Refactoring and cleaning of the plymc surface reconstruction algorithm

This commit is contained in:
Paolo Cignoni 2016-11-24 17:13:29 +01:00
parent cff044ca38
commit 831639d819
4 changed files with 431 additions and 191 deletions

View File

@ -35,23 +35,13 @@
#include <float.h> #include <float.h>
#include <math.h> #include <math.h>
#include <locale>
#include <iostream>
#include <list>
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/complex/complex.h> #include <vcg/complex/complex.h>
#include <vcg/complex/algorithms/update/position.h>
#include <vcg/complex/algorithms/update/normal.h>
#include <vcg/complex/algorithms/update/quality.h>
#include <vcg/complex/algorithms/update/topology.h>
#include <vcg/math/histogram.h> #include <vcg/math/histogram.h>
#include <vcg/complex/algorithms/clean.h>
#include <vcg/complex/algorithms/geodesic.h> #include <vcg/complex/algorithms/geodesic.h>
#include <wrap/io_trimesh/import.h> #include <wrap/io_trimesh/import.h>
#include <wrap/io_trimesh/export_ply.h> #include <wrap/io_trimesh/export_ply.h>
#include <wrap/ply/plystuff.h> //#include <wrap/ply/plystuff.h>
#include <vcg/complex/algorithms/create/marching_cubes.h> #include <vcg/complex/algorithms/create/marching_cubes.h>
#include <vcg/complex/algorithms/create/mc_trivial_walker.h> #include <vcg/complex/algorithms/create/mc_trivial_walker.h>
@ -61,7 +51,6 @@
#include <vcg/complex/algorithms/local_optimization/tri_edge_collapse.h> #include <vcg/complex/algorithms/local_optimization/tri_edge_collapse.h>
#include <vcg/complex/algorithms/local_optimization/tri_edge_collapse_quadric.h> #include <vcg/complex/algorithms/local_optimization/tri_edge_collapse_quadric.h>
//#include <vcg/simplex/edge/base.h>
#include <stdarg.h> #include <stdarg.h>
#include "volume.h" #include "volume.h"
#include "tri_edge_collapse_mc.h" #include "tri_edge_collapse_mc.h"
@ -73,6 +62,15 @@ template<class MeshType>
void MCSimplify( MeshType &m, float perc, bool preserveBB=true, vcg::CallBackPos *cb=0); void MCSimplify( MeshType &m, float perc, bool preserveBB=true, vcg::CallBackPos *cb=0);
/** Surface Reconstruction
*
* To allow the managment of a very large set of meshes to be merged,
* it is templated on a MeshProvider class that is able to provide the meshes to be merged.
* IT is the surface reconstrction algorithm that have been used for a long time inside the ISTI-Visual Computer Lab.
* It is mostly a variant of the Curless et al. e.g. a volumetric approach with some original weighting schemes,"
* a different expansion rule, and another approach to hole filling through volume dilation/relaxations.
*/
template < class SMesh, class MeshProvider> template < class SMesh, class MeshProvider>
class PlyMC class PlyMC
{ {
@ -175,6 +173,7 @@ public:
MeshProvider MP; MeshProvider MP;
Parameter p; Parameter p;
Volume<Voxelf> VV; Volume<Voxelf> VV;
char errorMessage[1024];
/// PLYMC Methods /// PLYMC Methods
@ -192,21 +191,36 @@ public:
{ {
if(!(loadmask & tri::io::Mask::IOM_VERTNORMAL)) if(!(loadmask & tri::io::Mask::IOM_VERTNORMAL))
{ {
printf("Error, pointset MUST have normals"); if(m.FN()==0)
return false; {
sprintf(errorMessage,"%sError: mesh has not per vertex normals\n",errorMessage);
return false;
}
else
{
tri::Clean<SMesh>::RemoveUnreferencedVertex(m);
tri::Allocator<SMesh>::CompactEveryVector(m);
tri::UpdateNormal<SMesh>::PerVertexNormalizedPerFaceNormalized(m);
}
} }
tri::UpdateNormal<SMesh>::NormalizePerVertex(m);
int badNormalCnt=0;
for(SVertexIterator vi=m.vert.begin(); vi!=m.vert.end();++vi) for(SVertexIterator vi=m.vert.begin(); vi!=m.vert.end();++vi)
if(math::Abs(SquaredNorm((*vi).N())-1.0)>0.0001) if(math::Abs(SquaredNorm((*vi).N())-1.0)>0.0001)
{ {
printf("Error: mesh has not per vertex normalized normals\n"); badNormalCnt++;
tri::Allocator<SMesh>::DeleteVertex(m,*vi);
}
tri::Allocator<SMesh>::CompactEveryVector(m);
if(badNormalCnt > m.VN()/10)
{
sprintf(errorMessage,"%sError: mesh has null normals\n",errorMessage);
return false; return false;
} }
if(!(loadmask & tri::io::Mask::IOM_VERTQUALITY)) if(!(loadmask & tri::io::Mask::IOM_VERTQUALITY))
tri::UpdateQuality<SMesh>::VertexConstant(m,0); tri::UpdateQuality<SMesh>::VertexConstant(m,0);
tri::UpdateNormal<SMesh>::PerVertexMatrix(m,Tr); tri::UpdateNormal<SMesh>::PerVertexMatrix(m,Tr);
//if(!(loadmask & tri::io::Mask::IOM_VERTCOLOR))
// saveMask &= ~tri::io::Mask::IOM_VERTCOLOR;
} }
else // processing for triangle meshes else // processing for triangle meshes
{ {
@ -223,7 +237,6 @@ public:
tri::UpdateTopology<SMesh>::VertexFace(m); tri::UpdateTopology<SMesh>::VertexFace(m);
tri::UpdateFlags<SMesh>::FaceBorderFromVF(m); tri::UpdateFlags<SMesh>::FaceBorderFromVF(m);
tri::Geodesic<SMesh>::DistanceFromBorder(m); tri::Geodesic<SMesh>::DistanceFromBorder(m);
// tri::UpdateQuality<SMesh>::VertexGeodesicFromBorder(m);
} }
} }
@ -325,8 +338,9 @@ public:
return true; return true;
} }
void Process(vcg::CallBackPos *cb=0) bool Process(vcg::CallBackPos *cb=0)
{ {
sprintf(errorMessage,"");
printf("bbox scanning...\n"); fflush(stdout); printf("bbox scanning...\n"); fflush(stdout);
Matrix44f Id; Id.SetIdentity(); Matrix44f Id; Id.SetIdentity();
MP.InitBBox(); MP.InitBBox();
@ -344,7 +358,6 @@ void Process(vcg::CallBackPos *cb=0)
voxdim = fullb.max - fullb.min; voxdim = fullb.max - fullb.min;
int TotAdd=0,TotMC=0,TotSav=0;
// if kcell==0 the number of cells is computed starting from required voxel size; // if kcell==0 the number of cells is computed starting from required voxel size;
__int64 cells; __int64 cells;
if(p.NCell>0) cells = (__int64)(p.NCell)*(__int64)(1000); if(p.NCell>0) cells = (__int64)(p.NCell)*(__int64)(1000);
@ -364,6 +377,7 @@ void Process(vcg::CallBackPos *cb=0)
} }
int TotAdd=0,TotMC=0,TotSav=0; // partial timings counter
for(p.IPos[0]=p.IPosS[0];p.IPos[0]<=p.IPosE[0];++p.IPos[0]) for(p.IPos[0]=p.IPosS[0];p.IPos[0]<=p.IPosE[0];++p.IPos[0])
for(p.IPos[1]=p.IPosS[1];p.IPos[1]<=p.IPosE[1];++p.IPos[1]) for(p.IPos[1]=p.IPosS[1];p.IPos[1]<=p.IPosE[1];++p.IPos[1])
@ -405,8 +419,8 @@ void Process(vcg::CallBackPos *cb=0)
res = InitMesh(*sm,MP.MeshName(i).c_str(),MP.Tr(i)); res = InitMesh(*sm,MP.MeshName(i).c_str(),MP.Tr(i));
if(!res) if(!res)
{ {
printf("Failed Init of mesh %s",MP.MeshName(i).c_str()); sprintf(errorMessage,"%sFailed Init of mesh %s\n",errorMessage,MP.MeshName(i).c_str());
return; return false ;
} }
} }
res |= AddMeshToVolumeM(*sm, MP.MeshName(i),MP.W(i)); res |= AddMeshToVolumeM(*sm, MP.MeshName(i),MP.W(i));
@ -452,26 +466,20 @@ void Process(vcg::CallBackPos *cb=0)
VV.SlicedPPM("final","__",p.SliceNum); VV.SlicedPPM("final","__",p.SliceNum);
VV.SlicedPPMQ("final","__",p.SliceNum); VV.SlicedPPMQ("final","__",p.SliceNum);
} }
//MCMesh me;
//
MCMesh me; MCMesh me;
if(res) if(res)
{ {
typedef vcg::tri::TrivialWalker<MCMesh, Volume <Voxelf> > Walker; typedef vcg::tri::TrivialWalker<MCMesh, Volume <Voxelf> > Walker;
typedef vcg::tri::MarchingCubes<MCMesh, Walker> MarchingCubes; typedef vcg::tri::MarchingCubes<MCMesh, Walker> MarchingCubes;
//typedef vcg::tri::ExtendedMarchingCubes<MCMesh, Walker> ExtendedMarchingCubes;
Walker walker; Walker walker;
MarchingCubes mc(me, walker); MarchingCubes mc(me, walker);
Box3i currentSubBox=VV.SubPartSafe;
Point3i currentSubBoxRes=VV.ssz;
/**********************/ /**********************/
if(cb) cb(50,"Step 2: Marching Cube..."); if(cb) cb(50,"Step 2: Marching Cube...");
else printf("Step 2: Marching Cube...\n"); else printf("Step 2: Marching Cube...\n");
/**********************/ /**********************/
walker.Init(VV,currentSubBox); walker.SetExtractionBox(VV.SubPartSafe);
walker.BuildMesh(me,VV,mc,0); walker.BuildMesh(me,VV,mc,0);
// walker.BuildMesh(me,VV,mc,currentSubBox,currentSubBoxRes);
typename MCMesh::VertexIterator vi; typename MCMesh::VertexIterator vi;
Box3f bbb; bbb.Import(VV.SubPart); Box3f bbb; bbb.Import(VV.SubPart);
@ -481,8 +489,7 @@ void Process(vcg::CallBackPos *cb=0)
vcg::tri::Allocator< MCMesh >::DeleteVertex(me,*vi); vcg::tri::Allocator< MCMesh >::DeleteVertex(me,*vi);
VV.DeInterize((*vi).P()); VV.DeInterize((*vi).P());
} }
typename MCMesh::FaceIterator fi; for (typename MCMesh::FaceIterator fi = me.face.begin(); fi != me.face.end(); ++fi)
for (fi = me.face.begin(); fi != me.face.end(); ++fi)
{ {
if((*fi).V(0)->IsD() || (*fi).V(1)->IsD() || (*fi).V(2)->IsD() ) if((*fi).V(0)->IsD() || (*fi).V(1)->IsD() || (*fi).V(2)->IsD() )
vcg::tri::Allocator< MCMesh >::DeleteFace(me,*fi); vcg::tri::Allocator< MCMesh >::DeleteFace(me,*fi);
@ -526,6 +533,7 @@ void Process(vcg::CallBackPos *cb=0)
{ {
printf("----------- skipping SubBlock %2i %2i %2i ----------\n",p.IPos[0],p.IPos[1],p.IPos[2]); printf("----------- skipping SubBlock %2i %2i %2i ----------\n",p.IPos[0],p.IPos[1],p.IPos[2]);
} }
return true;
} }

View File

@ -0,0 +1,233 @@
#ifndef SIMPLEMESHPROVIDER_H
#define SIMPLEMESHPROVIDER_H
#include "../../meshlab/alnParser.h"
#include <list>
#include <vector>
#include <vcg/space/box3.h>
#include <wrap/ply/plystuff.h>
#include <wrap/io_trimesh/import.h>
/*
* A mesh provider class has the simpler role of passing the set of meshes to be merged to the surface reconstrcution algorithm.
* The only reason for this abstraction is that, plymc can work in a out-of-core way and the loading of the needed range maps can be optimized with a high level caching system.
*/
template<class TriMeshType>
class MinimalMeshProvider
{
private:
std::vector< std::string > nameVec;
std::vector< TriMeshType * > meshVec;
std::vector<vcg::Matrix44f> trVec;
std::vector<float> weightVec; // weight tot be applied to each mesh.
vcg::Box3f fullBBox;
public:
bool Find(const std::string &name, TriMeshType * &sm)
{
for(int i=0;i<nameVec.size();++i)
if(nameVec[i]==name) {
sm=meshVec[i];
return true;
}
sm=0; return false;
}
};
/**
* Cache based Loading of meshes to avoid reloading an processing of the same mesh multiple times.
*
*/
namespace vcg {
template<class TriMeshType>
class MeshCache
{
class Pair
{
public:
Pair(){used=0;}
TriMeshType *M;
std::string Name;
int used; // 'data' dell'ultimo accesso. si butta fuori quello lru
};
std::list<Pair> MV;
public:
void clear();
MeshCache() {MeshCacheSize=6;}
~MeshCache() {
typename std::list<Pair>::iterator mi;
for(mi=MV.begin();mi!=MV.end();++mi)
delete (*mi).M;
}
/**
* @brief Find load a mesh form the cache if it is in or from the disk otherwise
* @param name what mesh to find
* @param sm the pointer loaded mesh
* @return true if the mesh was already in cache
*
*/
bool Find(const std::string &name, TriMeshType * &sm)
{
typename std::list<Pair>::iterator mi;
typename std::list<Pair>::iterator oldest; // quello che e' piu' tempo che non viene acceduto.
int last;
last = std::numeric_limits<int>::max();
oldest = MV.begin();
for(mi=MV.begin();mi!=MV.end();++mi)
{
if((*mi).used<last)
{
last=(*mi).used;
oldest=mi;
}
if((*mi).Name==name) {
sm=(*mi).M;
(*mi).used++;
return true;
}
}
// we have not found the requested mesh
// either allocate a new mesh or give back a previous mesh.
if(MV.size()>MeshCacheSize) {
sm=(*oldest).M;
(*oldest).used=0;
(*oldest).Name=name;
} else {
MV.push_back(Pair());
MV.back().Name=name;
MV.back().M=new TriMeshType();
sm=MV.back().M;
}
return false;
}
size_t MeshCacheSize;
size_t size() const {return MV.size();}
};
template<class TriMeshType>
class SimpleMeshProvider
{
private:
std::vector< std::string > meshnames;
std::vector<vcg::Matrix44f> TrV;
std::vector<float> WV; // weight tot be applied to each mesh.
std::vector<vcg::Box3f> BBV; // bbox of the transformed meshes..
vcg::Box3f fullBBox;
MeshCache<TriMeshType> MC;
public:
int size() {return meshnames.size();}
int getCacheSize() {return MC.MeshCacheSize;}
int setCacheSize(size_t newsize)
{
if(newsize == MC.MeshCacheSize)
return MC.MeshCacheSize;
if(newsize <= 0)
return MC.MeshCacheSize;
MC.MeshCacheSize = newsize;
return newsize;
}
bool openALN (const char* alnName)
{
vector<RangeMap> rmaps;
ALNParser::ParseALN(rmaps, alnName);
for(size_t i=0; i<rmaps.size(); i++)
AddSingleMesh(rmaps[i].filename.c_str(), rmaps[i].trasformation, rmaps[i].quality);
return true;
}
bool AddSingleMesh(const char* meshName, const Matrix44f &tr= Matrix44f::Identity(), float meshWeight=1)
{
assert(WV.size()==meshnames.size() && TrV.size() == WV.size());
TrV.push_back(tr);
meshnames.push_back(meshName);
WV.push_back(meshWeight);
BBV.push_back(Box3f());
return true;
}
vcg::Box3f bb(int i) {return BBV[i];}
vcg::Box3f fullBB(){ return fullBBox;}
vcg::Matrix44f Tr(int i) const {return TrV[i];}
std::string MeshName(int i) const {return meshnames[i];}
float W(int i) const {return WV[i];}
void Clear()
{
meshnames.clear();
TrV.clear();
WV.clear();
BBV.clear();
fullBBox.SetNull();
MC.clear();
}
bool Find(int i, TriMeshType * &sm)
{
return MC.Find(meshnames[i],sm);
}
bool InitBBox()
{
fullBBox.SetNull();
for(int i=0;i<int(meshnames.size());++i)
{
bool ret;
printf("bbox scanning %4i/%i [%16s] \r",i+1,(int)meshnames.size(), meshnames[i].c_str());
if(tri::io::Importer<TriMeshType>::FileExtension(meshnames[i],"PLY") || tri::io::Importer<TriMeshType>::FileExtension(meshnames[i],"ply"))
{
ret=ply::ScanBBox(meshnames[i].c_str(),BBV[i],TrV[i],true,0);
}
else
{
printf("Trying to import a non-ply file %s\n",meshnames[i].c_str());fflush(stdout);
TriMeshType m;
ret = (tri::io::Importer<TriMeshType>::Open(m,meshnames[i].c_str()) == tri::io::Importer<TriMeshType>::E_NOERROR);
tri::UpdatePosition<TriMeshType>::Matrix(m,TrV[i]);
tri::UpdateBounding<TriMeshType>::Box(m);
BBV[i].Import(m.bbox);
}
if( ! ret)
{
printf("\n\nwarning:\n file '%s' not found\n",meshnames[i].c_str());fflush(stdout);
continue;
}
fullBBox.Add(BBV[i]);
}
return true;
}
};
class SVertex;
class SFace;
class SUsedTypes: public vcg::UsedTypes < vcg::Use<SVertex>::AsVertexType,
vcg::Use<SFace >::AsFaceType >{};
class SVertex : public Vertex< SUsedTypes, vertex::Coord3f, vertex::Normal3f,vertex::VFAdj, vertex::BitFlags, vertex::Color4b, vertex::Qualityf>{};
class SFace : public Face< SUsedTypes, face::VertexRef, face::Normal3f,face::Qualityf, face::VFAdj, face::BitFlags> {};
class SMesh : public tri::TriMesh< std::vector< SVertex>, std::vector< SFace > > {};
}
#endif // SIMPLEMESHPROVIDER_H

View File

@ -24,26 +24,10 @@
#ifndef __VOLUME_H__ #ifndef __VOLUME_H__
#define __VOLUME_H__ #define __VOLUME_H__
#ifdef __MINGW32__
#define _int64 __int64
#endif
#include "voxel.h" #include "voxel.h"
#include "svoxel.h"
#include <vector>
#include <vcg/space/index/grid_static_ptr.h> #include <vcg/space/index/grid_static_ptr.h>
//#define BLOCKSIDE() 8 namespace vcg {
// Stato di un voxel
// B() dice se ci sono dati in uno stadio usabile.
// Cnt() dice quanti ce ne sono stati sommati (per la normalizzazione)
// b==false cnt==0 totalmente non inzializzato (Zero)
// b==false cnt >0 da normalizzare
// b==true cnt==0 gia' normalizzato
// b==true cnt >0 Errore!!!
// forward definition // forward definition
template < class VOL > template < class VOL >
@ -67,7 +51,7 @@ const char *SFormat( const char * f, ... )
template<class VOX_TYPE, class SCALAR_TYPE=float> template<class VOX_TYPE, class SCALAR_TYPE=float>
class Volume { class Volume {
public: public:
typedef SCALAR_TYPE scalar; typedef SCALAR_TYPE scalar;
typedef Point3<scalar> Point3x; typedef Point3<scalar> Point3x;
typedef Box3<scalar> Box3x; typedef Box3<scalar> Box3x;
@ -172,7 +156,7 @@ bool Verbose; // se true stampa un sacco di info in piu su logfp;
for(size_t i=0;i<rv.size();++i) for(size_t i=0;i<rv.size();++i)
rv[i].resize(0,VOX_TYPE::Zero()); rv[i].resize(0,VOX_TYPE::Zero());
SetDim(bb); SetDim(bb);
}; }
private: private:
@ -324,16 +308,16 @@ public:
} }
/* /*
Data una posizione x,y,z restituisce true se tale posizione appartiene a un blocco gia' allocato * Compute the offset <lpos> inside the subblock <rpos> of voxel (x,y,z).
In ogni caso mette in rpos la posizione del subbloc e in lpos la posizione all'interno del sottoblocco * return true if the subblock is allocated.
*/ */
bool Pos(const int &_x,const int &_y,const int &_z, int & rpos,int &lpos) const bool Pos(const int &_x,const int &_y,const int &_z, int & rpos,int &lpos) const
{ {
int x=_x-SubPartSafe.min[0]; int y=_y-SubPartSafe.min[1]; int z=_z-SubPartSafe.min[2]; int x=_x-SubPartSafe.min[0]; int y=_y-SubPartSafe.min[1]; int z=_z-SubPartSafe.min[2];
assert(_x>=SubPartSafe.min[0] && _x<SubPartSafe.max[0] && assert(_x>=SubPartSafe.min[0] && _x<SubPartSafe.max[0] &&
_y>=SubPartSafe.min[1] && _y<SubPartSafe.max[1] && _y>=SubPartSafe.min[1] && _y<SubPartSafe.max[1] &&
_z>=SubPartSafe.min[2] && _z<SubPartSafe.max[2]); _z>=SubPartSafe.min[2] && _z<SubPartSafe.max[2]);
// assert(x>=0 && x<sz[0] && y>=0 && y<sz[1] && z>=0 && z<sz[2]); // assert(x>=0 && x<sz[0] && y>=0 && y<sz[1] && z>=0 && z<sz[2]);
@ -1374,6 +1358,6 @@ class VolumeIterator
} }
}; };
}
#endif #endif

View File

@ -8,7 +8,7 @@
* \ * * \ *
* All rights reserved. * * All rights reserved. *
* * * *
* This program is free software; you can redistribute it and/or modify * * This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by * * it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or * * the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. * * (at your option) any later version. *
@ -22,105 +22,120 @@
****************************************************************************/ ****************************************************************************/
#ifndef __VOXEL_H__ #ifndef __VOXEL_H__
#define __VOXEL_H__ #define __VOXEL_H__
namespace vcg {
// Stato di un voxel
// B() dice se ci sono dati in uno stadio usabile.
// Cnt() dice quanti ce ne sono stati sommati (per la normalizzazione)
// b==false cnt==0 totalmente non inzializzato (Zero)
// b==false cnt >0 da normalizzare
// b==true cnt==0 gia' normalizzato
// b==true cnt >0 Errore!!!
/**
*
*/
template<class SCALAR_TYPE=float> template<class SCALAR_TYPE=float>
class Voxel class Voxel
{ {
public: public:
typedef SCALAR_TYPE scalar; typedef SCALAR_TYPE scalar;
Voxel(SCALAR_TYPE vv, bool bb, Point3<scalar> nn, short _cnt) {v=vv;b=bb;n=nn;cnt=_cnt;} Voxel(SCALAR_TYPE vv, bool bb, Point3<scalar> nn, short _cnt) {v=vv;b=bb;n=nn;cnt=_cnt;}
Voxel(SCALAR_TYPE vv, Point3<scalar> nn, scalar qq) {v=vv;b=true;n=nn;cnt=0;q=qq;} Voxel(SCALAR_TYPE vv, Point3<scalar> nn, scalar qq) {v=vv;b=true;n=nn;cnt=0;q=qq;}
const scalar &N(const int i) const { return n[i]; } const Point3<scalar> &N() const { return n; }
const Point3<scalar> &N() const { return n; } void SetN(const Point3<scalar> &nn) { n=nn; }
const scalar &V() const { return v; }
void SetN(const Point3<scalar> &nn) { n=nn; } void SetV(const scalar &vv) { v=vv; }
const scalar &V() const { return v; }
void SetV(const scalar &vv) { v=vv; } const scalar &Q() const { return q; }
const scalar &Q() const { return q; } void SetQ(const scalar &qq) { q=qq; }
void SetQ(const scalar &qq) { q=qq; }
bool B() const {return b;}; bool B() const {return b;};
void SetB(bool val) {b=val;} void SetB(bool val) {b=val;}
int Cnt() const {return cnt;} int Cnt() const {return cnt;}
void SetCnt(int val) {cnt=val;} void SetCnt(int val) {cnt=val;}
inline void Blend( Voxel const & vx, scalar w) inline void Blend( Voxel const & vx, scalar w)
{
float w1=1.0-w;
v=v*w1+vx.v*w;
q=q*w1+vx.q*w;
n=n*w1+vx.n*w;
//return *this;
}
inline Voxel & operator += ( Voxel const & vx)
{
assert(!b);
if(cnt==0)
{ {
float w1=1.0-w; v=vx.v;
v=v*w1+vx.v*w; q=vx.q;
q=q*w1+vx.q*w; n=vx.n;
n=n*w1+vx.n*w; cnt=1;
//return *this; b=false;
} }
else
inline Voxel & operator += ( Voxel const & vx)
{ {
if(cnt==0) v+=vx.v;
{ q+=vx.q;
assert(!b); n+=vx.n;
v=vx.v; ++cnt;
q=vx.q;
n=vx.n;
cnt=1;
b=false;
}
else
{
assert(!b);
v+=vx.v;
q+=vx.q;
n+=vx.n;
++cnt;
}
return *this;
} }
return *this;
}
inline bool Normalize(int thr) inline bool Normalize(int thr)
{
assert(cnt>0);
assert(!B());
if(cnt<thr)
{ {
assert(cnt>0); (*this) = Zero();
assert(!B()); return false;
if(cnt<thr) }
{ v/=cnt;
(*this) = Zero(); q/=cnt;
return false; n/=cnt;
} cnt=0;
v/=cnt; b=true;
q/=cnt;
n/=cnt;
cnt=0;
b=true;
return true; return true;
} }
static const Voxel &Zero() { static const Voxel &Zero() {
static Voxel tt(0,false,Point3f(0,0,0),0); static Voxel tt(0,false,Point3f(0,0,0),0);
return tt; return tt;
} }
void Merge(const Voxel &VOX) void Merge(const Voxel &VOX)
{ {
v=(v*q+VOX.Q()*VOX.v)/(q+VOX.Q()); v=(v*q+VOX.Q()*VOX.v)/(q+VOX.Q());
n=(n*q+VOX.n*VOX.Q())/(q+VOX.Q()); n=(n*q+VOX.n*VOX.Q())/(q+VOX.Q());
q=q+VOX.Q(); q=q+VOX.Q();
} }
void Set(const Voxel &VOX) void Set(const Voxel &VOX)
{ {
v=VOX.v; v=VOX.v;
n=VOX.n; n=VOX.n;
q=VOX.q; q=VOX.q;
} }
protected: protected:
bool b; bool b;
short cnt; short cnt;
scalar v; scalar v;
scalar q; scalar q;
Point3<SCALAR_TYPE> n; Point3<SCALAR_TYPE> n;
}; };
@ -129,67 +144,67 @@ class Voxelfc :public Voxel<float>
{ {
public: public:
Voxelfc(float vv, bool bb, Point3f nn, short _cnt) :Voxel<float>(vv,bb,nn,_cnt){} Voxelfc(float vv, bool bb, Point3f nn, short _cnt) :Voxel<float>(vv,bb,nn,_cnt){}
Voxelfc(float vv, Point3f nn, scalar qq) :Voxel<float>(vv,nn,qq) {} Voxelfc(float vv, Point3f nn, scalar qq) :Voxel<float>(vv,nn,qq) {}
Voxelfc(float vv, Point3f nn, scalar qq,Color4b cc) :Voxel<float>(vv,nn,qq) Voxelfc(float vv, Point3f nn, scalar qq,Color4b cc) :Voxel<float>(vv,nn,qq)
{ {
c[0]=cc[0]; c[0]=cc[0];
c[1]=cc[1]; c[1]=cc[1];
c[2]=cc[2]; c[2]=cc[2];
} }
inline bool Normalize(int thr) inline bool Normalize(int thr)
{ {
if(cnt>=thr) c/=cnt; if(cnt>=thr) c/=cnt;
return Voxel<float>::Normalize(thr); return Voxel<float>::Normalize(thr);
} }
static const Voxelfc &Zero() { static const Voxelfc &Zero() {
static Voxelfc tt(0,false,Point3f(0,0,0),0); static Voxelfc tt(0,false,Point3f(0,0,0),0);
return tt; return tt;
} }
void Merge(const Voxelfc &VOX) void Merge(const Voxelfc &VOX)
{ {
c=( c*q + VOX.C()*VOX.Q() )/(q+VOX.Q()); c=( c*q + VOX.C()*VOX.Q() )/(q+VOX.Q());
Voxel<float>::Merge(VOX); Voxel<float>::Merge(VOX);
} }
void Set(const Voxelfc &VOX) void Set(const Voxelfc &VOX)
{ {
Voxel<float>::Set(VOX); Voxel<float>::Set(VOX);
c=VOX.c; c=VOX.c;
} }
const float &C(const int i) const { return c[i]; } const float &C(const int i) const { return c[i]; }
const Point3f &C() const { return c; } const Point3f &C() const { return c; }
void SetC(const Point3f &cc) { c=cc; } void SetC(const Point3f &cc) { c=cc; }
Color4b C4b() const Color4b C4b() const
{ {
static Color4b cc; static Color4b cc;
cc=Color4b(c[0],c[1],c[2],255); cc=Color4b(c[0],c[1],c[2],255);
return cc; return cc;
} }
inline void Blend( Voxelfc const & vx, scalar w) inline void Blend( Voxelfc const & vx, scalar w)
{ {
float w1=1.0-w; float w1=1.0-w;
v=v*w1+vx.v*w; v=v*w1+vx.v*w;
q=q*w1+vx.q*w; q=q*w1+vx.q*w;
n=n*w1+vx.n*w; n=n*w1+vx.n*w;
c=c*w1+vx.c*w; c=c*w1+vx.c*w;
//return *this; //return *this;
} }
inline Voxelfc & operator += ( Voxelfc const & vx) inline Voxelfc & operator += ( Voxelfc const & vx)
{ {
Voxel<float>::operator +=(vx); Voxel<float>::operator +=(vx);
if(cnt==1) c =vx.c; if(cnt==1) c =vx.c;
else c+=vx.c; else c+=vx.c;
return *this; return *this;
} }
private: private:
Point3f c; Point3f c;
}; };
}
#endif #endif