANTY; without even the implied warranty of * +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * +* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * +* for more details. * +* * +****************************************************************************/ + +/**************************************************************************** + History + +$Log: point_matching.h,v $ + +****************************************************************************/ + +#include +#include +namespace vcg +{ +template +class PointMatching +{ +public: + typedef Point3 Point3x; + typedef Matrix33 Matrix33x; + typedef Matrix44 Matrix44x; + typedef Quaternion Quaternionx; + + + +static bool ComputeRigidMatchMatrix( Matrix44x &res, + std::vector &Pfix, // vertici corrispondenti su fix (rossi) + std::vector &Pmov) // normali scelti su mov (verdi) +{ + Quaternionx qtmp; + Point3x tr; + return ComputeRigidMatchMatrix(res,Pfix,Pmov,qtmp,tr); +} + +static bool ComputeRigidMatchMatrix(std::vector weights, + Matrix44x &res, + std::vector &Pfix, // vertici corrispondenti su fix (rossi) + std::vector &Pmov) // normali scelti su mov (verdi) +{ + Quaterniond qtmp; + Point3d tr; + return ComputeRigidMatchMatrix(res,Pfix,Pmov,qtmp,tr); +} + + +/* +Calcola la matrice di rototraslazione +che porta i punti Pmov su Pfix + +Basata sul paper + +Besl, McKay +A method for registration o f 3d Shapes +IEEE TPAMI Vol 14, No 2 1992 + + + Esempio d'uso + const int np=1000; + std::vector pfix(np),pmov(np); + + Matrix44x Rot,Trn,RotRes; + Rot.Rotate(30,Point3x(1,0,1)); + Trn.Translate(0,0,100); + Rot=Trn*Rot; + + for(int i=0;i &Pfix, + std::vector &Pmov, + std::vector weights, + Quaternionx &q, + Point3x &tr + ) +{ + + Matrix33x tmp; + Matrix33x ccm; + Point3x bfix,bmov; // baricenter of src e trg + ccm.WeightedCrossCovariance(weights,Pmov,Pfix,bmov,bfix); + Matrix33x cyc; // the cyclic components of the cross covariance matrix. + + cyc=ccm; + tmp=ccm; + tmp.Trasp(); + cyc-=tmp; + + Matrix44x QQ; + QQ.Zero(); + Point3x D(cyc[1][2],cyc[2][0],cyc[0][1]); + + Matrix33x RM; + RM.Zero(); + RM[0][0]=-ccm.Trace(); + RM[1][1]=-ccm.Trace(); + RM[2][2]=-ccm.Trace(); + RM+=ccm; + ccm.Trasp(); + RM+=ccm; + + QQ[0][0] = ccm.Trace(); + QQ[0][1] = D[0]; QQ[0][2] = D[1]; QQ[0][3] = D[2]; + QQ[1][0] = D[0]; QQ[2][0] = D[1]; QQ[3][0] = D[2]; + + int i,j; + for(i=0;i<3;i++) + for(j=0;j<3;j++) + QQ[i+1][j+1]=RM[i][j]; + +// printf(" Quaternion Matrix\n"); +// print(QQ); + Point4d d; + Matrix44x v; + int nrot; + QQ.Jacobi(d,v,nrot); +// printf("Done %i iterations\n %f %f %f %f\n",nrot,d[0],d[1],d[2],d[3]); +// print(v); + // Now search the maximum eigenvalue + double maxv=0; + int maxind=-1; + for(i=0;i<4;i++) + if(maxv &Pfix, + std::vector &Pmov, + Quaternionx &q, + Point3x &tr) +{ + + Matrix33x tmp; + Matrix33x ccm; + Point3x bfix,bmov; // baricenter of src e trg + ccm.CrossCovariance(Pmov,Pfix,bmov,bfix); + Matrix33x cyc; // the cyclic components of the cross covariance matrix. + + cyc=ccm; + tmp=ccm; + tmp.Transpose(); + cyc-=tmp; + + Matrix44x QQ; + QQ.SetZero(); + Point3x D(cyc[1][2],cyc[2][0],cyc[0][1]); + + Matrix33x RM; + RM.SetZero(); + RM[0][0]=-ccm.Trace(); + RM[1][1]=-ccm.Trace(); + RM[2][2]=-ccm.Trace(); + RM+=ccm; + ccm.Transpose(); + RM+=ccm; + + QQ[0][0] = ccm.Trace(); + QQ[0][1] = D[0]; QQ[0][2] = D[1]; QQ[0][3] = D[2]; + QQ[1][0] = D[0]; QQ[2][0] = D[1]; QQ[3][0] = D[2]; + + int i,j; + for(i=0;i<3;i++) + for(j=0;j<3;j++) + QQ[i+1][j+1]=RM[i][j]; + +// printf(" Quaternion Matrix\n"); +// print(QQ); + Point4d d; + Matrix44x v; + int nrot; + //QQ.Jacobi(d,v,nrot); + Jacobi(QQ,d,v,nrot); +// printf("Done %i iterations\n %f %f %f %f\n",nrot,d[0],d[1],d[2],d[3]); +// print(v); + // Now search the maximum eigenvalue + double maxv=0; + int maxind=-1; + for(i=0;i<4;i++) + if(maxv &Ps, // vertici corrispondenti su src (rossi) + std::vector &Ns, // normali corrispondenti su src (rossi) + std::vector &Pt) // vertici scelti su trg (verdi) +// vector &Nt) // normali scelti su trg (verdi) +{ + int sz=Ps.size(); + assert(0); + // Da qui in poi non compila che ha bisogno dei minimiquadrati +#if 0 + + Matrix A(sz,12); + Vector b(sz); + Vector x(12); + + //inizializzo il vettore per minimi quadrati + // la matrice di trasf che calcolo con LeastSquares cerca avvicinare il piu' + // possibile le coppie di punti che trovo ho scelto + // Le coppie di punti sono gia' trasformate secondo la matrice quindi come scelta iniziale + // per il metodo minimiquadrati scelgo l'identica (e.g. se ho allineato a mano perfettamente e + // le due mesh sono perfettamente uguali DEVE restituire l'identica) + + res.SetIdentity(); + int i,j,k; + for(i=0; i<=2; ++i) + for(j=0; j<=3; ++j) + x[i*4+j] = res[i][j]; + + + //costruzione della matrice + for(i=0;i & A2, const Point3x & p, const Point3x & n, double d ) +{ + double t1 = p[0]*p[0]; + double t2 = n[0]*n[0]; + double t4 = t1*n[0]; + double t5 = t4*n[1]; + double t6 = t4*n[2]; + double t7 = p[0]*t2; + double t8 = t7*p[1]; + double t9 = p[0]*n[0]; + double t10 = p[1]*n[1]; + double t11 = t9*t10; + double t12 = p[1]*n[2]; + double t13 = t9*t12; + double t14 = t7*p[2]; + double t15 = p[2]*n[1]; + double t16 = t9*t15; + double t17 = p[2]*n[2]; + double t18 = t9*t17; + double t19 = t9*n[1]; + double t20 = t9*n[2]; + double t21 = t9*d; + double t22 = n[1]*n[1]; + double t25 = t1*n[1]*n[2]; + double t26 = p[0]*t22; + double t27 = t26*p[1]; + double t28 = p[0]*n[1]; + double t29 = t28*t12; + double t30 = t26*p[2]; + double t31 = t28*t17; + double t32 = t28*n[2]; + double t33 = t28*d; + double t34 = n[2]*n[2]; + + double t36 = p[0]*t34; + double t41 = p[1]*p[1]; double t43 = t41*n[0]; + double t46 = p[1]*t2; double t48 = p[1]*n[0]; + double t49 = t48*t15; double t50 = t48*t17; + double t51 = t48*n[1]; double t52 = t48*n[2]; + double t57 = p[1]*t22; double t59 = t10*t17; + double t60 = t10*n[2]; double t63 = p[1]*t34; + double t66 = p[2]*p[2]; double t68 = t66*n[0]; + double t72 = p[2]*n[0]; double t73 = t72*n[1]; + double t74 = t72*n[2]; double t80 = t15*n[2]; + + A2[0][0] = t1*t2; A2[0][1] = t5; A2[0][2] = t6; + A2[0][3] = t8; A2[0][4] = t11; A2[0][5] = t13; + A2[0][6] = t14; A2[0][7] = t16; A2[0][8] = t18; + A2[0][9] = t7; A2[0][10] = t19; A2[0][11] = t20; + A2[0][12] = -t21; + + A2[1][1] = t1*t22; A2[1][2] = t25; A2[1][3] = t11; + A2[1][4] = t27; A2[1][5] = t29; A2[1][6] = t16; + A2[1][7] = t30; A2[1][8] = t31; A2[1][9] = t19; + A2[1][10] = t26; A2[1][11] = t32; A2[1][12] = -t33; + + A2[2][2] = t1*t34; A2[2][3] = t13; A2[2][4] = t29; + A2[2][5] = t36*p[1]; A2[2][6] = t18; A2[2][7] = t31; + A2[2][8] = t36*p[2]; A2[2][9] = t20; A2[2][10] = t32; + A2[2][11] = t36; A2[2][12] = -p[0]*n[2]*d; + + A2[3][3] = t41*t2; A2[3][4] = t43*n[1]; A2[3][5] = t43*n[2]; + A2[3][6] = t46*p[2]; A2[3][7] = t49; A2[3][8] = t50; + A2[3][9] = t46; A2[3][10] = t51; A2[3][11] = t52; + A2[3][12] = -t48*d; + + A2[4][4] = t41*t22; A2[4][5] = t41*n[1]*n[2]; A2[4][6] = t49; + A2[4][7] = t57*p[2]; A2[4][8] = t59; A2[4][9] = t51; + A2[4][10] = t57; A2[4][11] = t60; A2[4][12] = -t10*d; + + A2[5][5] = t41*t34; A2[5][6] = t50; A2[5][7] = t59; + A2[5][8] = t63*p[2]; A2[5][9] = t52; A2[5][10] = t60; + A2[5][11] = t63; A2[5][12] = -t12*d; + + A2[6][6] = t66*t2; A2[6][7] = t68*n[1]; A2[6][8] = t68*n[2]; + A2[6][9] = p[2]*t2; A2[6][10] = t73; A2[6][11] = t74; + A2[6][12] = -t72*d; + + A2[7][7] = t66*t22; A2[7][8] = t66*n[1]*n[2]; A2[7][9] = t73; + A2[7][10] = p[2]*t22; A2[7][11] = t80; A2[7][12] = -t15*d; + + A2[8][8] = t66*t34; A2[8][9] = t74; A2[8][10] = t80; + A2[8][11] = p[2]*t34; A2[8][12] = -t17*d; + + A2[9][9] = t2; A2[9][10] = n[0]*n[1]; + A2[9][11] = n[0]*n[2]; A2[9][12] = -n[0]*d; + + A2[10][10] = t22; A2[10][11] = n[1]*n[2]; A2[10][12] = -n[1]*d; + A2[11][11] = t34; A2[11][12] = -n[2]*d; + A2[12][12] = d*d; +} + +// Dati due insiemi di punti e normali corrispondenti calcola la migliore trasformazione +// che li fa corrispondere +static bool ComputeMatchMatrix2( Matrix44x &res, + std::vector &Ps, // vertici corrispondenti su src (rossi) + std::vector &Ns, // normali corrispondenti su src (rossi) + std::vector &Pt) // vertici scelti su trg (verdi) + //vector &Nt) // normali scelti su trg (verdi) +{ + const int N = 13; + int i,j,k; + + Matrixd AT(N,N); + Matrixd TT(N,N); + // Azzeramento matrice totale (solo tri-superiore) + for(i=0;i q; + double error; + affine_ls2(AT,q,error); + //printf("error: %g \n",error); + res[0][0] = q[0]; + res[0][1] = q[1]; + res[0][2] = q[2]; + res[0][3] = 0; + res[1][0] = q[3]; + res[1][1] = q[4]; + res[1][2] = q[5]; + res[1][3] = 0; + res[2][0] = q[6]; + res[2][1] = q[7]; + res[2][2] = q[8]; + res[2][3] = 0; + res[3][0] = q[9]; + res[3][1] = q[10]; + res[3][2] = q[11]; + res[3][3] = q[12]; + + return true; +} +*/ +}; +} // end namespace