Heavily restructured (an almost complete rewrite) of the class that convert a mesh to a distance field and run marching cubes on it.
This commit is contained in:
parent
4e6ff1e97a
commit
8314b1759a
|
@ -1,19 +1,38 @@
|
|||
/****************************************************************************
|
||||
* VCGLib o o *
|
||||
* Visual and Computer Graphics Library o o *
|
||||
* _ O _ *
|
||||
* Copyright(C) 2004 \/)\/ *
|
||||
* Visual Computing Lab /\/| *
|
||||
* ISTI - Italian National Research Council | *
|
||||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||||
* for more details. *
|
||||
* *
|
||||
****************************************************************************/
|
||||
#ifndef __VCG_MESH_RESAMPLER
|
||||
#define __VCG_MESH_RESAMPLER
|
||||
|
||||
#include <vcg/complex/trimesh/update/normal.h>
|
||||
#include <vcg/complex/trimesh/update/bounding.h>
|
||||
#include <vcg/complex/trimesh/update/edges.h>
|
||||
//#include <vcg/complex/trimesh/create/extended_marching_cubes.h>
|
||||
#include <vcg/complex/trimesh/create/marching_cubes.h>
|
||||
#include <vcg/space/index/grid_static_ptr.h>
|
||||
#include <vcg/complex/trimesh/closest.h>
|
||||
#include <vcg/space/box3.h>
|
||||
|
||||
//#include <volume_dataset.h>//debugghe
|
||||
|
||||
namespace vcg {
|
||||
namespace trimesh {
|
||||
namespace tri {
|
||||
|
||||
|
||||
/** \addtogroup trimesh */
|
||||
|
@ -25,37 +44,30 @@ namespace trimesh {
|
|||
@param NEW_MESH_TYPE (Template Parameter) Specifies the type of output mesh.
|
||||
*/
|
||||
|
||||
template <class OLD_MESH_TYPE,class NEW_MESH_TYPE>
|
||||
class Resampler
|
||||
template <class OLD_MESH_TYPE,class NEW_MESH_TYPE, class FLT>
|
||||
class Resampler : public BasicGrid<FLT>
|
||||
{
|
||||
typedef typename OLD_MESH_TYPE Old_Mesh;
|
||||
typedef typename NEW_MESH_TYPE New_Mesh;
|
||||
typedef OLD_MESH_TYPE Old_Mesh;
|
||||
typedef NEW_MESH_TYPE New_Mesh;
|
||||
|
||||
template <class OLD_MESH_TYPE,class NEW_MESH_TYPE>
|
||||
class Walker
|
||||
//template <class OLD_MESH_TYPE,class NEW_MESH_TYPE>
|
||||
class Walker : BasicGrid<float>
|
||||
{
|
||||
private:
|
||||
typedef int VertexIndex;
|
||||
typedef typename OLD_MESH_TYPE Old_Mesh;
|
||||
typedef typename NEW_MESH_TYPE New_Mesh;
|
||||
typedef OLD_MESH_TYPE Old_Mesh;
|
||||
typedef NEW_MESH_TYPE New_Mesh;
|
||||
typedef typename New_Mesh::CoordType NewCoordType;
|
||||
typedef typename New_Mesh::VertexType* VertexPointer;
|
||||
typedef typename Old_Mesh::FaceContainer FaceCont;
|
||||
typedef typename vcg::GridStaticPtr<typename Old_Mesh::FaceType> GridType;
|
||||
typedef typename vcg::Box3<int> BoundingBox;
|
||||
//typedef typename std::pair<vcg::Point3i,vcg::Point3i> PointPair;
|
||||
typedef vcg::tri::Allocator< New_Mesh > Allocator;
|
||||
|
||||
protected:
|
||||
BoundingBox _bbox;
|
||||
vcg::Point3i _resolution;
|
||||
vcg::Point3i _cell_size;
|
||||
|
||||
|
||||
float dim_diag;
|
||||
|
||||
int _slice_dimension;
|
||||
int _current_slice;
|
||||
int SliceSize;
|
||||
int CurrentSlice;
|
||||
typedef trimesh::FaceTmark<Old_Mesh> MarkerFace;
|
||||
MarkerFace markerFunctor;
|
||||
|
||||
|
||||
VertexIndex *_x_cs; // indici dell'intersezioni della superficie lungo gli Xedge della fetta corrente
|
||||
|
@ -77,78 +89,32 @@ class Resampler
|
|||
|
||||
public:
|
||||
float max_dim;
|
||||
/*Walker(Volume_Dataset <short> *Vo,float in,const BoundingBox &bbox,vcg::Point3i &resolution)
|
||||
float offset; // an offset value that is always added to the returned value. Useful for extrarcting isosurface at a different threshold
|
||||
/*Walker(Volume_Dataset <short> *Vo,float in,const Box3i &bbox,vcg::Point3i &resolution)
|
||||
{*/
|
||||
/* init=in;
|
||||
Vol=Vo;*/
|
||||
|
||||
void SetBBParameters()
|
||||
|
||||
|
||||
Walker(const Box3f &_bbox, Point3i _siz )
|
||||
{
|
||||
_cell_size.X() =_bbox.DimX()/_resolution.X();
|
||||
_cell_size.Y() =_bbox.DimY()/_resolution.Y();
|
||||
_cell_size.Z() =_bbox.DimZ()/_resolution.Z();
|
||||
this->bbox= _bbox;
|
||||
this->siz=_siz;
|
||||
ComputeDimAndVoxel();
|
||||
|
||||
///extend bb until the box - resolution and cell matches
|
||||
while ((_bbox.DimX()%_cell_size.X())!=0)
|
||||
_bbox.max.X()++;
|
||||
SliceSize = (this->siz.X()+1)*(this->siz.Z()+1);
|
||||
CurrentSlice = 0;
|
||||
offset=0;
|
||||
|
||||
while ((_bbox.DimY()%_cell_size.Y())!=0)
|
||||
_bbox.max.Y()++;
|
||||
_x_cs = new VertexIndex[ SliceSize ];
|
||||
_y_cs = new VertexIndex[ SliceSize ];
|
||||
_z_cs = new VertexIndex[ SliceSize ];
|
||||
_x_ns = new VertexIndex[ SliceSize ];
|
||||
_z_ns = new VertexIndex[ SliceSize ];
|
||||
|
||||
while ((_bbox.DimZ()%_cell_size.Z())!=0)
|
||||
_bbox.max.Z()++;
|
||||
|
||||
//exetend bb to 1 cell for each side
|
||||
_bbox.max+=_cell_size;
|
||||
_bbox.min-=_cell_size;
|
||||
|
||||
///resetting resolution values
|
||||
_resolution.X()=_bbox.DimX()/_cell_size.X();
|
||||
_resolution.Y()=_bbox.DimY()/_cell_size.Y();
|
||||
_resolution.Z()=_bbox.DimZ()/_cell_size.Z();
|
||||
|
||||
///asserting values
|
||||
assert(_bbox.DimX()%_cell_size.X()==0);
|
||||
assert(_bbox.DimY()%_cell_size.Y()==0);
|
||||
assert(_bbox.DimZ()%_cell_size.Z()==0);
|
||||
|
||||
assert(_cell_size.X()*_resolution.X()==_bbox.DimX());
|
||||
assert(_cell_size.Y()*_resolution.Y()==_bbox.DimY());
|
||||
assert(_cell_size.Z()*_resolution.Z()==_bbox.DimZ());
|
||||
|
||||
_slice_dimension = (_resolution.X()+1)*(_resolution.Z()+1);
|
||||
|
||||
//Point3f diag=Point3f((float)_cell_size.V(0),(float)_cell_size.V(1),(float)_cell_size.V(2));
|
||||
//max_dim=diag.Norm();///diagonal of a cell
|
||||
//
|
||||
_current_slice = _bbox.min.Y();
|
||||
|
||||
Point3f minD=Point3f((float)_bbox.min.V(0),(float)_bbox.min.V(1),(float)_bbox.min.V(2));
|
||||
Point3f maxD=Point3f((float)_bbox.max.V(0),(float)_bbox.max.V(1),(float)_bbox.max.V(2));
|
||||
/*Point3f d=(maxD-minD);
|
||||
dim_diag=d.Norm();*/
|
||||
}
|
||||
|
||||
Walker(const BoundingBox &bbox,vcg::Point3i &resolution)
|
||||
{
|
||||
assert (resolution.V(0)<=bbox.DimX());
|
||||
assert (resolution.V(1)<=bbox.DimY());
|
||||
assert (resolution.V(2)<=bbox.DimZ());
|
||||
|
||||
_bbox= bbox;
|
||||
|
||||
_resolution = resolution;
|
||||
|
||||
SetBBParameters();
|
||||
|
||||
_x_cs = new VertexIndex[ _slice_dimension ];
|
||||
_y_cs = new VertexIndex[ _slice_dimension ];
|
||||
_z_cs = new VertexIndex[ _slice_dimension ];
|
||||
_x_ns = new VertexIndex[ _slice_dimension ];
|
||||
_z_ns = new VertexIndex[ _slice_dimension ];
|
||||
|
||||
_v_cs= new field_value[(_resolution.X()+1)*(_resolution.Z()+1)];
|
||||
_v_ns= new field_value[(_resolution.X()+1)*(_resolution.Z()+1)];
|
||||
_v_cs= new field_value[(this->siz.X()+1)*(this->siz.Z()+1)];
|
||||
_v_ns= new field_value[(this->siz.X()+1)*(this->siz.Z()+1)];
|
||||
|
||||
};
|
||||
|
||||
|
@ -156,14 +122,14 @@ class Resampler
|
|||
{}
|
||||
|
||||
|
||||
float V(Point3i p)
|
||||
float V(const Point3i &p)
|
||||
{
|
||||
return (V(p.V(0),p.V(1),p.V(2)));
|
||||
}
|
||||
|
||||
float V(int x,int y,int z)
|
||||
{
|
||||
assert ((y==_current_slice)||(y==(_current_slice+_cell_size.Y())));
|
||||
assert ((y==CurrentSlice)||(y==(CurrentSlice+1)));
|
||||
|
||||
//test if it is outside the bb of the mesh
|
||||
//vcg::Point3f test=vcg::Point3f((float)x,(float)y,(float)z);
|
||||
|
@ -171,70 +137,60 @@ class Resampler
|
|||
return (1.f);*/
|
||||
int index=GetSliceIndex(x,z);
|
||||
|
||||
if (y==_current_slice)
|
||||
if (y==CurrentSlice)
|
||||
{
|
||||
//assert(_v_cs[index]<dim_diag);
|
||||
assert(_v_cs[index].first);
|
||||
return _v_cs[index].second;
|
||||
return _v_cs[index].second+offset;
|
||||
}
|
||||
else
|
||||
{
|
||||
//assert(_v_ns[index]<dim_diag);
|
||||
assert(_v_ns[index].first);
|
||||
return _v_ns[index].second;
|
||||
return _v_ns[index].second+offset;
|
||||
}
|
||||
}
|
||||
///return true if the distance form the mesh is less than maxdim and return distance
|
||||
bool DistanceFromMesh(int x,int y,int z,Old_Mesh *mesh, float &dist)
|
||||
{
|
||||
|
||||
Old_Mesh::FaceType *f=NULL;
|
||||
//float distm=max_dim;
|
||||
dist=max_dim;
|
||||
vcg::Point3f test=vcg::Point3f((float)x,(float)y,(float)z);
|
||||
typename Old_Mesh::FaceType *f=NULL;
|
||||
const float max_dist = max_dim;
|
||||
vcg::Point3f testPt;
|
||||
this->IPToP(Point3i(x,y,z),testPt);
|
||||
|
||||
////test if it is outside the bb of the mesh
|
||||
/*if (!_oldM->bbox.IsIn(test))
|
||||
{
|
||||
dist=1.f;
|
||||
return true;
|
||||
}*/
|
||||
|
||||
vcg::Point3f Norm;
|
||||
vcg::Point3f Target;
|
||||
vcg::Point3f closestNorm;
|
||||
vcg::Point3f closestPt;
|
||||
vcg::Point3f pip;
|
||||
|
||||
//vcg::tri::get<Old_Mesh,GridType,float>((*mesh),test,_g,dist,Norm,Target,f,pip);
|
||||
// Note that PointDistanceBaseFunctor does not require the edge and plane precomptued.
|
||||
// while the PointDistanceFunctor requires them.
|
||||
|
||||
f= vcg::trimesh::GetClosestFace<Old_Mesh,GridType>( *mesh,_g,test,max_dim,dist,Target,Norm,pip);
|
||||
vcg::face::PointDistanceBaseFunctor PDistFunct;
|
||||
f = _g.GetClosest(PDistFunct,markerFunctor,testPt,max_dist,dist,closestPt);
|
||||
|
||||
if (f==NULL) return false;
|
||||
|
||||
InterpolationParameters(*f,closestPt, pip[0], pip[1], pip[2]);
|
||||
closestNorm = (f->V(0)->cN())*pip[0]+ (f->V(1)->cN())*pip[1] + (f->V(2)->cN())*pip[2] ;
|
||||
|
||||
if (f==NULL)
|
||||
return false;
|
||||
else
|
||||
{
|
||||
assert(!f->IsD());
|
||||
Point3f dir=(test-Target);
|
||||
Point3f dir=(testPt-closestPt);
|
||||
/* dist=dir.Norm();*/
|
||||
|
||||
dir.Normalize();
|
||||
//direction of normal inside the mesh
|
||||
if ((dir*Norm)<0)
|
||||
if ((dir*closestNorm)<0)
|
||||
dist=-dist;
|
||||
//the intersection exist
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
///compute the values if an entire slice (per y) distances>dig of a cell are signed with double of
|
||||
/// the distance of the bb
|
||||
void CumputeSliceValues(int slice,field_value *slice_values)
|
||||
void ComputeSliceValues(int slice,field_value *slice_values)
|
||||
{
|
||||
float dist;
|
||||
for (int i=_bbox.min.X(); i<=_bbox.max.X(); i+=_cell_size.X())
|
||||
for (int i=0; i<=this->siz.X(); i++)
|
||||
{
|
||||
for (int k=_bbox.min.Z(); k<=_bbox.max.Z(); k+=_cell_size.Z())
|
||||
for (int k=0; k<=this->siz.Z(); k++)
|
||||
{
|
||||
|
||||
int index=GetSliceIndex(i,k);
|
||||
if (DistanceFromMesh(i,slice,k,_oldM,dist))///compute the distance,inside volume of the mesh is negative
|
||||
{
|
||||
|
@ -249,137 +205,68 @@ class Resampler
|
|||
}
|
||||
|
||||
template<class EXTRACTOR_TYPE>
|
||||
void ProcessSlice(std::vector<vcg::Point3i> cells,EXTRACTOR_TYPE &extractor)
|
||||
void ProcessSlice(EXTRACTOR_TYPE &extractor)
|
||||
{
|
||||
std::vector<vcg::Point3i>::iterator it;
|
||||
|
||||
for (it=cells.begin();it<cells.end();it++)
|
||||
for (int i=0; i<this->siz.X(); i++)
|
||||
{
|
||||
assert((*it).Y()==_current_slice);
|
||||
assert(V(*it)<=max_dim);
|
||||
assert(_bbox.IsIn(*it));
|
||||
vcg::Point3i p1=(*it)+_cell_size;
|
||||
assert((*it)<_bbox.max);
|
||||
assert(p1<=_bbox.max);
|
||||
extractor.ProcessCell((*it), p1);
|
||||
for (int k=0; k<this->siz.Z(); k++)
|
||||
{
|
||||
Point3i p1(i,CurrentSlice,k);
|
||||
Point3i p2=p1+Point3i(1,1,1);
|
||||
extractor.ProcessCell(p1, p2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void SetGrid()
|
||||
{
|
||||
_g.Set(_oldM->face.begin(),_oldM->face.end());
|
||||
}
|
||||
|
||||
template<class EXTRACTOR_TYPE>
|
||||
void BuildMesh(Old_Mesh &old_mesh,New_Mesh &new_mesh,EXTRACTOR_TYPE &extractor)
|
||||
void BuildMesh(Old_Mesh &old_mesh,New_Mesh &new_mesh,EXTRACTOR_TYPE &extractor,vcg::CallBackPos *cb)
|
||||
{
|
||||
_newM=&new_mesh;
|
||||
_oldM=&old_mesh;
|
||||
|
||||
SetGrid();
|
||||
// the following two steps are required to be sure that the point-face distance without precomputed data works well.
|
||||
tri::UpdateNormals<Old_Mesh>::PerFaceNormalized(old_mesh);
|
||||
tri::UpdateFlags<Old_Mesh>::FaceProjection(old_mesh);
|
||||
|
||||
_g.Set(_oldM->face.begin(),_oldM->face.end());
|
||||
markerFunctor.SetMesh(&old_mesh);
|
||||
|
||||
_newM->Clear();
|
||||
|
||||
vcg::Point3i p1, p2;
|
||||
Begin();
|
||||
extractor.Initialize();
|
||||
for (int j=_bbox.min.Y(); j<=_bbox.max.Y()-_cell_size.Y(); j+=_cell_size.Y())
|
||||
|
||||
for (int j=0; j<=this->siz.Y(); j++)
|
||||
{
|
||||
ProcessSlice<EXTRACTOR_TYPE>(FindCells(),extractor);//find cells where there is the isosurface and examine it
|
||||
cb((100*j)/this->siz.Y(),"Marching ");
|
||||
ProcessSlice<EXTRACTOR_TYPE>(extractor);//find cells where there is the isosurface and examine it
|
||||
NextSlice();
|
||||
}
|
||||
extractor.Finalize();
|
||||
/*_newM= NULL;*/
|
||||
|
||||
typename New_Mesh::VertexIterator vi;
|
||||
for(vi=new_mesh.vert.begin();vi!=new_mesh.vert.end();++vi)
|
||||
if(!(*vi).IsD())
|
||||
{
|
||||
IPToP((*vi).cP(),(*vi).P());
|
||||
}
|
||||
}
|
||||
|
||||
//return the index of a vertex in slide as it was stored
|
||||
int GetSliceIndex(int x,int z)
|
||||
{
|
||||
int ii = (x - _bbox.min.X())/_cell_size.X();
|
||||
int zz = (z - _bbox.min.Z())/_cell_size.Z();
|
||||
VertexIndex index = ii+zz*(_resolution.X()+1);
|
||||
VertexIndex index = x+z*(this->siz.X()+1);
|
||||
return (index);
|
||||
}
|
||||
|
||||
///return true if exist in the cell one value <0 and another one >0
|
||||
bool FindMinMax(vcg::Point3i min,vcg::Point3i max)
|
||||
{
|
||||
assert((min.X()<max.X())&&(min.Y()<max.Y())&&(min.Z()<max.Z()));
|
||||
|
||||
vcg::Point3i _corners[8];
|
||||
///control for each corner of the
|
||||
_corners[0].X()=min.X(); _corners[0].Y()=min.Y(); _corners[0].Z()=min.Z();
|
||||
_corners[1].X()=max.X(); _corners[1].Y()=min.Y(); _corners[1].Z()=min.Z();
|
||||
_corners[2].X()=max.X(); _corners[2].Y()=max.Y(); _corners[2].Z()=min.Z();
|
||||
_corners[3].X()=min.X(); _corners[3].Y()=max.Y(); _corners[3].Z()=min.Z();
|
||||
_corners[4].X()=min.X(); _corners[4].Y()=min.Y(); _corners[4].Z()=max.Z();
|
||||
_corners[5].X()=max.X(); _corners[5].Y()=min.Y(); _corners[5].Z()=max.Z();
|
||||
_corners[6].X()=max.X(); _corners[6].Y()=max.Y(); _corners[6].Z()=max.Z();
|
||||
_corners[7].X()=min.X(); _corners[7].Y()=max.Y(); _corners[7].Z()=max.Z();
|
||||
|
||||
float min_value=max_dim;
|
||||
float max_value=-max_dim;
|
||||
field_value value;
|
||||
for (int i=0;i<8;i++)
|
||||
{
|
||||
//if one value is > that bbox.diag this value is not valid
|
||||
//that is the mark
|
||||
|
||||
if (_corners[i].Y()==_current_slice)
|
||||
value=_v_cs[GetSliceIndex(_corners[i].X(),_corners[i].Z())];
|
||||
else
|
||||
value=_v_ns[GetSliceIndex(_corners[i].X(),_corners[i].Z())];
|
||||
|
||||
if (value.first==false)
|
||||
return false;
|
||||
|
||||
//assign new values of min and max
|
||||
if (value.second<min_value)
|
||||
min_value=value.second;
|
||||
if (value.second>max_value)
|
||||
max_value=value.second;
|
||||
}
|
||||
|
||||
/////do not test with zero..
|
||||
if ((min_value<=0.f)&&(max_value>=0.f))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
///filter the cells from to_hexamine vector to the ones that
|
||||
/// min and max of the cell are <0 and >0
|
||||
std::vector<vcg::Point3i> FindCells()
|
||||
{
|
||||
std::vector<vcg::Point3i> res;
|
||||
for (int i=_bbox.min.X(); i<=_bbox.max.X()-_cell_size.X(); i+=_cell_size.X())
|
||||
{
|
||||
for (int k=_bbox.min.Z(); k<=_bbox.max.Z()-_cell_size.Z(); k+=_cell_size.Z())
|
||||
{
|
||||
int x0=i;
|
||||
int y0=_current_slice;
|
||||
int z0=k;
|
||||
int x1=x0+_cell_size.X();
|
||||
int y1=y0+_cell_size.Y();
|
||||
int z1=z0+_cell_size.Z();
|
||||
vcg::Point3i p0=Point3i(x0,y0,z0);
|
||||
vcg::Point3i p1=Point3i(x1,y1,z1);
|
||||
assert(p0<_bbox.max);
|
||||
if (FindMinMax(p0,p1))
|
||||
res.push_back(p0);
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
//swap slices , the initial value of distance fields ids set as double of bbox of space
|
||||
void NextSlice()
|
||||
{
|
||||
|
||||
memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_x_cs, -1, SliceSize*sizeof(VertexIndex));
|
||||
memset(_y_cs, -1, SliceSize*sizeof(VertexIndex));
|
||||
memset(_z_cs, -1, SliceSize*sizeof(VertexIndex));
|
||||
|
||||
|
||||
std::swap(_x_cs, _x_ns);
|
||||
|
@ -387,35 +274,25 @@ class Resampler
|
|||
|
||||
std::swap(_v_cs, _v_ns);
|
||||
|
||||
_current_slice += _cell_size.Y();
|
||||
CurrentSlice ++;
|
||||
|
||||
//memset(_v_ns, dim_diag*2.f, _slice_dimension*sizeof(float));
|
||||
//memset(_v_ns, field_value(false,0.f), _slice_dimension*sizeof(field_value));
|
||||
|
||||
CumputeSliceValues(_current_slice+ _cell_size.Y(),_v_ns);
|
||||
ComputeSliceValues(CurrentSlice + 1,_v_ns);
|
||||
}
|
||||
|
||||
//initialize data strucures , the initial value of distance fields ids set as double of bbox of space
|
||||
void Begin()
|
||||
{
|
||||
|
||||
_current_slice = _bbox.min.Y();
|
||||
CurrentSlice = 0;
|
||||
|
||||
memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_x_ns, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
memset(_z_ns, -1, _slice_dimension*sizeof(VertexIndex));
|
||||
|
||||
/*memset(_v_cs, dim_diag*2.f, _slice_dimension*sizeof(float));
|
||||
memset(_v_ns, dim_diag*2.f, _slice_dimension*sizeof(float));*/
|
||||
|
||||
/*memset(_v_cs, field_value(false,0.f), _slice_dimension*sizeof(field_value));
|
||||
memset(_v_ns, field_value(false,0.f), _slice_dimension*sizeof(field_value));*/
|
||||
|
||||
CumputeSliceValues(_current_slice,_v_cs);
|
||||
CumputeSliceValues(_current_slice+_cell_size.Y(),_v_ns);
|
||||
memset(_x_cs, -1, SliceSize*sizeof(VertexIndex));
|
||||
memset(_y_cs, -1, SliceSize*sizeof(VertexIndex));
|
||||
memset(_z_cs, -1, SliceSize*sizeof(VertexIndex));
|
||||
memset(_x_ns, -1, SliceSize*sizeof(VertexIndex));
|
||||
memset(_z_ns, -1, SliceSize*sizeof(VertexIndex));
|
||||
|
||||
ComputeSliceValues(CurrentSlice,_v_cs);
|
||||
ComputeSliceValues(CurrentSlice+1,_v_ns);
|
||||
}
|
||||
|
||||
|
||||
|
@ -423,15 +300,15 @@ class Resampler
|
|||
|
||||
bool Exist(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
|
||||
{
|
||||
int i = (p1.X() - _bbox.min.X())/_cell_size.X();
|
||||
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
||||
VertexIndex index = i+z*_resolution.X();
|
||||
int i = p1.X();// - _bbox.min.X())/_cell_size.X();
|
||||
int z = p1.Z();// - _bbox.min.Z())/_cell_size.Z();
|
||||
VertexIndex index = i+z*this->siz.X();
|
||||
|
||||
//VertexIndex index =GetSliceIndex(//
|
||||
int v_ind = 0;
|
||||
if (p1.X()!=p2.X()) //intersezione della superficie con un Xedge
|
||||
{
|
||||
if (p1.Y()==_current_slice)
|
||||
if (p1.Y()==CurrentSlice)
|
||||
{
|
||||
if (_x_cs[index]!=-1)
|
||||
{
|
||||
|
@ -474,7 +351,7 @@ class Resampler
|
|||
else if (p1.Z()!=p2.Z())
|
||||
//intersezione della superficie con un Zedge
|
||||
{
|
||||
if (p1.Y()==_current_slice)
|
||||
if (p1.Y()==CurrentSlice)
|
||||
{
|
||||
if ( _z_cs[index]!=-1)
|
||||
{
|
||||
|
@ -516,31 +393,33 @@ class Resampler
|
|||
///if there is a vertex in z axis of a cell return the vertex or create it
|
||||
void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
|
||||
{
|
||||
assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y())));
|
||||
assert(p1.X()+1 == p2.X());
|
||||
assert(p1.Y() == p2.Y());
|
||||
assert(p1.Z() == p2.Z());
|
||||
|
||||
int i = (p1.X() - _bbox.min.X())/_cell_size.X();
|
||||
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
||||
VertexIndex index = i+z*_resolution.X();
|
||||
int i = p1.X();// (p1.X() - _bbox.min.X())/_cell_size.X();
|
||||
int z = p1.Z();//(p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
||||
VertexIndex index = i+z*this->siz.X();
|
||||
VertexIndex pos;
|
||||
if (p1.Y()==_current_slice)
|
||||
if (p1.Y()==CurrentSlice)
|
||||
{
|
||||
if ((pos=_x_cs[index])==-1)
|
||||
{
|
||||
_x_cs[index] = (VertexIndex) _newM->vert.size();
|
||||
pos = _x_cs[index];
|
||||
Allocator::AddVertices( *_newM, 1 );
|
||||
Allocator<New_Mesh>::AddVertices( *_newM, 1 );
|
||||
v = &_newM->vert[pos];
|
||||
v->P()=Interpolate(p1,p2,0);
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (p1.Y()==_current_slice+_cell_size.Y())
|
||||
if (p1.Y()==CurrentSlice+1)
|
||||
{
|
||||
if ((pos=_x_ns[index])==-1)
|
||||
{
|
||||
_x_ns[index] = (VertexIndex) _newM->vert.size();
|
||||
pos = _x_ns[index];
|
||||
Allocator::AddVertices( *_newM, 1 );
|
||||
Allocator<New_Mesh>::AddVertices( *_newM, 1 );
|
||||
v = &_newM->vert[pos];
|
||||
v->P()=Interpolate(p1,p2,0);
|
||||
return;
|
||||
|
@ -552,17 +431,19 @@ class Resampler
|
|||
///if there is a vertex in y axis of a cell return the vertex or create it
|
||||
void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
|
||||
{
|
||||
assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y())));
|
||||
assert(p1.X() == p2.X());
|
||||
assert(p1.Y()+1 == p2.Y());
|
||||
assert(p1.Z() == p2.Z());
|
||||
|
||||
int i = (p1.X() - _bbox.min.X())/_cell_size.X();
|
||||
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
||||
VertexIndex index = i+z*_resolution.X();
|
||||
int i = p1.X(); // (p1.X() - _bbox.min.X())/_cell_size.X();
|
||||
int z = p1.Z(); // (p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
||||
VertexIndex index = i+z*this->siz.X();
|
||||
VertexIndex pos;
|
||||
if ((pos=_y_cs[index])==-1)
|
||||
{
|
||||
_y_cs[index] = (VertexIndex) _newM->vert.size();
|
||||
pos = _y_cs[index];
|
||||
Allocator::AddVertices( *_newM, 1);
|
||||
Allocator<New_Mesh>::AddVertices( *_newM, 1);
|
||||
v = &_newM->vert[ pos ];
|
||||
v->P()=Interpolate(p1,p2,1);
|
||||
}
|
||||
|
@ -572,32 +453,34 @@ class Resampler
|
|||
///if there is a vertex in z axis of a cell return the vertex or create it
|
||||
void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
|
||||
{
|
||||
assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y())));
|
||||
assert(p1.X() == p2.X());
|
||||
assert(p1.Y() == p2.Y());
|
||||
assert(p1.Z()+1 == p2.Z());
|
||||
|
||||
int i = (p1.X() - _bbox.min.X())/_cell_size.X();
|
||||
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
||||
VertexIndex index = i+z*_resolution.X();
|
||||
int i = p1.X(); //(p1.X() - _bbox.min.X())/_cell_size.X();
|
||||
int z = p1.Z(); //(p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
||||
VertexIndex index = i+z*this->siz.X();
|
||||
|
||||
VertexIndex pos;
|
||||
if (p1.Y()==_current_slice)
|
||||
if (p1.Y()==CurrentSlice)
|
||||
{
|
||||
if ((pos=_z_cs[index])==-1)
|
||||
{
|
||||
_z_cs[index] = (VertexIndex) _newM->vert.size();
|
||||
pos = _z_cs[index];
|
||||
Allocator::AddVertices( *_newM, 1 );
|
||||
Allocator<New_Mesh>::AddVertices( *_newM, 1 );
|
||||
v = &_newM->vert[pos];
|
||||
v->P()=Interpolate(p1,p2,2);
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (p1.Y()==_current_slice+_cell_size.Y())
|
||||
if (p1.Y()==CurrentSlice+1)
|
||||
{
|
||||
if ((pos=_z_ns[index])==-1)
|
||||
{
|
||||
_z_ns[index] = (VertexIndex) _newM->vert.size();
|
||||
pos = _z_ns[index];
|
||||
Allocator::AddVertices( *_newM, 1 );
|
||||
Allocator<New_Mesh>::AddVertices( *_newM, 1 );
|
||||
v = &_newM->vert[pos];
|
||||
v->P()=Interpolate(p1,p2,2);
|
||||
return;
|
||||
|
@ -610,75 +493,24 @@ class Resampler
|
|||
|
||||
public:
|
||||
|
||||
typedef typename Walker< Old_Mesh,New_Mesh> MyWalker;
|
||||
typedef Walker /*< Old_Mesh,New_Mesh>*/ MyWalker;
|
||||
|
||||
typedef typename vcg::tri::MarchingCubes<New_Mesh, MyWalker> MarchingCubes;
|
||||
typedef vcg::tri::MarchingCubes<New_Mesh, MyWalker> MyMarchingCubes;
|
||||
|
||||
///resample the mesh using marching cube algorithm ,the accuracy is the dimension of one cell the parameter
|
||||
static void Resample(Old_Mesh &old_mesh,New_Mesh &new_mesh,vcg::Point3<int> accuracy,float max_dist)
|
||||
static void Resample(Old_Mesh &old_mesh,New_Mesh &new_mesh,vcg::Point3<int> accuracy,float max_dist, float thr=0, vcg::CallBackPos *cb )
|
||||
{
|
||||
new_mesh.Clear();
|
||||
if (Old_Mesh::HasPerFaceNormal())
|
||||
vcg::tri::UpdateNormals<Old_Mesh>::PerFaceNormalized(old_mesh);
|
||||
if (Old_Mesh::HasPerVertexNormal())
|
||||
vcg::tri::UpdateNormals<Old_Mesh>::PerVertexNormalized(old_mesh);
|
||||
///the mesh must have plane for ugrid
|
||||
if (!Old_Mesh::FaceType::HasEdgePlane())
|
||||
assert(0);
|
||||
else
|
||||
vcg::tri::UpdateEdges<Old_Mesh>::Set(old_mesh);
|
||||
|
||||
///be sure that the bounding box is updated
|
||||
vcg::tri::UpdateBounding<Old_Mesh>::Box(old_mesh);
|
||||
|
||||
Box3f volumeBox = old_mesh.bbox;
|
||||
volumeBox.Offset(volumeBox.Diag()/10.0f);
|
||||
MyWalker walker(volumeBox,accuracy);
|
||||
|
||||
// MARCHING CUBES CALLS
|
||||
Point3i min=Point3i((int)ceil(old_mesh.bbox.min.V(0)),(int)ceil(old_mesh.bbox.min.V(1)),(int)ceil(old_mesh.bbox.min.V(2)));
|
||||
Point3i max=Point3i((int)ceil(old_mesh.bbox.max.V(0)),(int)ceil(old_mesh.bbox.max.V(1)),(int)ceil(old_mesh.bbox.max.V(2)));
|
||||
|
||||
|
||||
vcg::Box3<int> boxInt=Box3<int>(min,max);
|
||||
|
||||
|
||||
float rx=((float)boxInt.DimX())/(float)accuracy.X();
|
||||
float ry=((float)boxInt.DimY())/(float)accuracy.Y();
|
||||
float rz=((float)boxInt.DimZ())/(float)accuracy.Z();
|
||||
|
||||
int rxi=(int)ceil(rx);
|
||||
int ryi=(int)ceil(ry);
|
||||
int rzi=(int)ceil(rz);
|
||||
|
||||
Point3i res=Point3i(rxi,ryi,rzi);
|
||||
|
||||
MyWalker walker(boxInt,res);
|
||||
|
||||
walker.max_dim=max_dist;
|
||||
|
||||
/*new_mesh.vert.reserve(old_mesh.vn*2);
|
||||
new_mesh.face.reserve(old_mesh.fn*2);*/
|
||||
|
||||
/*if (mm==MMarchingCubes)
|
||||
{*/
|
||||
MarchingCubes mc(new_mesh, walker);
|
||||
walker.BuildMesh<MarchingCubes>(old_mesh,new_mesh,mc);
|
||||
/*}*/
|
||||
/*else if (mm==MExtendedMarchingCubes)
|
||||
{
|
||||
ExtendedMarchingCubes mc(new_mesh, walker,30);
|
||||
walker.BuildMesh<ExtendedMarchingCubes>(old_mesh,new_mesh,mc);
|
||||
}*/
|
||||
|
||||
|
||||
|
||||
if (New_Mesh::HasFFTopology())
|
||||
vcg::tri::UpdateTopology<New_Mesh>::FaceFace(new_mesh);
|
||||
if (New_Mesh::HasVFTopology())
|
||||
vcg::tri::UpdateTopology<New_Mesh>::VertexFace(new_mesh);
|
||||
if (New_Mesh::HasPerFaceNormal())
|
||||
vcg::tri::UpdateNormals<New_Mesh>::PerFaceNormalized(new_mesh);
|
||||
if (New_Mesh::HasPerVertexNormal())
|
||||
vcg::tri::UpdateNormals<New_Mesh>::PerVertexNormalized(new_mesh);
|
||||
|
||||
walker.max_dim=max_dist+fabs(thr);
|
||||
walker.offset = - thr;
|
||||
MyMarchingCubes mc(new_mesh, walker);
|
||||
walker.BuildMesh(old_mesh,new_mesh,mc,cb);
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue