Heavily restructured (an almost complete rewrite) of the class that convert a mesh to a distance field and run marching cubes on it.

This commit is contained in:
Paolo Cignoni 2008-07-01 09:37:31 +00:00
parent 4e6ff1e97a
commit 8314b1759a
1 changed files with 167 additions and 335 deletions

View File

@ -1,19 +1,38 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_MESH_RESAMPLER #ifndef __VCG_MESH_RESAMPLER
#define __VCG_MESH_RESAMPLER #define __VCG_MESH_RESAMPLER
#include <vcg/complex/trimesh/update/normal.h> #include <vcg/complex/trimesh/update/normal.h>
#include <vcg/complex/trimesh/update/bounding.h> #include <vcg/complex/trimesh/update/bounding.h>
#include <vcg/complex/trimesh/update/edges.h> #include <vcg/complex/trimesh/update/edges.h>
//#include <vcg/complex/trimesh/create/extended_marching_cubes.h>
#include <vcg/complex/trimesh/create/marching_cubes.h> #include <vcg/complex/trimesh/create/marching_cubes.h>
#include <vcg/space/index/grid_static_ptr.h> #include <vcg/space/index/grid_static_ptr.h>
#include <vcg/complex/trimesh/closest.h> #include <vcg/complex/trimesh/closest.h>
#include <vcg/space/box3.h> #include <vcg/space/box3.h>
//#include <volume_dataset.h>//debugghe
namespace vcg { namespace vcg {
namespace trimesh { namespace tri {
/** \addtogroup trimesh */ /** \addtogroup trimesh */
@ -25,38 +44,31 @@ namespace trimesh {
@param NEW_MESH_TYPE (Template Parameter) Specifies the type of output mesh. @param NEW_MESH_TYPE (Template Parameter) Specifies the type of output mesh.
*/ */
template <class OLD_MESH_TYPE,class NEW_MESH_TYPE> template <class OLD_MESH_TYPE,class NEW_MESH_TYPE, class FLT>
class Resampler class Resampler : public BasicGrid<FLT>
{ {
typedef typename OLD_MESH_TYPE Old_Mesh; typedef OLD_MESH_TYPE Old_Mesh;
typedef typename NEW_MESH_TYPE New_Mesh; typedef NEW_MESH_TYPE New_Mesh;
template <class OLD_MESH_TYPE,class NEW_MESH_TYPE> //template <class OLD_MESH_TYPE,class NEW_MESH_TYPE>
class Walker class Walker : BasicGrid<float>
{ {
private: private:
typedef int VertexIndex; typedef int VertexIndex;
typedef typename OLD_MESH_TYPE Old_Mesh; typedef OLD_MESH_TYPE Old_Mesh;
typedef typename NEW_MESH_TYPE New_Mesh; typedef NEW_MESH_TYPE New_Mesh;
typedef typename New_Mesh::CoordType NewCoordType; typedef typename New_Mesh::CoordType NewCoordType;
typedef typename New_Mesh::VertexType* VertexPointer; typedef typename New_Mesh::VertexType* VertexPointer;
typedef typename Old_Mesh::FaceContainer FaceCont; typedef typename Old_Mesh::FaceContainer FaceCont;
typedef typename vcg::GridStaticPtr<typename Old_Mesh::FaceType> GridType; typedef typename vcg::GridStaticPtr<typename Old_Mesh::FaceType> GridType;
typedef typename vcg::Box3<int> BoundingBox;
//typedef typename std::pair<vcg::Point3i,vcg::Point3i> PointPair;
typedef vcg::tri::Allocator< New_Mesh > Allocator;
protected: protected:
BoundingBox _bbox;
vcg::Point3i _resolution;
vcg::Point3i _cell_size;
int SliceSize;
int CurrentSlice;
typedef trimesh::FaceTmark<Old_Mesh> MarkerFace;
MarkerFace markerFunctor;
float dim_diag;
int _slice_dimension;
int _current_slice;
VertexIndex *_x_cs; // indici dell'intersezioni della superficie lungo gli Xedge della fetta corrente VertexIndex *_x_cs; // indici dell'intersezioni della superficie lungo gli Xedge della fetta corrente
VertexIndex *_y_cs; // indici dell'intersezioni della superficie lungo gli Yedge della fetta corrente VertexIndex *_y_cs; // indici dell'intersezioni della superficie lungo gli Yedge della fetta corrente
@ -77,78 +89,32 @@ class Resampler
public: public:
float max_dim; float max_dim;
/*Walker(Volume_Dataset <short> *Vo,float in,const BoundingBox &bbox,vcg::Point3i &resolution) float offset; // an offset value that is always added to the returned value. Useful for extrarcting isosurface at a different threshold
/*Walker(Volume_Dataset <short> *Vo,float in,const Box3i &bbox,vcg::Point3i &resolution)
{*/ {*/
/* init=in; /* init=in;
Vol=Vo;*/ Vol=Vo;*/
void SetBBParameters()
Walker(const Box3f &_bbox, Point3i _siz )
{ {
_cell_size.X() =_bbox.DimX()/_resolution.X(); this->bbox= _bbox;
_cell_size.Y() =_bbox.DimY()/_resolution.Y(); this->siz=_siz;
_cell_size.Z() =_bbox.DimZ()/_resolution.Z(); ComputeDimAndVoxel();
///extend bb until the box - resolution and cell matches
while ((_bbox.DimX()%_cell_size.X())!=0)
_bbox.max.X()++;
while ((_bbox.DimY()%_cell_size.Y())!=0)
_bbox.max.Y()++;
while ((_bbox.DimZ()%_cell_size.Z())!=0)
_bbox.max.Z()++;
//exetend bb to 1 cell for each side SliceSize = (this->siz.X()+1)*(this->siz.Z()+1);
_bbox.max+=_cell_size; CurrentSlice = 0;
_bbox.min-=_cell_size; offset=0;
///resetting resolution values _x_cs = new VertexIndex[ SliceSize ];
_resolution.X()=_bbox.DimX()/_cell_size.X(); _y_cs = new VertexIndex[ SliceSize ];
_resolution.Y()=_bbox.DimY()/_cell_size.Y(); _z_cs = new VertexIndex[ SliceSize ];
_resolution.Z()=_bbox.DimZ()/_cell_size.Z(); _x_ns = new VertexIndex[ SliceSize ];
_z_ns = new VertexIndex[ SliceSize ];
///asserting values _v_cs= new field_value[(this->siz.X()+1)*(this->siz.Z()+1)];
assert(_bbox.DimX()%_cell_size.X()==0); _v_ns= new field_value[(this->siz.X()+1)*(this->siz.Z()+1)];
assert(_bbox.DimY()%_cell_size.Y()==0);
assert(_bbox.DimZ()%_cell_size.Z()==0);
assert(_cell_size.X()*_resolution.X()==_bbox.DimX());
assert(_cell_size.Y()*_resolution.Y()==_bbox.DimY());
assert(_cell_size.Z()*_resolution.Z()==_bbox.DimZ());
_slice_dimension = (_resolution.X()+1)*(_resolution.Z()+1);
//Point3f diag=Point3f((float)_cell_size.V(0),(float)_cell_size.V(1),(float)_cell_size.V(2));
//max_dim=diag.Norm();///diagonal of a cell
//
_current_slice = _bbox.min.Y();
Point3f minD=Point3f((float)_bbox.min.V(0),(float)_bbox.min.V(1),(float)_bbox.min.V(2));
Point3f maxD=Point3f((float)_bbox.max.V(0),(float)_bbox.max.V(1),(float)_bbox.max.V(2));
/*Point3f d=(maxD-minD);
dim_diag=d.Norm();*/
}
Walker(const BoundingBox &bbox,vcg::Point3i &resolution)
{
assert (resolution.V(0)<=bbox.DimX());
assert (resolution.V(1)<=bbox.DimY());
assert (resolution.V(2)<=bbox.DimZ());
_bbox= bbox;
_resolution = resolution;
SetBBParameters();
_x_cs = new VertexIndex[ _slice_dimension ];
_y_cs = new VertexIndex[ _slice_dimension ];
_z_cs = new VertexIndex[ _slice_dimension ];
_x_ns = new VertexIndex[ _slice_dimension ];
_z_ns = new VertexIndex[ _slice_dimension ];
_v_cs= new field_value[(_resolution.X()+1)*(_resolution.Z()+1)];
_v_ns= new field_value[(_resolution.X()+1)*(_resolution.Z()+1)];
}; };
@ -156,14 +122,14 @@ class Resampler
{} {}
float V(Point3i p) float V(const Point3i &p)
{ {
return (V(p.V(0),p.V(1),p.V(2))); return (V(p.V(0),p.V(1),p.V(2)));
} }
float V(int x,int y,int z) float V(int x,int y,int z)
{ {
assert ((y==_current_slice)||(y==(_current_slice+_cell_size.Y()))); assert ((y==CurrentSlice)||(y==(CurrentSlice+1)));
//test if it is outside the bb of the mesh //test if it is outside the bb of the mesh
//vcg::Point3f test=vcg::Point3f((float)x,(float)y,(float)z); //vcg::Point3f test=vcg::Point3f((float)x,(float)y,(float)z);
@ -171,70 +137,60 @@ class Resampler
return (1.f);*/ return (1.f);*/
int index=GetSliceIndex(x,z); int index=GetSliceIndex(x,z);
if (y==_current_slice) if (y==CurrentSlice)
{ {
//assert(_v_cs[index]<dim_diag); return _v_cs[index].second+offset;
assert(_v_cs[index].first);
return _v_cs[index].second;
} }
else else
{ {
//assert(_v_ns[index]<dim_diag); return _v_ns[index].second+offset;
assert(_v_ns[index].first);
return _v_ns[index].second;
} }
} }
///return true if the distance form the mesh is less than maxdim and return distance ///return true if the distance form the mesh is less than maxdim and return distance
bool DistanceFromMesh(int x,int y,int z,Old_Mesh *mesh,float &dist) bool DistanceFromMesh(int x,int y,int z,Old_Mesh *mesh, float &dist)
{ {
Old_Mesh::FaceType *f=NULL; typename Old_Mesh::FaceType *f=NULL;
//float distm=max_dim; const float max_dist = max_dim;
dist=max_dim; vcg::Point3f testPt;
vcg::Point3f test=vcg::Point3f((float)x,(float)y,(float)z); this->IPToP(Point3i(x,y,z),testPt);
////test if it is outside the bb of the mesh vcg::Point3f closestNorm;
/*if (!_oldM->bbox.IsIn(test)) vcg::Point3f closestPt;
{
dist=1.f;
return true;
}*/
vcg::Point3f Norm;
vcg::Point3f Target;
vcg::Point3f pip; vcg::Point3f pip;
//vcg::tri::get<Old_Mesh,GridType,float>((*mesh),test,_g,dist,Norm,Target,f,pip); // Note that PointDistanceBaseFunctor does not require the edge and plane precomptued.
// while the PointDistanceFunctor requires them.
f= vcg::trimesh::GetClosestFace<Old_Mesh,GridType>( *mesh,_g,test,max_dim,dist,Target,Norm,pip); vcg::face::PointDistanceBaseFunctor PDistFunct;
f = _g.GetClosest(PDistFunct,markerFunctor,testPt,max_dist,dist,closestPt);
if (f==NULL)
return false; if (f==NULL) return false;
else
{ InterpolationParameters(*f,closestPt, pip[0], pip[1], pip[2]);
assert(!f->IsD()); closestNorm = (f->V(0)->cN())*pip[0]+ (f->V(1)->cN())*pip[1] + (f->V(2)->cN())*pip[2] ;
Point3f dir=(test-Target);
assert(!f->IsD());
Point3f dir=(testPt-closestPt);
/* dist=dir.Norm();*/ /* dist=dir.Norm();*/
dir.Normalize(); dir.Normalize();
//direction of normal inside the mesh //direction of normal inside the mesh
if ((dir*Norm)<0) if ((dir*closestNorm)<0)
dist=-dist; dist=-dist;
//the intersection exist //the intersection exist
return true; return true;
}
} }
///compute the values if an entire slice (per y) distances>dig of a cell are signed with double of ///compute the values if an entire slice (per y) distances>dig of a cell are signed with double of
/// the distance of the bb /// the distance of the bb
void CumputeSliceValues(int slice,field_value *slice_values) void ComputeSliceValues(int slice,field_value *slice_values)
{ {
float dist; float dist;
for (int i=_bbox.min.X(); i<=_bbox.max.X(); i+=_cell_size.X()) for (int i=0; i<=this->siz.X(); i++)
{ {
for (int k=_bbox.min.Z(); k<=_bbox.max.Z(); k+=_cell_size.Z()) for (int k=0; k<=this->siz.Z(); k++)
{ {
int index=GetSliceIndex(i,k); int index=GetSliceIndex(i,k);
if (DistanceFromMesh(i,slice,k,_oldM,dist))///compute the distance,inside volume of the mesh is negative if (DistanceFromMesh(i,slice,k,_oldM,dist))///compute the distance,inside volume of the mesh is negative
{ {
@ -249,137 +205,68 @@ class Resampler
} }
template<class EXTRACTOR_TYPE> template<class EXTRACTOR_TYPE>
void ProcessSlice(std::vector<vcg::Point3i> cells,EXTRACTOR_TYPE &extractor) void ProcessSlice(EXTRACTOR_TYPE &extractor)
{ {
std::vector<vcg::Point3i>::iterator it; for (int i=0; i<this->siz.X(); i++)
for (it=cells.begin();it<cells.end();it++)
{ {
assert((*it).Y()==_current_slice); for (int k=0; k<this->siz.Z(); k++)
assert(V(*it)<=max_dim); {
assert(_bbox.IsIn(*it)); Point3i p1(i,CurrentSlice,k);
vcg::Point3i p1=(*it)+_cell_size; Point3i p2=p1+Point3i(1,1,1);
assert((*it)<_bbox.max); extractor.ProcessCell(p1, p2);
assert(p1<=_bbox.max); }
extractor.ProcessCell((*it), p1);
} }
} }
void SetGrid()
{
_g.Set(_oldM->face.begin(),_oldM->face.end());
}
template<class EXTRACTOR_TYPE> template<class EXTRACTOR_TYPE>
void BuildMesh(Old_Mesh &old_mesh,New_Mesh &new_mesh,EXTRACTOR_TYPE &extractor) void BuildMesh(Old_Mesh &old_mesh,New_Mesh &new_mesh,EXTRACTOR_TYPE &extractor,vcg::CallBackPos *cb)
{ {
_newM=&new_mesh; _newM=&new_mesh;
_oldM=&old_mesh; _oldM=&old_mesh;
SetGrid(); // the following two steps are required to be sure that the point-face distance without precomputed data works well.
tri::UpdateNormals<Old_Mesh>::PerFaceNormalized(old_mesh);
tri::UpdateFlags<Old_Mesh>::FaceProjection(old_mesh);
_g.Set(_oldM->face.begin(),_oldM->face.end());
markerFunctor.SetMesh(&old_mesh);
_newM->Clear(); _newM->Clear();
vcg::Point3i p1, p2;
Begin(); Begin();
extractor.Initialize(); extractor.Initialize();
for (int j=_bbox.min.Y(); j<=_bbox.max.Y()-_cell_size.Y(); j+=_cell_size.Y())
for (int j=0; j<=this->siz.Y(); j++)
{ {
ProcessSlice<EXTRACTOR_TYPE>(FindCells(),extractor);//find cells where there is the isosurface and examine it cb((100*j)/this->siz.Y(),"Marching ");
ProcessSlice<EXTRACTOR_TYPE>(extractor);//find cells where there is the isosurface and examine it
NextSlice(); NextSlice();
} }
extractor.Finalize(); extractor.Finalize();
/*_newM= NULL;*/
typename New_Mesh::VertexIterator vi;
for(vi=new_mesh.vert.begin();vi!=new_mesh.vert.end();++vi)
if(!(*vi).IsD())
{
IPToP((*vi).cP(),(*vi).P());
}
} }
//return the index of a vertex in slide as it was stored //return the index of a vertex in slide as it was stored
int GetSliceIndex(int x,int z) int GetSliceIndex(int x,int z)
{ {
int ii = (x - _bbox.min.X())/_cell_size.X(); VertexIndex index = x+z*(this->siz.X()+1);
int zz = (z - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = ii+zz*(_resolution.X()+1);
return (index); return (index);
} }
///return true if exist in the cell one value <0 and another one >0
bool FindMinMax(vcg::Point3i min,vcg::Point3i max)
{
assert((min.X()<max.X())&&(min.Y()<max.Y())&&(min.Z()<max.Z()));
vcg::Point3i _corners[8];
///control for each corner of the
_corners[0].X()=min.X(); _corners[0].Y()=min.Y(); _corners[0].Z()=min.Z();
_corners[1].X()=max.X(); _corners[1].Y()=min.Y(); _corners[1].Z()=min.Z();
_corners[2].X()=max.X(); _corners[2].Y()=max.Y(); _corners[2].Z()=min.Z();
_corners[3].X()=min.X(); _corners[3].Y()=max.Y(); _corners[3].Z()=min.Z();
_corners[4].X()=min.X(); _corners[4].Y()=min.Y(); _corners[4].Z()=max.Z();
_corners[5].X()=max.X(); _corners[5].Y()=min.Y(); _corners[5].Z()=max.Z();
_corners[6].X()=max.X(); _corners[6].Y()=max.Y(); _corners[6].Z()=max.Z();
_corners[7].X()=min.X(); _corners[7].Y()=max.Y(); _corners[7].Z()=max.Z();
float min_value=max_dim;
float max_value=-max_dim;
field_value value;
for (int i=0;i<8;i++)
{
//if one value is > that bbox.diag this value is not valid
//that is the mark
if (_corners[i].Y()==_current_slice)
value=_v_cs[GetSliceIndex(_corners[i].X(),_corners[i].Z())];
else
value=_v_ns[GetSliceIndex(_corners[i].X(),_corners[i].Z())];
if (value.first==false)
return false;
//assign new values of min and max
if (value.second<min_value)
min_value=value.second;
if (value.second>max_value)
max_value=value.second;
}
/////do not test with zero..
if ((min_value<=0.f)&&(max_value>=0.f))
return true;
return false;
}
///filter the cells from to_hexamine vector to the ones that
/// min and max of the cell are <0 and >0
std::vector<vcg::Point3i> FindCells()
{
std::vector<vcg::Point3i> res;
for (int i=_bbox.min.X(); i<=_bbox.max.X()-_cell_size.X(); i+=_cell_size.X())
{
for (int k=_bbox.min.Z(); k<=_bbox.max.Z()-_cell_size.Z(); k+=_cell_size.Z())
{
int x0=i;
int y0=_current_slice;
int z0=k;
int x1=x0+_cell_size.X();
int y1=y0+_cell_size.Y();
int z1=z0+_cell_size.Z();
vcg::Point3i p0=Point3i(x0,y0,z0);
vcg::Point3i p1=Point3i(x1,y1,z1);
assert(p0<_bbox.max);
if (FindMinMax(p0,p1))
res.push_back(p0);
}
}
return res;
}
//swap slices , the initial value of distance fields ids set as double of bbox of space //swap slices , the initial value of distance fields ids set as double of bbox of space
void NextSlice() void NextSlice()
{ {
memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_x_cs, -1, SliceSize*sizeof(VertexIndex));
memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_y_cs, -1, SliceSize*sizeof(VertexIndex));
memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_z_cs, -1, SliceSize*sizeof(VertexIndex));
std::swap(_x_cs, _x_ns); std::swap(_x_cs, _x_ns);
@ -387,35 +274,25 @@ class Resampler
std::swap(_v_cs, _v_ns); std::swap(_v_cs, _v_ns);
_current_slice += _cell_size.Y(); CurrentSlice ++;
//memset(_v_ns, dim_diag*2.f, _slice_dimension*sizeof(float)); ComputeSliceValues(CurrentSlice + 1,_v_ns);
//memset(_v_ns, field_value(false,0.f), _slice_dimension*sizeof(field_value));
CumputeSliceValues(_current_slice+ _cell_size.Y(),_v_ns);
} }
//initialize data strucures , the initial value of distance fields ids set as double of bbox of space //initialize data strucures , the initial value of distance fields ids set as double of bbox of space
void Begin() void Begin()
{ {
_current_slice = _bbox.min.Y(); CurrentSlice = 0;
memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_x_cs, -1, SliceSize*sizeof(VertexIndex));
memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_y_cs, -1, SliceSize*sizeof(VertexIndex));
memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_z_cs, -1, SliceSize*sizeof(VertexIndex));
memset(_x_ns, -1, _slice_dimension*sizeof(VertexIndex)); memset(_x_ns, -1, SliceSize*sizeof(VertexIndex));
memset(_z_ns, -1, _slice_dimension*sizeof(VertexIndex)); memset(_z_ns, -1, SliceSize*sizeof(VertexIndex));
/*memset(_v_cs, dim_diag*2.f, _slice_dimension*sizeof(float)); ComputeSliceValues(CurrentSlice,_v_cs);
memset(_v_ns, dim_diag*2.f, _slice_dimension*sizeof(float));*/ ComputeSliceValues(CurrentSlice+1,_v_ns);
/*memset(_v_cs, field_value(false,0.f), _slice_dimension*sizeof(field_value));
memset(_v_ns, field_value(false,0.f), _slice_dimension*sizeof(field_value));*/
CumputeSliceValues(_current_slice,_v_cs);
CumputeSliceValues(_current_slice+_cell_size.Y(),_v_ns);
} }
@ -423,15 +300,15 @@ class Resampler
bool Exist(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) bool Exist(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
{ {
int i = (p1.X() - _bbox.min.X())/_cell_size.X(); int i = p1.X();// - _bbox.min.X())/_cell_size.X();
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z(); int z = p1.Z();// - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*_resolution.X(); VertexIndex index = i+z*this->siz.X();
//VertexIndex index =GetSliceIndex(// //VertexIndex index =GetSliceIndex(//
int v_ind = 0; int v_ind = 0;
if (p1.X()!=p2.X()) //intersezione della superficie con un Xedge if (p1.X()!=p2.X()) //intersezione della superficie con un Xedge
{ {
if (p1.Y()==_current_slice) if (p1.Y()==CurrentSlice)
{ {
if (_x_cs[index]!=-1) if (_x_cs[index]!=-1)
{ {
@ -474,7 +351,7 @@ class Resampler
else if (p1.Z()!=p2.Z()) else if (p1.Z()!=p2.Z())
//intersezione della superficie con un Zedge //intersezione della superficie con un Zedge
{ {
if (p1.Y()==_current_slice) if (p1.Y()==CurrentSlice)
{ {
if ( _z_cs[index]!=-1) if ( _z_cs[index]!=-1)
{ {
@ -516,31 +393,33 @@ class Resampler
///if there is a vertex in z axis of a cell return the vertex or create it ///if there is a vertex in z axis of a cell return the vertex or create it
void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
{ {
assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y()))); assert(p1.X()+1 == p2.X());
assert(p1.Y() == p2.Y());
int i = (p1.X() - _bbox.min.X())/_cell_size.X(); assert(p1.Z() == p2.Z());
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*_resolution.X(); int i = p1.X();// (p1.X() - _bbox.min.X())/_cell_size.X();
int z = p1.Z();//(p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*this->siz.X();
VertexIndex pos; VertexIndex pos;
if (p1.Y()==_current_slice) if (p1.Y()==CurrentSlice)
{ {
if ((pos=_x_cs[index])==-1) if ((pos=_x_cs[index])==-1)
{ {
_x_cs[index] = (VertexIndex) _newM->vert.size(); _x_cs[index] = (VertexIndex) _newM->vert.size();
pos = _x_cs[index]; pos = _x_cs[index];
Allocator::AddVertices( *_newM, 1 ); Allocator<New_Mesh>::AddVertices( *_newM, 1 );
v = &_newM->vert[pos]; v = &_newM->vert[pos];
v->P()=Interpolate(p1,p2,0); v->P()=Interpolate(p1,p2,0);
return; return;
} }
} }
if (p1.Y()==_current_slice+_cell_size.Y()) if (p1.Y()==CurrentSlice+1)
{ {
if ((pos=_x_ns[index])==-1) if ((pos=_x_ns[index])==-1)
{ {
_x_ns[index] = (VertexIndex) _newM->vert.size(); _x_ns[index] = (VertexIndex) _newM->vert.size();
pos = _x_ns[index]; pos = _x_ns[index];
Allocator::AddVertices( *_newM, 1 ); Allocator<New_Mesh>::AddVertices( *_newM, 1 );
v = &_newM->vert[pos]; v = &_newM->vert[pos];
v->P()=Interpolate(p1,p2,0); v->P()=Interpolate(p1,p2,0);
return; return;
@ -552,17 +431,19 @@ class Resampler
///if there is a vertex in y axis of a cell return the vertex or create it ///if there is a vertex in y axis of a cell return the vertex or create it
void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
{ {
assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y()))); assert(p1.X() == p2.X());
assert(p1.Y()+1 == p2.Y());
int i = (p1.X() - _bbox.min.X())/_cell_size.X(); assert(p1.Z() == p2.Z());
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*_resolution.X(); int i = p1.X(); // (p1.X() - _bbox.min.X())/_cell_size.X();
int z = p1.Z(); // (p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*this->siz.X();
VertexIndex pos; VertexIndex pos;
if ((pos=_y_cs[index])==-1) if ((pos=_y_cs[index])==-1)
{ {
_y_cs[index] = (VertexIndex) _newM->vert.size(); _y_cs[index] = (VertexIndex) _newM->vert.size();
pos = _y_cs[index]; pos = _y_cs[index];
Allocator::AddVertices( *_newM, 1); Allocator<New_Mesh>::AddVertices( *_newM, 1);
v = &_newM->vert[ pos ]; v = &_newM->vert[ pos ];
v->P()=Interpolate(p1,p2,1); v->P()=Interpolate(p1,p2,1);
} }
@ -572,32 +453,34 @@ class Resampler
///if there is a vertex in z axis of a cell return the vertex or create it ///if there is a vertex in z axis of a cell return the vertex or create it
void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
{ {
assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y()))); assert(p1.X() == p2.X());
assert(p1.Y() == p2.Y());
int i = (p1.X() - _bbox.min.X())/_cell_size.X(); assert(p1.Z()+1 == p2.Z());
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*_resolution.X(); int i = p1.X(); //(p1.X() - _bbox.min.X())/_cell_size.X();
int z = p1.Z(); //(p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*this->siz.X();
VertexIndex pos; VertexIndex pos;
if (p1.Y()==_current_slice) if (p1.Y()==CurrentSlice)
{ {
if ((pos=_z_cs[index])==-1) if ((pos=_z_cs[index])==-1)
{ {
_z_cs[index] = (VertexIndex) _newM->vert.size(); _z_cs[index] = (VertexIndex) _newM->vert.size();
pos = _z_cs[index]; pos = _z_cs[index];
Allocator::AddVertices( *_newM, 1 ); Allocator<New_Mesh>::AddVertices( *_newM, 1 );
v = &_newM->vert[pos]; v = &_newM->vert[pos];
v->P()=Interpolate(p1,p2,2); v->P()=Interpolate(p1,p2,2);
return; return;
} }
} }
if (p1.Y()==_current_slice+_cell_size.Y()) if (p1.Y()==CurrentSlice+1)
{ {
if ((pos=_z_ns[index])==-1) if ((pos=_z_ns[index])==-1)
{ {
_z_ns[index] = (VertexIndex) _newM->vert.size(); _z_ns[index] = (VertexIndex) _newM->vert.size();
pos = _z_ns[index]; pos = _z_ns[index];
Allocator::AddVertices( *_newM, 1 ); Allocator<New_Mesh>::AddVertices( *_newM, 1 );
v = &_newM->vert[pos]; v = &_newM->vert[pos];
v->P()=Interpolate(p1,p2,2); v->P()=Interpolate(p1,p2,2);
return; return;
@ -610,75 +493,24 @@ class Resampler
public: public:
typedef typename Walker< Old_Mesh,New_Mesh> MyWalker; typedef Walker /*< Old_Mesh,New_Mesh>*/ MyWalker;
typedef typename vcg::tri::MarchingCubes<New_Mesh, MyWalker> MarchingCubes; typedef vcg::tri::MarchingCubes<New_Mesh, MyWalker> MyMarchingCubes;
///resample the mesh using marching cube algorithm ,the accuracy is the dimension of one cell the parameter ///resample the mesh using marching cube algorithm ,the accuracy is the dimension of one cell the parameter
static void Resample(Old_Mesh &old_mesh,New_Mesh &new_mesh,vcg::Point3<int> accuracy,float max_dist) static void Resample(Old_Mesh &old_mesh,New_Mesh &new_mesh,vcg::Point3<int> accuracy,float max_dist, float thr=0, vcg::CallBackPos *cb )
{ {
new_mesh.Clear();
if (Old_Mesh::HasPerFaceNormal())
vcg::tri::UpdateNormals<Old_Mesh>::PerFaceNormalized(old_mesh);
if (Old_Mesh::HasPerVertexNormal())
vcg::tri::UpdateNormals<Old_Mesh>::PerVertexNormalized(old_mesh);
///the mesh must have plane for ugrid
if (!Old_Mesh::FaceType::HasEdgePlane())
assert(0);
else
vcg::tri::UpdateEdges<Old_Mesh>::Set(old_mesh);
///be sure that the bounding box is updated ///be sure that the bounding box is updated
vcg::tri::UpdateBounding<Old_Mesh>::Box(old_mesh); vcg::tri::UpdateBounding<Old_Mesh>::Box(old_mesh);
Box3f volumeBox = old_mesh.bbox;
// MARCHING CUBES CALLS volumeBox.Offset(volumeBox.Diag()/10.0f);
Point3i min=Point3i((int)ceil(old_mesh.bbox.min.V(0)),(int)ceil(old_mesh.bbox.min.V(1)),(int)ceil(old_mesh.bbox.min.V(2))); MyWalker walker(volumeBox,accuracy);
Point3i max=Point3i((int)ceil(old_mesh.bbox.max.V(0)),(int)ceil(old_mesh.bbox.max.V(1)),(int)ceil(old_mesh.bbox.max.V(2)));
vcg::Box3<int> boxInt=Box3<int>(min,max);
float rx=((float)boxInt.DimX())/(float)accuracy.X();
float ry=((float)boxInt.DimY())/(float)accuracy.Y();
float rz=((float)boxInt.DimZ())/(float)accuracy.Z();
int rxi=(int)ceil(rx);
int ryi=(int)ceil(ry);
int rzi=(int)ceil(rz);
Point3i res=Point3i(rxi,ryi,rzi);
MyWalker walker(boxInt,res);
walker.max_dim=max_dist;
/*new_mesh.vert.reserve(old_mesh.vn*2);
new_mesh.face.reserve(old_mesh.fn*2);*/
/*if (mm==MMarchingCubes)
{*/
MarchingCubes mc(new_mesh, walker);
walker.BuildMesh<MarchingCubes>(old_mesh,new_mesh,mc);
/*}*/
/*else if (mm==MExtendedMarchingCubes)
{
ExtendedMarchingCubes mc(new_mesh, walker,30);
walker.BuildMesh<ExtendedMarchingCubes>(old_mesh,new_mesh,mc);
}*/
if (New_Mesh::HasFFTopology())
vcg::tri::UpdateTopology<New_Mesh>::FaceFace(new_mesh);
if (New_Mesh::HasVFTopology())
vcg::tri::UpdateTopology<New_Mesh>::VertexFace(new_mesh);
if (New_Mesh::HasPerFaceNormal())
vcg::tri::UpdateNormals<New_Mesh>::PerFaceNormalized(new_mesh);
if (New_Mesh::HasPerVertexNormal())
vcg::tri::UpdateNormals<New_Mesh>::PerVertexNormalized(new_mesh);
walker.max_dim=max_dist+fabs(thr);
walker.offset = - thr;
MyMarchingCubes mc(new_mesh, walker);
walker.BuildMesh(old_mesh,new_mesh,mc,cb);
} }