refactorized but Still to clean up;

It seems to work but "continuous" distance estimation cannot work with multiple sources.
In this case edge leght estimation is used.
This commit is contained in:
ganovelli 2008-12-22 19:51:11 +00:00
parent 56d93a02b6
commit 818129d045
1 changed files with 96 additions and 118 deletions

View File

@ -37,6 +37,7 @@
#include <assert.h>
#include <vcg/container/simple_temporary_data.h>
#include <vcg/simplex/face/pos.h>
#include <vcg/simplex/face/topology.h>
#include <vcg/math/base.h>
#include <deque>
#include <vector>
@ -98,6 +99,11 @@ class Geo{
bool operator()(const VertDist& v0, const VertDist& v1) const
{return (v0.d > v1.d);}
};
struct pred_addr: public std::binary_function<VertDist,VertDist,bool>{
pred_addr(){};
bool operator()(const VertDist& v0, const VertDist& v1) const
{return (v0.v > v1.v);}
};
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh
@ -152,7 +158,7 @@ class Geo{
*/
static VertexPointer Visit(
MeshType & m,
std::vector<VertDist> & _frontier,
std::vector<VertDist> & _inputfrontier,
ScalarType & max_distance,
bool farthestOnBorder = false
)
@ -164,6 +170,8 @@ class Geo{
VertexPointer curr,farthest,pw1;
typename std::list<VertexPointer>::iterator is;
std::deque<VertexPointer> leaves;
std::vector<VertDist> _frontier;
std::vector <std::pair<VertexPointer,ScalarType> > expansion;
typename std::vector <VertDist >::iterator ifr;
face::VFIterator<FaceType> x;int k;
@ -171,145 +179,119 @@ class Geo{
//Requirements
assert(m.HasVFTopology());
assert(!_frontier.empty());
assert(!_inputfrontier.empty());
ScalarType unreached = std::numeric_limits<ScalarType>::max();
TempDataType * TD;
TD = new TempDataType(m.vert,-1.0);
//TD->Start(TempData<MeshType>(-1.0));
TD = new TempDataType(m.vert,unreached);
for(ifr = _frontier.begin(); ifr != _frontier.end(); ++ifr){
(*TD)[(*ifr).v].visited= true;
bool singleSource = _inputfrontier.size() ==1;
for(ifr = _inputfrontier.begin(); ifr != _inputfrontier.end(); ++ifr){
(*TD)[(*ifr).v].d = 0.0;
(*ifr).d = 0.0;
}
for(ifr = _frontier.begin(); ifr != _frontier.end(); ++ifr)
{
// determina la distanza dei vertici della fan
for( x.f = (*ifr).v->VFp(), x.z = (*ifr).v->VFi(); x.f!=0; ++x )
for(k=0;k<2;++k)
{
if(k==0) pw = x.f->V1(x.z);
else pw = x.f->V2(x.z);
if((*TD)[pw].d ==-1){
(*TD)[pw].d = vcg::Distance(pw->cP(),(*ifr).v->cP());
frontier.push_back(VertDist(pw,(*TD)[pw].d));
}
}
frontier.push_back(VertDist((*ifr).v,0.0));
}
// initialize Heap
make_heap(frontier.begin(),frontier.end(),pred());
ScalarType curr_d,d_curr = 0.0;
// for(ifr = frontier.begin(); ifr != frontier.end(); ++ifr)
// printf("%d %f\n",(*ifr).v,(*ifr).d);
ScalarType curr_d,d_curr = 0.0,d_heap;
max_distance=0.0;
typename std::vector<VertDist >:: iterator iv;
while(!frontier.empty())
{ //printf("size: %d\n", frontier.size());
expansion.clear();
pop_heap(frontier.begin(),frontier.end(),pred());
curr = (frontier.back()).v;
d_heap = (frontier.back()).d;
frontier.pop_back();
float fff = (*TD)[curr].d;
bool vis = (*TD)[curr].visited;
assert((*TD)[curr].d <= d_heap);
if((*TD)[curr].d < d_heap )
continue;
assert((*TD)[curr].d == d_heap);
// printf("extracted %d %f\n",curr,fff);
d_curr = (*TD)[curr].d;
(*TD)[curr].visited = true;
isLeaf = (!farthestOnBorder || curr->IsB());
face::VFIterator<FaceType> x;int k;
face::VFIterator<FaceType> x;int k;
for( x.f = curr->VFp(), x.z = curr->VFi(); x.f!=0; ++x )
for(k=0;k<2;++k)
{
if(k==0) {
pw = x.f->V1(x.z);
pw1=x.f->V2(x.z);
}
else {
pw = x.f->V2(x.z);
pw1=x.f->V1(x.z);
}
const ScalarType & d_pw1 = (*TD)[pw1].d;
if((! (*TD)[pw1].visited ) || d_curr == 0.0)
{
if( (*TD)[pw].d == -1){
curr_d = (*TD)[curr].d + (pw->P()-curr->P()).Norm();
expansion.push_back(std::pair<VertexPointer,ScalarType>(pw,curr_d));
}
continue;
if(k==0) {
pw = x.f->V1(x.z);
pw1=x.f->V2(x.z);
}
else {
pw = x.f->V2(x.z);
pw1=x.f->V1(x.z);
}
if(singleSource){
const ScalarType & d_pw1 = (*TD)[pw1].d;
if((*TD)[curr].d==0.0)// numerical
curr_d = (pw->P()-curr->P()).Norm();
else
if(d_pw1==0.0)// numerical
curr_d = (pw->P()-pw1->P()).Norm();
else
if( (*TD)[pw1].d == unreached ){
curr_d = d_curr + (pw->P()-curr->P()).Norm();
}
else{
ScalarType inter = (curr->P() - pw1->P()).Norm();
if ( (inter + d_curr < d_pw1 + 0.01 ) ||
(inter + d_pw1 < d_curr + 0.01 ) ||
(d_curr + d_pw1 < inter + 0.01 ))
curr_d = d_curr + (pw->P()-pw1->P()).Norm();// triangular inequality
else{
//curr_d = d_pw1 + (pw->P()-pw1->P()).Norm();
curr_d = Distance(pw,pw1,curr,d_pw1,d_curr);
}
}
}else{
curr_d = d_curr + (pw->P()-pw1->P()).Norm();
}
assert( (*TD)[pw1].d != -1);
assert( (curr!=pw) && (pw!=pw1) && (pw1 != curr));
assert(d_pw1!=-1.0);
curr_d=Distance(pw,pw1,curr,d_pw1,d_curr);
////************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
////************** sapendo che (curr,pw,pw1) e'una faccia della mesh
////************** (vedi figura in file distance.gif)
//Point3<MeshType::ScalarType> w_c = pw->cP()- curr->cP();
//Point3<MeshType::ScalarType> w_w1 = pw->cP()- pw1->cP();
//Point3<MeshType::ScalarType> w1_c = pw1->cP()- curr->cP();
//ScalarType ew_c = (w_c).Norm();
//ScalarType ew_w1 = (w_w1).Norm();
//ScalarType ec_w1 = (w1_c).Norm();
//ScalarType alpha,alpha_, beta,beta_,theta,h,delta,s,a,b;
//alpha = acos((w_c*w1_c)/(ew_c*ec_w1));
//s = (d_curr + d_pw1+ec_w1)/2;
//a = s/ec_w1;
//b = a*s;
//alpha_ = 2*acos ( math::Min<ScalarType>(1.0,sqrt( (b- a* d_pw1)/d_curr)));
//if ( alpha+alpha_ > M_PI){
// curr_d = d_curr + ew_c;
// }else
// {
// beta_ = 2*acos ( math::Min<ScalarType>(1.0,sqrt( (b- a* d_curr)/d_pw1)));
// beta = acos((w_w1)*(-w1_c)/(ew_w1*ec_w1));
// if ( beta+beta_ > M_PI)
// curr_d = d_pw1 + ew_w1;
// else
// {
// theta = ScalarType(M_PI)-alpha-alpha_;
// delta = cos(theta)* ew_c;
// h = sin(theta)* ew_c;
// curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
// }
// }
////**************************************************************************************
toQueue = ( (*TD)[(pw)].d==-1);
if(toQueue){// se non e'gia' in coda ce lo mette
expansion.push_back(std::pair<VertexPointer,ScalarType>(pw,curr_d));
}else
{
if( (*TD)[(pw)].d > curr_d )
(*TD)[(pw)].d = curr_d;
}
if(isLeaf){
if(d_curr > max_distance){
max_distance = d_curr;
farthest = curr;
}
}
}
typename std::vector <std::pair<VertexPointer,ScalarType> > ::iterator i;
for(i = expansion.begin(); i!= expansion.end(); ++i)
{
(*TD)[(*i).first].d = (*i).second;
frontier.push_back(VertDist((*i).first,(*TD)[(*i).first].d));
push_heap(frontier.begin(),frontier.end(),pred());
} // end for
//printf("%f %f \n",
// curr_d,
// d_curr);
// queue if the estimation is lower or if it is its first
toQueue = ((*TD)[(pw)].d > curr_d) ;
if(toQueue ){
// printf("push: %d %f\n",pw,curr_d);
(*TD)[(pw)].d = curr_d;
// printf("from %f estim. %f\n",d_curr,curr_d);
frontier.push_back(VertDist(pw,curr_d));
push_heap(frontier.begin(),frontier.end(),pred());
}
if(isLeaf){
if(d_curr > max_distance){
max_distance = d_curr;
farthest = curr;
}
}
}
}// end while
// scrivi le distanze sul campo qualita' (nn: farlo parametrico)
@ -317,12 +299,8 @@ class Geo{
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
(*vi).Q() = (*TD)[&(*vi)].d;
//(*TD).Stop();
delete TD;
return farthest;
return farthest;
}