Heavy refactoring. Closing #12

Many changes, improved general robustness and added more options to
customise the behaviour.
Added control on quality quadric, Hard normal flipping check,
SVDPlacement that find better optimal position and many other small
optimizations.
This commit is contained in:
Paolo Cignoni 2017-02-21 17:46:46 +01:00
parent 75bb6dff89
commit 82ddb476a4
1 changed files with 344 additions and 256 deletions

View File

@ -38,8 +38,6 @@ namespace vcg{
namespace tri{
/**
This class describe Quadric based collapse operation.
@ -87,48 +85,32 @@ namespace tri{
class TriEdgeCollapseQuadricParameter : public BaseParameterClass
{
public:
double BoundaryWeight;
double CosineThr;
bool FastPreserveBoundary;
bool NormalCheck;
double NormalThrRad;
bool OptimalPlacement;
bool PreserveTopology;
bool PreserveBoundary;
double QuadricEpsilon;
bool QualityCheck;
bool QualityQuadric; // During the initialization manage all the edges as border edges adding a set of additional quadrics that are useful mostly for keeping face aspect ratio good.
double QualityThr; // Collapsed that generate faces with quality LOWER than this value are penalized. So
bool QualityWeight;
double QualityWeightFactor;
double ScaleFactor;
bool ScaleIndependent;
bool UseArea;
bool UseVertexWeight;
double BoundaryQuadricWeight = 0.5;
bool FastPreserveBoundary = false;
bool AreaCheck = false;
bool HardQualityCheck = false;
double HardQualityThr = 0.1;
bool HardNormalCheck = false;
bool NormalCheck = false;
double NormalThrRad = M_PI/2.0;
double CosineThr = 0 ; // ~ cos(pi/2)
bool OptimalPlacement =true;
bool SVDPlacement = false;
bool PreserveTopology =false;
bool PreserveBoundary = false;
double QuadricEpsilon = 1e-15;
bool QualityCheck =true;
double QualityThr =.3; // Collapsed that generate faces with quality LOWER than this value are penalized. So higher the value -> better the quality of the accepted triangles
bool QualityQuadric =false; // During the initialization manage all the edges as border edges adding a set of additional quadrics that are useful mostly for keeping face aspect ratio good.
double QualityQuadricWeight = 0.001f; // During the initialization manage all the edges as border edges adding a set of additional quadrics that are useful mostly for keeping face aspect ratio good.
bool QualityWeight=false;
double QualityWeightFactor=100.0;
double ScaleFactor=1.0;
bool ScaleIndependent=true;
bool UseArea =true;
bool UseVertexWeight=false;
void SetDefaultParams()
{
BoundaryWeight=.5;
CosineThr=cos(M_PI/2);
FastPreserveBoundary=false;
NormalCheck=false;
NormalThrRad=M_PI/2;
OptimalPlacement=true;
PreserveBoundary = false;
PreserveTopology = false;
QuadricEpsilon =1e-15;
QualityCheck=true;
QualityQuadric=false;
QualityThr=.3; // higher the value -> better the quality of the accepted triangles
QualityWeight=false;
QualityWeightFactor=100.0;
ScaleFactor=1.0;
ScaleIndependent=true;
UseArea=true;
UseVertexWeight=false;
}
TriEdgeCollapseQuadricParameter() {this->SetDefaultParams();}
TriEdgeCollapseQuadricParameter() {}
};
@ -150,8 +132,9 @@ public:
typedef TriEdgeCollapseQuadricParameter QParameter;
typedef HelperType QH;
CoordType optimalPos; // Local storage of the once computed optimal position of the collapse.
// puntatori ai vertici che sono stati messi non-w per preservare il boundary
// Pointer to the vector that store the Write flags. Used to preserve them if you ask to preserve for the boundaries.
static std::vector<typename TriMeshType::VertexPointer> & WV(){
static std::vector<typename TriMeshType::VertexPointer> _WV; return _WV;
}
@ -166,141 +149,146 @@ public:
}
inline bool IsFeasible(BaseParameterClass *_pp){
QParameter *pp=(QParameter *)_pp;
if(!pp->PreserveTopology) return true;
bool res = ( EdgeCollapser<TriMeshType, VertexPair>::LinkConditions(this->pos) );
if(!res) ++( TEC::FailStat::LinkConditionEdge() );
return res;
}
CoordType ComputePosition(BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
CoordType newPos = (this->pos.V(0)->P()+this->pos.V(1)->P())/2.0;
if(pp->OptimalPlacement)
{
if((QH::Qd(this->pos.V(0)).Apply(newPos) + QH::Qd(this->pos.V(1)).Apply(newPos)) > 200.0*pp->QuadricEpsilon)
newPos = ComputeMinimal();
}
else newPos=this->pos.V(1)->P();
return newPos;
}
void Execute(TriMeshType &m, BaseParameterClass *_pp)
{
QH::Qd(this->pos.V(1))+=QH::Qd(this->pos.V(0));
EdgeCollapser<TriMeshType,VertexPair>::Do(m, this->pos, ComputePosition(_pp)); // v0 is deleted and v1 take the new position
inline bool IsFeasible(BaseParameterClass *_pp){
QParameter *pp=(QParameter *)_pp;
if(!pp->PreserveTopology) return true;
bool res = ( EdgeCollapser<TriMeshType, VertexPair>::LinkConditions(this->pos) );
if(!res) ++( TEC::FailStat::LinkConditionEdge() );
return res;
}
// Final Clean up after the end of the simplification process
static void Finalize(TriMeshType &m, HeapType& /*h_ret*/, BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
// If we had the boundary preservation we should clean up the writable flags
if(pp->FastPreserveBoundary)
{
typename TriMeshType::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD()) (*vi).SetW();
}
if(pp->PreserveBoundary)
{
typename std::vector<typename TriMeshType::VertexPointer>::iterator wvi;
for(wvi=WV().begin();wvi!=WV().end();++wvi)
if(!(*wvi)->IsD()) (*wvi)->SetW();
}
}
static void Init(TriMeshType &m, HeapType &h_ret, BaseParameterClass *_pp)
void ComputePosition(BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
typename TriMeshType::VertexIterator vi;
typename TriMeshType::FaceIterator pf;
pp->CosineThr=cos(pp->NormalThrRad);
vcg::tri::UpdateTopology<TriMeshType>::VertexFace(m);
vcg::tri::UpdateFlags<TriMeshType>::FaceBorderFromVF(m);
if(pp->FastPreserveBoundary)
CoordType newPos = (this->pos.V(0)->P()+this->pos.V(1)->P())/2.0;
if(pp->OptimalPlacement==false)
newPos=this->pos.V(1)->P();
else
{
for(pf=m.face.begin();pf!=m.face.end();++pf)
if( !(*pf).IsD() && (*pf).IsW() )
for(int j=0;j<3;++j)
if((*pf).IsB(j))
{
(*pf).V(j)->ClearW();
(*pf).V1(j)->ClearW();
}
}
if(pp->PreserveBoundary)
if((QH::Qd(this->pos.V(0)).Apply(newPos) + QH::Qd(this->pos.V(1)).Apply(newPos)) > 2.0*pp->QuadricEpsilon)
{
QuadricType q=QH::Qd(this->pos.V(0));
q+=QH::Qd(this->pos.V(1));
Point3<QuadricType::ScalarType> x;
if(pp->SVDPlacement)
q.MinimumClosestToPoint(x,Point3d::Construct(newPos));
else
q.Minimum(x);
newPos = CoordType::Construct(x);
}
}
this->optimalPos = newPos;
}
void Execute(TriMeshType &m, BaseParameterClass */*_pp*/)
{
CoordType newPos = this->optimalPos;
QH::Qd(this->pos.V(1))+=QH::Qd(this->pos.V(0)); // v0 is deleted and v1 take the new position
EdgeCollapser<TriMeshType,VertexPair>::Do(m, this->pos, newPos);
}
// Final Clean up after the end of the simplification process
static void Finalize(TriMeshType &m, HeapType& /*h_ret*/, BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
// If we had the boundary preservation we should clean up the writable flags
if(pp->FastPreserveBoundary)
{
WV().clear();
for(pf=m.face.begin();pf!=m.face.end();++pf)
if( !(*pf).IsD() && (*pf).IsW() )
for(int j=0;j<3;++j)
if((*pf).IsB(j))
{
if((*pf).V(j)->IsW()) {(*pf).V(j)->ClearW(); WV().push_back((*pf).V(j));}
if((*pf).V1(j)->IsW()) {(*pf).V1(j)->ClearW();WV().push_back((*pf).V1(j));}
}
}
InitQuadric(m,pp);
// Initialize the heap with all the possible collapses
if(IsSymmetric(pp))
{ // if the collapse is symmetric (e.g. u->v == v->u)
typename TriMeshType::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && (*vi).IsRW())
if(!(*vi).IsD()) (*vi).SetW();
}
if(pp->PreserveBoundary)
{
typename std::vector<typename TriMeshType::VertexPointer>::iterator wvi;
for(wvi=WV().begin();wvi!=WV().end();++wvi)
if(!(*wvi)->IsD()) (*wvi)->SetW();
}
}
static void Init(TriMeshType &m, HeapType &h_ret, BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
pp->CosineThr=cos(pp->NormalThrRad);
h_ret.clear();
vcg::tri::UpdateTopology<TriMeshType>::VertexFace(m);
vcg::tri::UpdateFlags<TriMeshType>::FaceBorderFromVF(m);
if(pp->FastPreserveBoundary)
{
for(auto pf=m.face.begin();pf!=m.face.end();++pf)
if( !(*pf).IsD() && (*pf).IsW() )
for(int j=0;j<3;++j)
if((*pf).IsB(j))
{
vcg::face::VFIterator<FaceType> x;
for( x.F() = (*vi).VFp(), x.I() = (*vi).VFi(); x.F()!=0; ++ x){
x.V1()->ClearV();
x.V2()->ClearV();
}
for( x.F() = (*vi).VFp(), x.I() = (*vi).VFi(); x.F()!=0; ++x )
{
assert(x.F()->V(x.I())==&(*vi));
if((x.V0()<x.V1()) && x.V1()->IsRW() && !x.V1()->IsV()){
x.V1()->SetV();
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(x.V0(),x.V1()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp )));
}
if((x.V0()<x.V2()) && x.V2()->IsRW()&& !x.V2()->IsV()){
x.V2()->SetV();
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(x.V0(),x.V2()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp )));
}
}
(*pf).V(j)->ClearW();
(*pf).V1(j)->ClearW();
}
}
else
if(pp->PreserveBoundary)
{
WV().clear();
for(auto pf=m.face.begin();pf!=m.face.end();++pf)
if( !(*pf).IsD() && (*pf).IsW() )
for(int j=0;j<3;++j)
if((*pf).IsB(j))
{
if((*pf).V(j)->IsW()) {(*pf).V(j)->ClearW(); WV().push_back((*pf).V(j));}
if((*pf).V1(j)->IsW()) {(*pf).V1(j)->ClearW();WV().push_back((*pf).V1(j));}
}
}
InitQuadric(m,pp);
// Initialize the heap with all the possible collapses
if(IsSymmetric(pp))
{ // if the collapse is symmetric (e.g. u->v == v->u)
for(auto vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && (*vi).IsRW())
{
vcg::face::VFIterator<FaceType> x;
for( x.F() = (*vi).VFp(), x.I() = (*vi).VFi(); x.F()!=0; ++ x){
x.V1()->ClearV();
x.V2()->ClearV();
}
for( x.F() = (*vi).VFp(), x.I() = (*vi).VFi(); x.F()!=0; ++x )
{
if((x.V0()<x.V1()) && x.V1()->IsRW() && !x.V1()->IsV()){
x.V1()->SetV();
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(x.V0(),x.V1()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp )));
}
if((x.V0()<x.V2()) && x.V2()->IsRW()&& !x.V2()->IsV()){
x.V2()->SetV();
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(x.V0(),x.V2()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp )));
}
}
}
}
else
{ // if the collapse is A-symmetric (e.g. u->v != v->u)
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && (*vi).IsRW())
{
vcg::face::VFIterator<FaceType> x;
UnMarkAll(m);
for( x.F() = (*vi).VFp(), x.I() = (*vi).VFi(); x.F()!=0; ++ x)
{
assert(x.F()->V(x.I())==&(*vi));
if(x.V()->IsRW() && x.V1()->IsRW() && !IsMarked(m,x.F()->V1(x.I()))){
h_ret.push_back( HeapElem( new MYTYPE( VertexPair (x.V(),x.V1()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp)));
}
if(x.V()->IsRW() && x.V2()->IsRW() && !IsMarked(m,x.F()->V2(x.I()))){
h_ret.push_back( HeapElem( new MYTYPE( VertexPair (x.V(),x.V2()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp)));
}
}
}
}
}
static float HeapSimplexRatio(BaseParameterClass *_pp) {return IsSymmetric(_pp)?5.0f:9.0f;}
for(auto vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && (*vi).IsRW())
{
vcg::face::VFIterator<FaceType> x;
UnMarkAll(m);
for( x.F() = (*vi).VFp(), x.I() = (*vi).VFi(); x.F()!=0; ++ x)
{
if(x.V()->IsRW() && x.V1()->IsRW() && !IsMarked(m,x.F()->V1(x.I()))){
h_ret.push_back( HeapElem( new MYTYPE( VertexPair (x.V(),x.V1()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp)));
}
if(x.V()->IsRW() && x.V2()->IsRW() && !IsMarked(m,x.F()->V2(x.I()))){
h_ret.push_back( HeapElem( new MYTYPE( VertexPair (x.V(),x.V2()),TriEdgeCollapse< TriMeshType,VertexPair,MYTYPE>::GlobalMark(),_pp)));
}
}
}
}
}
// static float HeapSimplexRatio(BaseParameterClass *_pp) {return IsSymmetric(_pp)?5.0f:9.0f;}
static float HeapSimplexRatio(BaseParameterClass *_pp) {return IsSymmetric(_pp)?4.0f:8.0f;}
static bool IsSymmetric(BaseParameterClass *_pp) {return ((QParameter *)_pp)->OptimalPlacement;}
static bool IsVertexStable(BaseParameterClass *_pp) {return !((QParameter *)_pp)->OptimalPlacement;}
@ -315,60 +303,83 @@ public:
ScalarType ComputePriority(BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
std::vector<CoordType> onVec; // vector with incident faces original normals
VertexType * v[2];
v[0] = this->pos.V(0);
v[1] = this->pos.V(1);
if(pp->NormalCheck){ // Compute maximal normal variation
// store the old normals for non-collapsed face in v0
std::vector<CoordType> origNormalVec; // vector with incident faces original normals
if(pp->NormalCheck){ // Collect Original Normals
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
if( x.V1()!=v[1] && x.V2()!=v[1] ) // skip faces with v1
onVec.push_back(TriangleNormal(*x.F()).Normalize());
// store the old normals for non-collapsed face in v1
if( x.V1()!=v[1] && x.V2()!=v[1] ) // skip faces with v1
origNormalVec.push_back(NormalizedTriangleNormal(*x.F()));
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
onVec.push_back(TriangleNormal(*x.F()).Normalize());
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
origNormalVec.push_back(NormalizedTriangleNormal(*x.F()));
}
ScalarType origArea=0;
if(pp->AreaCheck){ // Collect Original Area
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
origArea += DoubleArea(*x.F());
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
origArea += DoubleArea(*x.F());
}
ScalarType origQual= std::numeric_limits<double>::max();
if(pp->HardQualityCheck){ // Collect original quality
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
origQual=std::min(origQual, QualityFace(*x.F()));
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
origQual=std::min(origQual, QualityFace(*x.F()));
}
//// Move the two vertexes into new position (storing the old ones)
CoordType OldPos0=v[0]->P();
CoordType OldPos1=v[1]->P();
CoordType newPos = ComputePosition(_pp);
v[0]->P() = v[1]->P() = newPos;
ComputePosition(_pp);
// Now Simulate the collapse
v[0]->P() = v[1]->P() = this->optimalPos;
//// Rescan faces and compute the worst quality and normals that happens after collapse
ScalarType MinCos = std::numeric_limits<double>::max(); // Cosine of the angle variation: -1 ~ very bad to 1~perfect
if(pp->NormalCheck){
int i=0;
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
if( x.V1()!=v[1] && x.V2()!=v[1] ) // skipping faces with v1
{
CoordType nn=NormalizedTriangleNormal(*x.F());
MinCos=std::min(MinCos,nn.dot(origNormalVec[i++]));
}
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
{
CoordType nn=NormalizedTriangleNormal(*x.F());
MinCos=std::min(MinCos,nn.dot(origNormalVec[i++]));
}
}
//// Rescan faces and compute quality and difference between normals
int i=0;
double MinCos = std::numeric_limits<double>::max(); // minimo coseno di variazione di una normale della faccia
// (e.g. max angle) Mincos varia da 1 (normali coincidenti) a
// -1 (normali opposte);
double MinQual = std::numeric_limits<double>::max();
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
if( x.V1()!=v[1] && x.V2()!=v[1] ) // skiping faces with v1
{
if(pp->NormalCheck){
CoordType nn=NormalizedTriangleNormal(*x.F());
double ndiff=nn.dot(onVec[i++]);
MinCos=std::min(MinCos,ndiff);
}
if(pp->QualityCheck){
double qt= QualityFace(*x.F());
MinQual=std::min(MinQual,qt);
}
}
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
{
if(pp->NormalCheck){
CoordType nn=NormalizedTriangleNormal(*x.F());
double ndiff=nn.dot(onVec[i++]);
MinCos=std::min(MinCos,ndiff);
}
if(pp->QualityCheck){
double qt= QualityFace(*x.F());
MinQual=std::min(MinQual,qt);
}
}
ScalarType newQual = std::numeric_limits<ScalarType>::max(); //
if(pp->QualityCheck){
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
if( x.V1()!=v[1] && x.V2()!=v[1] )
newQual=std::min(newQual,QualityFace(*x.F()));
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
newQual=std::min(newQual,QualityFace(*x.F()));
}
ScalarType newArea=0;
if(pp->AreaCheck){ // Collect Area
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
newArea += DoubleArea(*x.F());
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
newArea += DoubleArea(*x.F());
}
QuadricType qq=QH::Qd(v[0]);
qq+=QH::Qd(v[1]);
@ -377,28 +388,40 @@ public:
assert(!math::IsNAN(QuadErr));
// All collapses involving triangles with quality larger than <QualityThr> have no penalty;
if(MinQual>pp->QualityThr) MinQual=pp->QualityThr;
if(newQual>pp->QualityThr) newQual=pp->QualityThr;
if(pp->NormalCheck){
// All collapses where the normal vary less than <NormalThr> (e.g. more than CosineThr)
// have no penalty
// have no particular penalty
if(MinCos>pp->CosineThr) MinCos=pp->CosineThr;
MinCos=fabs((MinCos+1)/2.0); // Now it is in the range 0..1 with 0 very dangerous!
MinCos=fabs((MinCos+1.0)/2.0); // Now it is in the range 0..1 with 0 very bad!
assert(MinCos >=0 && MinCos<1.1 );
}
QuadErr= std::max(QuadErr,pp->QuadricEpsilon);
if(QuadErr <= pp->QuadricEpsilon)
{
QuadErr = - 1/Distance(OldPos0,OldPos1);
QuadErr *= Distance(OldPos0,OldPos1);
}
if( pp->UseVertexWeight ) QuadErr *= (QH::W(v[1])+QH::W(v[0]))/2;
ScalarType error;
if(!pp->QualityCheck && !pp->NormalCheck) error = (ScalarType)(QuadErr);
if( pp->QualityCheck && !pp->NormalCheck) error = (ScalarType)(QuadErr / MinQual);
if( pp->QualityCheck && !pp->NormalCheck) error = (ScalarType)(QuadErr / newQual);
if(!pp->QualityCheck && pp->NormalCheck) error = (ScalarType)(QuadErr / MinCos);
if( pp->QualityCheck && pp->NormalCheck) error = (ScalarType)(QuadErr / (MinQual*MinCos));
if( pp->QualityCheck && pp->NormalCheck) error = (ScalarType)(QuadErr / (newQual*MinCos));
if(pp->AreaCheck && ((fabs(origArea-newArea)/(origArea+newArea))>0.01) )
error = std::numeric_limits<ScalarType>::max();
if(pp->HardQualityCheck &&
(newQual < pp->HardQualityThr && newQual < origQual*0.9) )
error = std::numeric_limits<ScalarType>::max();
if(pp->HardNormalCheck)
if(CheckForFlip()) error = std::numeric_limits<ScalarType>::max();
// Restore old position of v0 and v1
v[0]->P()=OldPos0;
@ -408,17 +431,95 @@ public:
return this->_priority;
}
//
//static double MaxError() {return 1e100;}
//
bool CheckForFlippedFaceOverVertex(VertexType *vp, ScalarType angleThrRad = math::ToRad(150.))
{
std::map<VertexType *, CoordType> edgeNormMap;
ScalarType maxAngle=0;
for(VFIterator x(vp); !x.End(); ++x ) // for all faces in v1
{
if(QualityFace(*x.F()) <0.01 ) return true;
for(int i=0;i<2;++i)
{
VertexType *vv= i==0?x.V1():x.V2();
assert(vv!=vp);
auto ni = edgeNormMap.find(vv);
if(ni==edgeNormMap.end()) edgeNormMap[vv] = NormalizedTriangleNormal(*x.F());
else maxAngle = std::max(maxAngle,AngleN(NormalizedTriangleNormal(*x.F()),ni->second));
}
}
return (maxAngle > angleThrRad);
}
// This function return true if, after an edge collapse,
// among the surviving faces, there are two adjacent faces forming a
// diedral angle larger than the given threshold
// It assumes that the two vertexes of the collapsing edge
// have been already moved to the new position but the topolgy has not yet been changed (e.g. there are two zero-area faces)
bool CheckForFlip(ScalarType angleThrRad = math::ToRad(150.))
{
std::map<VertexType *, CoordType> edgeNormMap;
VertexType * v[2];
v[0] = this->pos.V(0);
v[1] = this->pos.V(1);
ScalarType maxAngle=0;
assert (v[0]->P()==v[1]->P());
for(VFIterator x(v[0]); !x.End(); ++x ) // for all faces in v0
if( x.V1()!=v[1] && x.V2()!=v[1] ) // skip faces with v1
{
if(QualityFace(*x.F()) <0.01 ) return true;
for(int i=0;i<2;++i)
{
VertexType *vv= (i==0)?x.V1():x.V2();
assert(vv!=v[0]);
auto ni = edgeNormMap.find(vv);
if(ni==edgeNormMap.end()) edgeNormMap[vv] = NormalizedTriangleNormal(*x.F());
else maxAngle = std::max(maxAngle,AngleN(NormalizedTriangleNormal(*x.F()),ni->second));
}
}
for(VFIterator x(v[1]); !x.End(); ++x ) // for all faces in v1
if( x.V1()!=v[0] && x.V2()!=v[0] ) // skip faces with v0
{
if(QualityFace(*x.F()) <0.01 ) return true;
for(int i=0;i<2;++i)
{
VertexType *vv= i==0?x.V1():x.V2();
assert(vv!=v[1]);
auto ni = edgeNormMap.find(vv);
if(ni==edgeNormMap.end()) edgeNormMap[vv] = NormalizedTriangleNormal(*x.F());
else maxAngle = std::max(maxAngle,AngleN(NormalizedTriangleNormal(*x.F()),ni->second));
}
}
return (maxAngle > angleThrRad);
}
inline void AddCollapseToHeap(HeapType & h_ret, VertexType *v0, VertexType *v1, BaseParameterClass *_pp)
{
QParameter *pp=(QParameter *)_pp;
ScalarType maxAdmitErr = std::numeric_limits<ScalarType>::max();
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(v0,v1), this->GlobalMark(),_pp)));
std::push_heap(h_ret.begin(),h_ret.end());
if(h_ret.back().pri > maxAdmitErr) {
delete h_ret.back().locModPtr;
h_ret.pop_back();
}
else
std::push_heap(h_ret.begin(),h_ret.end());
if(!IsSymmetric(pp)){
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(v1,v0), this->GlobalMark(),_pp)));
std::push_heap(h_ret.begin(),h_ret.end());
if(h_ret.back().pri > maxAdmitErr) {
delete h_ret.back().locModPtr;
h_ret.pop_back();
}
else
std::push_heap(h_ret.begin(),h_ret.end());
}
}
@ -434,6 +535,8 @@ public:
for(VFIterator vfi(v[1]); !vfi.End(); ++vfi ) {
vfi.V1()->ClearV();
vfi.V2()->ClearV();
vfi.V1()->IMark() = this->GlobalMark();
vfi.V2()->IMark() = this->GlobalMark();
}
// Second Loop
@ -457,8 +560,7 @@ public:
{
QParameter *pp=(QParameter *)_pp;
QH::Init();
// m.ClearFlags();
for(VertexIterator pv=m.vert.begin();pv!=m.vert.end();++pv) // Azzero le quadriche
for(VertexIterator pv=m.vert.begin();pv!=m.vert.end();++pv)
if( ! (*pv).IsD() && (*pv).IsW())
QH::Qd(*pv).SetZero();
@ -487,9 +589,9 @@ public:
QuadricType bq;
// Border quadric record the squared distance from the plane orthogonal to the face and passing
// through the edge.
borderPlane.SetDirection(facePlane.Direction() ^ ( (*fi).V1(j)->cP() - (*fi).V(j)->cP() ).normalized());
if( (*fi).IsB(j) ) borderPlane.SetDirection(borderPlane.Direction()* (ScalarType)(pp->BoundaryWeight )); // amplify border planes
else borderPlane.SetDirection(borderPlane.Direction()* (ScalarType)(pp->BoundaryWeight/100.0)); // and consider much less quadric for quality
borderPlane.SetDirection(facePlane.Direction() ^ (( (*fi).V1(j)->cP() - (*fi).V(j)->cP() ).normalized()));
if( (*fi).IsB(j) ) borderPlane.SetDirection(borderPlane.Direction()* (ScalarType)(pp->BoundaryQuadricWeight )); // amplify border planes
else borderPlane.SetDirection(borderPlane.Direction()* (ScalarType)(pp->QualityQuadricWeight )); // and consider much less quadric for quality
borderPlane.SetOffset(borderPlane.Direction().dot((*fi).V(j)->cP()));
bq.ByPlane(borderPlane);
@ -518,36 +620,24 @@ public:
}
}
//
//
//
//
//
//
//static void InitMesh(MESH_TYPE &m){
// pp->CosineThr=cos(pp->NormalThr);
// InitQuadric(m);
// //m.Topology();
// //OldInitQuadric(m,UseArea);
// }
//
CoordType ComputeMinimal()
CoordType ComputeMinimal()
{
}
CoordType ComputeMinimalOld()
{
typename TriMeshType::VertexType * v[2];
v[0] = this->pos.V(0);
v[1] = this->pos.V(1);
QuadricType q=QH::Qd(v[0]);
q+=QH::Qd(v[1]);
VertexType* &v0 = this->pos.V(0);
VertexType* &v1 = this->pos.V(1);
QuadricType q=QH::Qd(v0);
q+=QH::Qd(v1);
Point3<QuadricType::ScalarType> x;
bool rt=q.Minimum(x);
if(!rt) { // if the computation of the minimum fails we choose between the two edge points and the middle one.
Point3<QuadricType::ScalarType> x0=Point3d::Construct(v[0]->P());
Point3<QuadricType::ScalarType> x1=Point3d::Construct(v[1]->P());
x.Import((v[0]->P()+v[1]->P())/2);
Point3<QuadricType::ScalarType> x0=Point3d::Construct(v0->P());
Point3<QuadricType::ScalarType> x1=Point3d::Construct(v1->P());
x.Import((v1->P()+v1->P())/2);
double qvx=q.Apply(x);
double qv0=q.Apply(x0);
double qv1=q.Apply(x1);
@ -557,10 +647,8 @@ public:
return CoordType::Construct(x);
}
//
//
};
} // namespace tri
} // namespace vcg
} // namespace tri
} // namespace vcg
#endif