Include header cleaning and reordering.

This commit is contained in:
Paolo Cignoni 2013-11-25 10:01:24 +00:00
parent d4eb599a66
commit 84c80a1972
8 changed files with 2080 additions and 2069 deletions

View File

@ -1,46 +1,64 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2012 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_TRI_ATTRIBUTE_SEAM_H
#define VCG_TRI_ATTRIBUTE_SEAM_H
#include <vector>
#include <vcg/complex/allocate.h>
/*
// sample extract functor
void v_extract(const src_mesh_t & wm, const src_face_t & f, int k, const dst_mesh_t & vm, dst_vertex_t & v)
{
(void)wm;
(void)vm;
(void)wm;
(void)vm;
v.P() = f.cP (k);
v.N() = f.cWN(k);
v.C() = f.cWC(k);
v.T() = f.cWT(k);
v.P() = f.cP (k);
v.N() = f.cWN(k);
v.C() = f.cWC(k);
v.T() = f.cWT(k);
}
// sample compare functor
bool v_compare(const dst_mesh_t & vm, const dst_vertex_t & u, const dst_vertex_t & v)
{
(void)vm;
(void)vm;
return
(
(u.cN() == v.cN())
&& (u.cC() == v.cC())
&& (u.cT() == v.cT())
);
return
(
(u.cN() == v.cN())
&& (u.cC() == v.cC())
&& (u.cT() == v.cT())
);
}
// sample copy functor
void v_copy(const dst_mesh_t & vm, const dst_vertex_t & u, dst_vertex_t & v)
{
(void)vm;
(void)vm;
v.P() = u.cP();
v.N() = u.cN();
v.C() = u.cC();
v.T() = u.cT();
v.P() = u.cP();
v.N() = u.cN();
v.C() = u.cC();
v.T() = u.cT();
}
// create seams
@ -56,310 +74,310 @@ namespace tri
class AttributeSeam
{
public:
typedef AttributeSeam ThisType;
enum ASMask
{
POSITION_PER_VERTEX = (1 << 0),
NORMAL_PER_VERTEX = (1 << 1),
NORMAL_PER_WEDGE = (1 << 2),
NORMAL_PER_FACE = (1 << 3),
COLOR_PER_VERTEX = (1 << 4),
COLOR_PER_WEDGE = (1 << 5),
COLOR_PER_FACE = (1 << 6),
TEXCOORD_PER_VERTEX = (1 << 7),
TEXCOORD_PER_WEDGE = (1 << 8)
};
template <typename src_trimesh_t, typename dst_trimesh_t>
struct ASExtract
{
const unsigned int mask;
ASExtract(unsigned int vmask = 0) : mask(vmask)
{
;
}
void operator () (const src_trimesh_t & sm, const typename src_trimesh_t::FaceType & f, int k, const dst_trimesh_t & dm, typename dst_trimesh_t::VertexType & v) const
{
(void)sm;
(void)dm;
const unsigned int m = this->mask;
const typename src_trimesh_t::VertexType & u = *(f.cV(k));
if ((m & AttributeSeam::POSITION_PER_VERTEX) != 0) v.P() = f.cP (k);
if ((m & AttributeSeam::NORMAL_PER_VERTEX) != 0) v.N() = u.cN ( );
if ((m & AttributeSeam::NORMAL_PER_WEDGE) != 0) v.N() = f.cWN(k);
if ((m & AttributeSeam::NORMAL_PER_FACE) != 0) v.N() = f.cN ( );
if ((m & AttributeSeam::COLOR_PER_VERTEX) != 0) v.C() = u.cC ( );
if ((m & AttributeSeam::COLOR_PER_WEDGE) != 0) v.C() = f.cWC(k);
if ((m & AttributeSeam::COLOR_PER_FACE) != 0) v.C() = f.cC ( );
if ((m & AttributeSeam::TEXCOORD_PER_VERTEX) != 0) v.T() = u.cT ( );
if ((m & AttributeSeam::TEXCOORD_PER_WEDGE) != 0) v.T() = f.cWT(k);
}
};
template <typename dst_trimesh_t>
struct ASCompare
{
const unsigned int mask;
ASCompare(unsigned int vmask = 0) : mask(vmask)
{
;
}
bool operator () (const dst_trimesh_t & sm, const typename dst_trimesh_t::VertexType & u, const typename dst_trimesh_t::VertexType & v) const
{
(void)sm;
const unsigned int m = this->mask;
/*
if ((m & (AttributeSeam::POSITION_PER_VERTEX)) != 0)
{
if (u.cP() != v.cP()) return false;
}
*/
if ((m & (AttributeSeam::NORMAL_PER_VERTEX | AttributeSeam::NORMAL_PER_WEDGE | AttributeSeam::NORMAL_PER_FACE)) != 0)
{
if (u.cN() != v.cN()) return false;
}
if ((m & (AttributeSeam::COLOR_PER_VERTEX | AttributeSeam::COLOR_PER_WEDGE | AttributeSeam::COLOR_PER_FACE)) != 0)
{
if (u.cC() != v.cC()) return false;
}
if ((m & (AttributeSeam::TEXCOORD_PER_VERTEX | AttributeSeam::TEXCOORD_PER_WEDGE)) != 0)
{
if (u.cT() != v.cT()) return false;
}
return true;
}
};
// in-place version
template <typename src_trimesh_t, typename extract_wedge_attribs_t, typename compare_vertex_attribs_t>
static inline bool SplitVertex(src_trimesh_t & src, extract_wedge_attribs_t v_extract, compare_vertex_attribs_t & v_compare)
{
typedef typename src_trimesh_t::VertexType src_vertex_t;
typedef typename src_trimesh_t::VertexIterator src_vertex_i;
typedef typename src_trimesh_t::FaceType src_face_t;
typedef typename src_trimesh_t::FaceIterator src_face_i;
typedef typename src_trimesh_t::VertContainer src_vertex_container_t;
typedef vcg::tri::Allocator<src_trimesh_t> src_mesh_allocator_t;
typedef typename src_mesh_allocator_t :: template PointerUpdater<typename src_trimesh_t::VertexPointer> src_pointer_updater_t;
if ((src.vn <= 0) || (src.fn <= 0))
{
return true;
}
src_pointer_updater_t pt_upd;
src_vertex_i vi = src_mesh_allocator_t::AddVertices(src, 1, pt_upd);
src_vertex_t * vtx = &(*vi);
src_vertex_t * vtxbase = &(src.vert[0]);
const size_t vertex_count = src.vert.size();
const size_t vertex_pool_size = vertex_count;
std::vector<int> vloc;
vloc.reserve(vertex_pool_size);
vloc.resize(vertex_count, -2);
int vcount = int(src.vert.size());
int idx = 0;
for (src_face_i it=src.face.begin(); it!=src.face.end(); ++it)
{
src_face_t & f = (*it);
if (f.IsD()) continue;
for (int k=0; k<3; ++k)
{
idx = (f.cV(k) - vtxbase);
v_extract(src, f, k, src, *vtx);
if (vloc[idx] == -2)
{
vloc[idx] = -1;
src.vert[idx].ImportData(*vtx);
}
else
{
int vidx = idx;
do
{
if (v_compare(src, src.vert[vidx], *vtx)) break;
vidx = vloc[vidx];
} while (vidx >= 0);
if (vidx < 0)
{
vloc.push_back(vloc[idx]);
vloc[idx] = vcount;
vi = src_mesh_allocator_t::AddVertices(src, 1, pt_upd);
pt_upd.Update(vtx);
pt_upd.Update(vtxbase);
(*vi).ImportData(*vtx);
idx = vcount;
vcount++;
}
else
{
idx = vidx;
}
}
f.V(k) = &(src.vert[idx]);
}
}
src_mesh_allocator_t::DeleteVertex(src, *vtx);
return true;
}
// out-of-place version
template <typename src_trimesh_t, typename dst_trimesh_t, typename extract_wedge_attribs_t, typename compare_vertex_attribs_t, typename copy_vertex_t>
static inline bool SplitVertex(const src_trimesh_t & src, dst_trimesh_t & dst, extract_wedge_attribs_t & v_extract, compare_vertex_attribs_t & v_compare, copy_vertex_t & v_copy)
{
typedef typename src_trimesh_t::VertexType src_vertex_t;
typedef typename src_trimesh_t::FaceType src_face_t;
typedef typename src_trimesh_t::ConstFaceIterator src_face_ci;
typedef typename dst_trimesh_t::VertContainer dst_vertex_container_t;
typedef typename dst_trimesh_t::VertexType dst_vertex_t;
typedef typename dst_trimesh_t::VertexIterator dst_vertex_i;
typedef typename dst_trimesh_t::FaceType dst_face_t;
typedef typename dst_trimesh_t::FaceIterator dst_face_i;
typedef vcg::tri::Allocator<dst_trimesh_t> dst_mesh_allocator_t;
/* GCC gets in troubles and need some hints ("template") to parse the following line */
typedef typename dst_mesh_allocator_t :: template PointerUpdater<typename dst_trimesh_t::VertexPointer> dst_pointer_updater_t;
if (reinterpret_cast<const void *>(&src) == reinterpret_cast<const void *>(&dst))
{
return false;
}
dst.Clear();
if ((src.vn <= 0) || (src.fn <= 0))
{
return true;
}
const size_t vertex_count = src.vert.size();
const size_t vertex_pool_size = vertex_count;
const src_vertex_t * vtxbase = &(src.vert[0]);
std::vector<int> vloc;
vloc.reserve(vertex_pool_size);
vloc.resize(vertex_count, -2);
dst_vertex_i vv;
dst_pointer_updater_t pt_upd;
pt_upd.preventUpdateFlag = true;
dst_mesh_allocator_t::AddVertices(dst, 1 + int(vertex_count), pt_upd);
dst_vertex_t * vtx = &(dst.vert[0]);
dst_face_i fbase = dst_mesh_allocator_t::AddFaces(dst, src.fn);
dst_face_i fi = fbase;
int vcount = int(dst.vert.size());
int idx = 0;
for (src_face_ci it=src.face.begin(); it!=src.face.end(); ++it)
{
const src_face_t & wf = (*it);
if (wf.IsD()) continue;
dst_face_t & vf = (*fi);
for (int k=0; k<3; ++k)
{
idx = (wf.cV(k) - vtxbase);
v_extract(src, wf, k, dst, *vtx);
if (vloc[idx] == -2)
{
vloc[idx] = -1;
v_copy(dst, *vtx, dst.vert[idx]);
}
else
{
int vidx = idx;
do
{
if (v_compare(dst, dst.vert[vidx], *vtx)) break;
vidx = vloc[vidx];
} while (vidx >= 0);
if (vidx < 0)
{
vloc.push_back(vloc[idx]);
vloc[idx] = vcount;
vv = dst_mesh_allocator_t::AddVertices(dst, 1, pt_upd);
pt_upd.Update(vtx);
v_copy(dst, *vtx, *vv);
idx = vcount;
vcount++;
}
else
{
idx = vidx;
}
}
vf.V(k) = reinterpret_cast<dst_vertex_t *>(idx);
}
fi++;
}
{
std::vector<int> tmp;
vloc.swap(tmp);
}
dst_vertex_t * vstart = &(dst.vert[0]);
for (dst_face_i it=fbase; it!=dst.face.end(); ++it)
{
dst_face_t & vf = (*it);
public:
typedef AttributeSeam ThisType;
enum ASMask
{
POSITION_PER_VERTEX = (1 << 0),
NORMAL_PER_VERTEX = (1 << 1),
NORMAL_PER_WEDGE = (1 << 2),
NORMAL_PER_FACE = (1 << 3),
COLOR_PER_VERTEX = (1 << 4),
COLOR_PER_WEDGE = (1 << 5),
COLOR_PER_FACE = (1 << 6),
TEXCOORD_PER_VERTEX = (1 << 7),
TEXCOORD_PER_WEDGE = (1 << 8)
};
template <typename src_trimesh_t, typename dst_trimesh_t>
struct ASExtract
{
const unsigned int mask;
ASExtract(unsigned int vmask = 0) : mask(vmask)
{
;
}
void operator () (const src_trimesh_t & sm, const typename src_trimesh_t::FaceType & f, int k, const dst_trimesh_t & dm, typename dst_trimesh_t::VertexType & v) const
{
(void)sm;
(void)dm;
const unsigned int m = this->mask;
const typename src_trimesh_t::VertexType & u = *(f.cV(k));
if ((m & AttributeSeam::POSITION_PER_VERTEX) != 0) v.P() = f.cP (k);
if ((m & AttributeSeam::NORMAL_PER_VERTEX) != 0) v.N() = u.cN ( );
if ((m & AttributeSeam::NORMAL_PER_WEDGE) != 0) v.N() = f.cWN(k);
if ((m & AttributeSeam::NORMAL_PER_FACE) != 0) v.N() = f.cN ( );
if ((m & AttributeSeam::COLOR_PER_VERTEX) != 0) v.C() = u.cC ( );
if ((m & AttributeSeam::COLOR_PER_WEDGE) != 0) v.C() = f.cWC(k);
if ((m & AttributeSeam::COLOR_PER_FACE) != 0) v.C() = f.cC ( );
if ((m & AttributeSeam::TEXCOORD_PER_VERTEX) != 0) v.T() = u.cT ( );
if ((m & AttributeSeam::TEXCOORD_PER_WEDGE) != 0) v.T() = f.cWT(k);
}
};
template <typename dst_trimesh_t>
struct ASCompare
{
const unsigned int mask;
ASCompare(unsigned int vmask = 0) : mask(vmask)
{
;
}
bool operator () (const dst_trimesh_t & sm, const typename dst_trimesh_t::VertexType & u, const typename dst_trimesh_t::VertexType & v) const
{
(void)sm;
const unsigned int m = this->mask;
/*
if ((m & (AttributeSeam::POSITION_PER_VERTEX)) != 0)
{
if (u.cP() != v.cP()) return false;
}
*/
if ((m & (AttributeSeam::NORMAL_PER_VERTEX | AttributeSeam::NORMAL_PER_WEDGE | AttributeSeam::NORMAL_PER_FACE)) != 0)
{
if (u.cN() != v.cN()) return false;
}
if ((m & (AttributeSeam::COLOR_PER_VERTEX | AttributeSeam::COLOR_PER_WEDGE | AttributeSeam::COLOR_PER_FACE)) != 0)
{
if (u.cC() != v.cC()) return false;
}
if ((m & (AttributeSeam::TEXCOORD_PER_VERTEX | AttributeSeam::TEXCOORD_PER_WEDGE)) != 0)
{
if (u.cT() != v.cT()) return false;
}
return true;
}
};
// in-place version
template <typename src_trimesh_t, typename extract_wedge_attribs_t, typename compare_vertex_attribs_t>
static inline bool SplitVertex(src_trimesh_t & src, extract_wedge_attribs_t v_extract, compare_vertex_attribs_t & v_compare)
{
typedef typename src_trimesh_t::VertexType src_vertex_t;
typedef typename src_trimesh_t::VertexIterator src_vertex_i;
typedef typename src_trimesh_t::FaceType src_face_t;
typedef typename src_trimesh_t::FaceIterator src_face_i;
typedef typename src_trimesh_t::VertContainer src_vertex_container_t;
typedef vcg::tri::Allocator<src_trimesh_t> src_mesh_allocator_t;
typedef typename src_mesh_allocator_t :: template PointerUpdater<typename src_trimesh_t::VertexPointer> src_pointer_updater_t;
if ((src.vn <= 0) || (src.fn <= 0))
{
return true;
}
src_pointer_updater_t pt_upd;
src_vertex_i vi = src_mesh_allocator_t::AddVertices(src, 1, pt_upd);
src_vertex_t * vtx = &(*vi);
src_vertex_t * vtxbase = &(src.vert[0]);
const size_t vertex_count = src.vert.size();
const size_t vertex_pool_size = vertex_count;
std::vector<int> vloc;
vloc.reserve(vertex_pool_size);
vloc.resize(vertex_count, -2);
int vcount = int(src.vert.size());
int idx = 0;
for (src_face_i it=src.face.begin(); it!=src.face.end(); ++it)
{
src_face_t & f = (*it);
if (f.IsD()) continue;
for (int k=0; k<3; ++k)
{
idx = (f.cV(k) - vtxbase);
v_extract(src, f, k, src, *vtx);
if (vloc[idx] == -2)
{
vloc[idx] = -1;
src.vert[idx].ImportData(*vtx);
}
else
{
int vidx = idx;
do
{
if (v_compare(src, src.vert[vidx], *vtx)) break;
vidx = vloc[vidx];
} while (vidx >= 0);
if (vidx < 0)
{
vloc.push_back(vloc[idx]);
vloc[idx] = vcount;
vi = src_mesh_allocator_t::AddVertices(src, 1, pt_upd);
pt_upd.Update(vtx);
pt_upd.Update(vtxbase);
(*vi).ImportData(*vtx);
idx = vcount;
vcount++;
}
else
{
idx = vidx;
}
}
f.V(k) = &(src.vert[idx]);
}
}
src_mesh_allocator_t::DeleteVertex(src, *vtx);
return true;
}
// out-of-place version
template <typename src_trimesh_t, typename dst_trimesh_t, typename extract_wedge_attribs_t, typename compare_vertex_attribs_t, typename copy_vertex_t>
static inline bool SplitVertex(const src_trimesh_t & src, dst_trimesh_t & dst, extract_wedge_attribs_t & v_extract, compare_vertex_attribs_t & v_compare, copy_vertex_t & v_copy)
{
typedef typename src_trimesh_t::VertexType src_vertex_t;
typedef typename src_trimesh_t::FaceType src_face_t;
typedef typename src_trimesh_t::ConstFaceIterator src_face_ci;
typedef typename dst_trimesh_t::VertContainer dst_vertex_container_t;
typedef typename dst_trimesh_t::VertexType dst_vertex_t;
typedef typename dst_trimesh_t::VertexIterator dst_vertex_i;
typedef typename dst_trimesh_t::FaceType dst_face_t;
typedef typename dst_trimesh_t::FaceIterator dst_face_i;
typedef vcg::tri::Allocator<dst_trimesh_t> dst_mesh_allocator_t;
/* GCC gets in troubles and need some hints ("template") to parse the following line */
typedef typename dst_mesh_allocator_t :: template PointerUpdater<typename dst_trimesh_t::VertexPointer> dst_pointer_updater_t;
if (reinterpret_cast<const void *>(&src) == reinterpret_cast<const void *>(&dst))
{
return false;
}
dst.Clear();
if ((src.vn <= 0) || (src.fn <= 0))
{
return true;
}
const size_t vertex_count = src.vert.size();
const size_t vertex_pool_size = vertex_count;
const src_vertex_t * vtxbase = &(src.vert[0]);
std::vector<int> vloc;
vloc.reserve(vertex_pool_size);
vloc.resize(vertex_count, -2);
dst_vertex_i vv;
dst_pointer_updater_t pt_upd;
pt_upd.preventUpdateFlag = true;
dst_mesh_allocator_t::AddVertices(dst, 1 + int(vertex_count), pt_upd);
dst_vertex_t * vtx = &(dst.vert[0]);
dst_face_i fbase = dst_mesh_allocator_t::AddFaces(dst, src.fn);
dst_face_i fi = fbase;
int vcount = int(dst.vert.size());
int idx = 0;
for (src_face_ci it=src.face.begin(); it!=src.face.end(); ++it)
{
const src_face_t & wf = (*it);
if (wf.IsD()) continue;
dst_face_t & vf = (*fi);
for (int k=0; k<3; ++k)
{
idx = (wf.cV(k) - vtxbase);
v_extract(src, wf, k, dst, *vtx);
if (vloc[idx] == -2)
{
vloc[idx] = -1;
v_copy(dst, *vtx, dst.vert[idx]);
}
else
{
int vidx = idx;
do
{
if (v_compare(dst, dst.vert[vidx], *vtx)) break;
vidx = vloc[vidx];
} while (vidx >= 0);
if (vidx < 0)
{
vloc.push_back(vloc[idx]);
vloc[idx] = vcount;
vv = dst_mesh_allocator_t::AddVertices(dst, 1, pt_upd);
pt_upd.Update(vtx);
v_copy(dst, *vtx, *vv);
idx = vcount;
vcount++;
}
else
{
idx = vidx;
}
}
vf.V(k) = reinterpret_cast<dst_vertex_t *>(idx);
}
fi++;
}
{
std::vector<int> tmp;
vloc.swap(tmp);
}
dst_vertex_t * vstart = &(dst.vert[0]);
for (dst_face_i it=fbase; it!=dst.face.end(); ++it)
{
dst_face_t & vf = (*it);
vf.V(0) = vstart + reinterpret_cast<const int>(vf.V(0));
vf.V(1) = vstart + reinterpret_cast<const int>(vf.V(1));
vf.V(2) = vstart + reinterpret_cast<const int>(vf.V(2));
}
dst_mesh_allocator_t::DeleteVertex(dst, *vtx);
return true;
}
vf.V(0) = vstart + reinterpret_cast<const int>(vf.V(0));
vf.V(1) = vstart + reinterpret_cast<const int>(vf.V(1));
vf.V(2) = vstart + reinterpret_cast<const int>(vf.V(2));
}
dst_mesh_allocator_t::DeleteVertex(dst, *vtx);
return true;
}
};
} // end namespace tri

View File

@ -1,30 +1,29 @@
#include <vcg/complex/algorithms/bitquad_support.h>
#include <vcg/complex/allocate.h>
/** BIT-QUAD creation support:
a collection of methods that,
starting from a triangular mesh, will create your quad-pure or quad-domainant mesh.
They all require:
- per face Q, and FF connectivity, 2-manyfold meshes,
- per face Q, and FF connectivity, 2-manyfold meshes,
- and tri- or quad- meshes (no penta, etc) (if in need, use MakeBitTriOnly)
[ list of available methods: ]
void MakePureByRefine(Mesh &m)
void MakePureByRefine(Mesh &m)
- adds a vertex for each tri or quad present
- thus, miminal complexity increase is the mesh is quad-dominant already
- old non-border edges are made faux
- never fails
void MakePureByCatmullClark(MeshType &m)
- adds a vertex in each (non-faux) edge.
void MakePureByCatmullClark(MeshType &m)
- adds a vertex in each (non-faux) edge.
- twice complexity increase w.r.t. "ByRefine" method.
- preserves edges: old edges are still edges
- preserves edges: old edges are still edges
- never fails
bool MakePureByFlip(MeshType &m [, int maxdist] )
bool MakePureByFlip(MeshType &m [, int maxdist] )
- does not increase # vertices, just flips edges
- call in a loop until it returns true (temporary hack)
- fails if number of triangle is odd (only happens in open meshes)
@ -65,9 +64,9 @@ namespace vcg{namespace tri{
template <class _MeshType,
class Interpolator = GeometricInterpolator<typename _MeshType::VertexType> >
class BitQuadCreation{
public:
typedef _MeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
@ -84,37 +83,37 @@ typedef BitQuad<MeshType> BQ; // static class to make basic quad operations
// given a triangle, merge it with its best neightboord to form a quad
template <bool override>
static void selectBestDiag(FaceType *fi){
if (!override) {
if (fi->IsAnyF()) return;
}
// select which edge to make faux (if any)...
int whichEdge = -1;
ScalarType bestScore = fi->Q();
ScalarType bestScore = fi->Q();
whichEdge=-1;
for (int k=0; k<3; k++){
// todo: check creases? (continue if edge k is a crease)
if (!override) {
if (fi->FFp(k)->IsAnyF()) continue;
if (fi->FFp(k)->IsAnyF()) continue;
}
if (fi->FFp(k)==fi) continue; // never make a border faux
ScalarType score = BQ::quadQuality( &*fi, k );
if (override) {
// don't override anyway iff other face has a better match
if (score < fi->FFp(k)->Q()) continue;
if (score < fi->FFp(k)->Q()) continue;
}
if (score>bestScore) {
if (score>bestScore) {
bestScore = score;
whichEdge = k;
}
}
// ...and make it faux
if (whichEdge>=0) {
//if (override && fi->FFp(whichEdge)->IsAnyF()) {
@ -122,8 +121,8 @@ static void selectBestDiag(FaceType *fi){
// fi->Q() = fi->FFp(whichEdge)->Q() = ( bestScore + fi->FFp(whichEdge)->Q() ) /2;
//} else {
//}
if (override) {
if (override) {
// clear any faux edge of the other face
for (int k=0; k<3; k++)
if (fi->FFp(whichEdge)->IsF(k)) {
@ -131,7 +130,7 @@ static void selectBestDiag(FaceType *fi){
fi->FFp(whichEdge)->FFp(k)->ClearF( fi->FFp(whichEdge)->FFi(k) );
fi->FFp(whichEdge)->FFp(k)->Q()=0.0; // other face's ex-buddy is now single and sad :(
}
// clear all faux edges of this face...
for (int k=0; k<3; k++)
if (fi->IsF(k)) {
@ -143,11 +142,11 @@ static void selectBestDiag(FaceType *fi){
// set (new?) quad
fi->SetF(whichEdge);
fi->FFp(whichEdge)->SetF( fi->FFi(whichEdge) );
fi->Q() = fi->FFp(whichEdge)->Q() = bestScore;
fi->Q() = fi->FFp(whichEdge)->Q() = bestScore;
}
}
@ -156,11 +155,11 @@ static void selectBestDiag(FaceType *fi){
// a pass though all triangles to merge triangle pairs into quads
template <bool override> // override previous decisions?
static void MakeDominantPass(MeshType &m){
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
selectBestDiag<override>(&(*fi));
}
}
/**
* This function split a face along the specified border edge it does not compute any property of the new vertex. It only do the topological work.
@ -265,9 +264,9 @@ static bool MakeTriEvenBySplit(MeshType& m){
// make tri count even by delete...
static bool MakeTriEvenByDelete(MeshType& m)
{
{
if (m.fn%2==0) return false; // it's already Even
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
for (int k=0; k<3; k++) {
if (face::IsBorder(*fi,k) ) {
@ -304,7 +303,7 @@ static int SplitNonFlatQuads(MeshType &m, ScalarType deg=0){
}
/**
/**
Given a mesh, makes it bit trianglular (makes all edges NOT faux)
*/
static void MakeBitTriOnly(MeshType &m){
@ -331,7 +330,7 @@ static bool IsBitTriQuadConventional(const MeshType &m){
if (fi->IsAnyF())
if ( (fi->Flags() & FaceType::FAUX012 ) != FaceType::FAUX2 ) {
return false;
}
}
}
return true;
}
@ -347,11 +346,11 @@ static bool IsTriOnly(const MeshType &m){
/* returns true if mesh is a pure quad-mesh. */
static bool IsQuadOnly(const MeshType &m){
for (ConstFaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
int count = 0;
if (fi->IsF(0)) count++;
if (fi->IsF(1)) count++;
if (fi->IsF(2)) count++;
if (count!=1) return false;
int count = 0;
if (fi->IsF(0)) count++;
if (fi->IsF(1)) count++;
if (fi->IsF(2)) count++;
if (count!=1) return false;
}
return true;
}
@ -359,11 +358,11 @@ static bool IsQuadOnly(const MeshType &m){
/* returns true if mesh has only tris and quads (no penta etc) */
static bool IsTriQuadOnly(const MeshType &m){
for (ConstFaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
int count = 0;
if (fi->IsF(0)) count++;
if (fi->IsF(1)) count++;
if (fi->IsF(2)) count++;
if (count>1) return false;
int count = 0;
if (fi->IsF(0)) count++;
if (fi->IsF(1)) count++;
if (fi->IsF(2)) count++;
if (count>1) return false;
}
return true;
}
@ -384,20 +383,20 @@ static void CopyTopology(FaceType *fnew, FaceType * fold)
requires that the mesh is made only of quads and tris.
*/
static void MakePureByRefine(MeshType &m){
// todo: update VF connectivity if present
int ev = 0; // EXTRA vertices (times 2)
int ef = 0; // EXTRA faces
int ef = 0; // EXTRA faces
// first pass: count triangles to be added
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
int k=0;
if (face::IsBorder(*fi,0)) k++;
if (face::IsBorder(*fi,1)) k++;
if (face::IsBorder(*fi,2)) k++;
if (!fi->IsAnyF()) {
if (!fi->IsAnyF()) {
// it's a triangle
if (k==0) // add a vertex in the center of the face, splitting it in 3
{ ev+=2; ef+=2; }
@ -410,17 +409,17 @@ static void MakePureByRefine(MeshType &m){
}
else {
// assuming is a quad (not a penta, etc), i.e. only one faux
// add a vertex in the center of the faux edge, splitting the face in 2
// add a vertex in the center of the faux edge, splitting the face in 2
ev+=1; ef+=1;
assert(k!=3);
}
assert(k!=3);
}
}
assert(ev%2==0); // should be even by now
assert(ev%2==0); // should be even by now
ev/=2; // I was counting each of them twice
//int originalFaceNum = m.fn;
FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,ef);
VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,ev);
FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,ef);
VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,ev);
tri::UpdateFlags<MeshType>::FaceClearV(m);
@ -429,10 +428,10 @@ static void MakePureByRefine(MeshType &m){
for (FaceIterator fi = m.face.begin(), fend = nfi; fi!=fend; fi++) if (!fi->IsD() && !fi->IsV() ) {
fi->SetV();
if (!fi->IsAnyF()) {
if (!fi->IsAnyF()) {
// it's a triangle
int k=0; // number of borders
if (face::IsBorder(*fi,0)) k++;
if (face::IsBorder(*fi,1)) k++;
@ -443,31 +442,31 @@ static void MakePureByRefine(MeshType &m){
assert(nvi!=m.vert.end());
VertexType *nv = &*nvi; nvi++;
//*nv = *fi->V0( 0 ); // lazy: copy everything from the old vertex
nv->ImportData(*(fi->V0( 0 ))); // lazy: copy everything from the old vertex
nv->ImportData(*(fi->V0( 0 ))); // lazy: copy everything from the old vertex
nv->P() = ( fi->V(0)->P() + fi->V(1)->P() + fi->V(2)->P() ) /3.0;
FaceType *fa = &*fi;
FaceType *fb = &*nfi; nfi++;
FaceType *fc = &*nfi; nfi++;
fb->ImportData(*fa); CopyTopology(fb,fa);
fc->ImportData(*fa); CopyTopology(fc,fa);
fb->ImportData(*fa); CopyTopology(fb,fa);
fc->ImportData(*fa); CopyTopology(fc,fa);
fa->V(0) = nv;
fb->V(1) = nv;
fc->V(2) = nv;
fb->FFp(2)=fa->FFp(2); fb->FFi(2)=fa->FFi(2);
fc->FFp(0)=fa->FFp(0); fc->FFi(0)=fa->FFi(0);
fc->FFp(0)=fa->FFp(0); fc->FFi(0)=fa->FFi(0);
assert( fa->FFp(1)->FFp(fa->FFi(1)) == fa );
/* */fb->FFp(2)->FFp(fb->FFi(2)) = fb;
/* */fc->FFp(0)->FFp(fc->FFi(0)) = fc;
fa->FFp(0) = fc; fa->FFp(2) = fb; fa->FFi(0) = fa->FFi(2) = 1;
fb->FFp(1) = fa; fb->FFp(0) = fc; fb->FFi(0) = fb->FFi(1) = 2;
fc->FFp(1) = fa; fc->FFp(2) = fb; fc->FFi(1) = fc->FFi(2) = 0;
if (fb->FFp(2)==fa) fb->FFp(2)=fb; // recover border status
if (fc->FFp(0)==fa) fc->FFp(0)=fc;
@ -477,7 +476,7 @@ static void MakePureByRefine(MeshType &m){
fa->SetF(1);
fb->SetF(2);
fc->SetF(0);
fa->SetV();fb->SetV();fc->SetV();
}
if (k==1) { // make a border face faux, anf other two as well
@ -487,18 +486,18 @@ static void MakePureByRefine(MeshType &m){
nsplit++;
}
if (k==2) // do nothing, just mark the non border edge as faux
{
{
fi->ClearAllF();
for (int w=0; w<3; w++) if (fi->FFp(w) != &*fi) fi->SetF(w);
}
if (k==3) // disconnected single triangle (all borders): use catmull-clark (tree vertices, split it in 6
{
{
fi->ClearAllF();
fi->SetF(2);
fi->SetF(2);
nsplit++;
}
}
else {
else {
// assuming is a part of quad (not a penta, etc), i.e. only one faux
FaceType *fa = &*fi;
int ea2 = BQ::FauxIndex(fa); // index of the only faux edge
@ -507,7 +506,7 @@ static void MakePureByRefine(MeshType &m){
assert(fb->FFp(eb2)==fa) ;
assert(fa->IsF(ea2));
//assert(fb->IsF(eb2)); // reciprocal faux edge
int ea0 = (ea2+1) %3;
int ea1 = (ea2+2) %3;
int eb0 = (eb2+1) %3;
@ -517,7 +516,7 @@ static void MakePureByRefine(MeshType &m){
assert(nvi!=m.vert.end());
VertexType *nv = &*nvi; nvi++;
// *nv = * fa->V0( ea2 );
nv->ImportData(*(fa->V0( ea2 ) )); // lazy: copy everything from the old vertex
nv->ImportData(*(fa->V0( ea2 ) )); // lazy: copy everything from the old vertex
//nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
Interpolator::Apply(*(fa->V(ea2)),*(fa->V(ea0)),0.5,*nv);
// split faces: add 2 faces (one per side)
@ -526,33 +525,33 @@ static void MakePureByRefine(MeshType &m){
assert(nfi!=m.face.end());
FaceType *fd = &*nfi; nfi++;
fc->ImportData(*fa ); CopyTopology(fc,fa); // lazy: copy everything from the old vertex
fd->ImportData(*fb ); CopyTopology(fd,fb);// lazy: copy everything from the old vertex
fc->ImportData(*fa ); CopyTopology(fc,fa); // lazy: copy everything from the old vertex
fd->ImportData(*fb ); CopyTopology(fd,fb);// lazy: copy everything from the old vertex
fa->V(ea2) = fc->V(ea0) =
fa->V(ea2) = fc->V(ea0) =
fb->V(eb2) = fd->V(eb0) = nv ;
fa->FFp(ea1)->FFp( fa->FFi(ea1) ) = fc;
fb->FFp(eb1)->FFp( fb->FFi(eb1) ) = fd;
fa->FFp(ea1) = fc ; fa->FFp(ea2) = fd;
fa->FFi(ea1) = ea0; fa->FFi(ea2) = eb2;
fb->FFp(eb1) = fd ; fb->FFp(eb2) = fc;
fb->FFi(eb1) = eb0; fb->FFi(eb2) = ea2;
fc->FFp(ea0) = fa ; fc->FFp(ea2) = fb;
fc->FFi(ea0) = ea1; fc->FFi(ea2) = eb2;
fd->FFp(eb0) = fb ; fd->FFp(eb2) = fa;
fa->FFp(ea1) = fc ; fa->FFp(ea2) = fd;
fa->FFi(ea1) = ea0; fa->FFi(ea2) = eb2;
fb->FFp(eb1) = fd ; fb->FFp(eb2) = fc;
fb->FFi(eb1) = eb0; fb->FFi(eb2) = ea2;
fc->FFp(ea0) = fa ; fc->FFp(ea2) = fb;
fc->FFi(ea0) = ea1; fc->FFi(ea2) = eb2;
fd->FFp(eb0) = fb ; fd->FFp(eb2) = fa;
fd->FFi(eb0) = eb1; fd->FFi(eb2) = ea2;
// detect boundaries
bool ba = fa->FFp(ea0)==fa;
bool bc = fc->FFp(ea1)==fa;
bool bb = fb->FFp(eb0)==fb;
bool bd = fd->FFp(eb1)==fb;
if (bc) fc->FFp(ea1)=fc; // repristinate boundary status
if (bd) fd->FFp(eb1)=fd; // of new faces
fa->SetV();
fb->SetV();
fc->SetV();
@ -562,103 +561,103 @@ static void MakePureByRefine(MeshType &m){
fb->ClearAllF();
fc->ClearAllF();
fd->ClearAllF();
fa->SetF( ea0 );
fb->SetF( eb0 );
fc->SetF( ea1 );
fd->SetF( eb1 );
// fix faux mesh boundary... if two any consecutive, merge it in a quad
if (ba&&bc) {
fa->ClearAllF(); fa->SetF(ea1);
fa->ClearAllF(); fa->SetF(ea1);
fc->ClearAllF(); fc->SetF(ea0);
ba = bc = false;
ba = bc = false;
}
if (bc&&bb) {
fc->ClearAllF(); fc->SetF(ea2);
fc->ClearAllF(); fc->SetF(ea2);
fb->ClearAllF(); fb->SetF(eb2);
bc = bb = false;
bc = bb = false;
}
if (bb&&bd) {
fb->ClearAllF(); fb->SetF(eb1);
fb->ClearAllF(); fb->SetF(eb1);
fd->ClearAllF(); fd->SetF(eb0);
bb = bd = false;
bb = bd = false;
}
if (bd&&ba) {
fd->ClearAllF(); fd->SetF(eb2);
fd->ClearAllF(); fd->SetF(eb2);
fa->ClearAllF(); fa->SetF(ea2);
bd = ba = false;
bd = ba = false;
}
// remaninig boudaries will be fixed by splitting in the last pass
// remaninig boudaries will be fixed by splitting in the last pass
if (ba) nsplit++;
if (bb) nsplit++;
if (bc) nsplit++;
if (bd) nsplit++;
}
}
}
assert(nfi==m.face.end());
assert(nvi==m.vert.end());
// now and there are no tris left, but there can be faces with ONE edge border & faux ()
// last pass: add vertex on faux border faces... (if any)
if (nsplit>0) {
if (nsplit>0) {
FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,nsplit);
VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,nsplit);
VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,nsplit);
for (FaceIterator fi = m.face.begin(), fend = nfi; fi!=fend; fi++) if (!fi->IsD()) {
FaceType* fa = &*fi;
int ea2 = -1; // border and faux face (if any)
if (fa->FFp(0)==fa && fa->IsF(0) ) ea2=0;
if (fa->FFp(1)==fa && fa->IsF(1) ) ea2=1;
if (fa->FFp(2)==fa && fa->IsF(2) ) ea2=2;
if (ea2 != -1) { // ea2 edge is naughty (border AND faux)
int ea0 = (ea2+1) %3;
int ea1 = (ea2+2) %3;
int ea1 = (ea2+2) %3;
// create new vert in center of faux edge
VertexType *nv = &*nvi; nvi++;
//*nv = * fa->V0( ea2 );
nv->ImportData(*(fa->V0( ea2 ) )); // lazy: copy everything from the old vertex
nv->ImportData(*(fa->V0( ea2 ) )); // lazy: copy everything from the old vertex
nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
Interpolator::Apply(*(fa->V(ea2)),*(fa->V(ea0)),0.5,*nv);
// split face: add 1 face
FaceType *fc = &*nfi; nfi++;
fc->ImportData(*fa);CopyTopology(fc,fa); // lazy: copy everything from the old vertex
fc->ImportData(*fa);CopyTopology(fc,fa); // lazy: copy everything from the old vertex
fa->V(ea2) = fc->V(ea0) = nv ;
fc->FFp(ea2) = fc;
fa->FFp(ea1)->FFp( fa->FFi(ea1) ) = fc;
fa->FFp(ea1) = fc ;
fa->FFi(ea1) = ea0;
fc->FFp(ea0) = fa ; fc->FFp(ea2) = fc;
fc->FFi(ea0) = ea1;
fa->FFp(ea1) = fc ;
fa->FFi(ea1) = ea0;
fc->FFp(ea0) = fa ; fc->FFp(ea2) = fc;
fc->FFi(ea0) = ea1;
if (fc->FFp(ea1)==fa) fc->FFp(ea1)=fc; // recover border status
assert(fa->IsF(ea0) == fa->IsF(ea1) );
bool b = fa->IsF(ea1);
fa->ClearAllF();
fc->ClearAllF();
if (b) {
fa->SetF( ea0 );
fc->SetF( ea1 );
fc->SetF( ea1 );
} else {
fa->SetF( ea1 );
fc->SetF( ea0 );
fc->SetF( ea0 );
}
}
}
}
}
@ -676,13 +675,13 @@ static void MakePureByCatmullClark(MeshType &m){
// Stops at maxDist or at the distance when a triangle is found
static FaceType * MarkEdgeDistance(MeshType &m, FaceType *startF, int maxDist){
assert(tri::HasPerFaceQuality(m));
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
fi->Q()=maxDist;
}
FaceType * firstTriangleFound = NULL;
startF->Q() = 0;
std::vector<FaceType*> stack;
int stackPos=0;
@ -707,65 +706,65 @@ static FaceType * MarkEdgeDistance(MeshType &m, FaceType *startF, int maxDist){
/*
given a tri-quad mesh,
uses edge rotates to make a tri move toward another tri and to merges them into a quad.
uses edge rotates to make a tri move toward another tri and to merges them into a quad.
Retunrs number of surviving triangles (0, or 1), or -1 if not done yet.
StepbyStep: makes just one step!
use it in a loop as long as it returns 0 or 1.
maxdist is the maximal edge distance where to look for a companion triangle
*/
static int MakePureByFlipStepByStep(MeshType &m, int maxdist=10000, int restart=false){
static FaceType *ta, *tb; // faces to be matched into a quad
static int step = 0; // hack
if (restart) { step=0; return false; }
if (step==0) {
// find a triangular face ta
ta = NULL;
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
if (!fi->IsAnyF()) { ta=&*fi; break; }
}
if (!ta) return 0; // success: no triangle left (done?)
tb = MarkEdgeDistance(m,ta,maxdist);
if (!tb) return 1; // fail: no matching triagle found (increase maxdist?)
step=1;
} else {
int marriageEdge=-1;
bool done = false;
while (!done) {
int bestScore = int(tb->Q());
int edge = -1;
bool mustDoFlip;
// select which edge to use
for (int k=0; k<3; k++) {
if (tb->FFp(k) == tb) continue; // border
FaceType* tbk = tb->FFp(k);
if (!tbk->IsAnyF()) {done=true; marriageEdge=k; break; } // found my match
int back = tb->FFi(k);
int faux = BQ::FauxIndex(tbk);
int other = 3-back-faux;
int scoreA = int(tbk->FFp(other)->Q());
FaceType* tbh = tbk->FFp(faux);
int fauxh = BQ::FauxIndex(tbh);
int scoreB = int(tbh->FFp( (fauxh+1)%3 )->Q());
int scoreC = int(tbh->FFp( (fauxh+2)%3 )->Q());
int scoreABC = std::min( scoreC, std::min( scoreA, scoreB ) );
if (scoreABC<bestScore) {
bestScore = scoreABC;
@ -775,43 +774,43 @@ if (step==0) {
}
if (done) break;
// use that edge to proceed
if (mustDoFlip) {
BQ::FlipDiag( *(tb->FFp(edge)) );
}
FaceType* next = tb->FFp(edge)->FFp( BQ::FauxIndex(tb->FFp(edge)) );
// create new edge
next->ClearAllF();
tb->FFp(edge)->ClearAllF();
// dissolve old edge
tb->SetF(edge);
tb->FFp(edge)->SetF( tb->FFi(edge) );
tb->FFp(edge)->Q() = tb->Q();
tb = next;
break;
break;
}
if (marriageEdge!=-1) {
// consume the marriage (two tris = one quad)
assert(!(tb->IsAnyF()));
assert(!(tb->FFp(marriageEdge)->IsAnyF()));
tb->SetF(marriageEdge);
tb->FFp(marriageEdge)->SetF(tb->FFi(marriageEdge));
step=0;
}
}
}
return -1; // not done yet
}
/*
given a tri-quad mesh,
uses edge rotates to make a tri move toward another tri and to merges them into a quad.
uses edge rotates to make a tri move toward another tri and to merges them into a quad.
- maxdist is the maximal edge distance where to look for a companion triangle
- retunrs true if all triangles are merged (always, unless they are odd, or maxdist not enough).
*/
@ -825,18 +824,18 @@ static bool MakePureByFlip(MeshType &m, int maxdist=10000)
/**
given a triangle mesh, makes it quad dominant by merging triangle pairs into quads
various euristics:
various euristics:
level = 0: maximally greedy. Leaves fewest triangles
level = 1: smarter: leaves more triangles, but makes better quality quads
level = 2: even more so (marginally)
*/
static void MakeDominant(MeshType &m, int level){
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
fi->ClearAllF();
fi->Q() = 0;
}
MakeDominantPass<false> (m);
if (level>0) MakeDominantPass<true> (m);

View File

@ -1,7 +1,5 @@
#ifndef VCG_BITQUAD_SUPPORT
#define VCG_BITQUAD_SUPPORT
#include <vector>
#include <set>
#include <vcg/simplex/face/jumping_pos.h>
#include <vcg/simplex/face/topology.h>
#include <vcg/space/planar_polygon_tessellation.h>
@ -811,8 +809,8 @@ static bool CollapseDiag(FaceType &f, ScalarType interpol, MeshType& m, Pos* aff
pf = t;
} while ((pf!=fb));
pi = fauxb;
pf = fb;
pi = fauxb;
pf = fb;
do {
pf->V(pi) = va;

File diff suppressed because it is too large Load Diff

View File

@ -15,27 +15,27 @@ namespace vcg {
* v0, v1 the active edge
* v2 internal vertex
*/
class FrontEdge {
public:
int v0, v1, v2; //v0, v1 represent the FrontEdge, v2 the other vertex
//in the face this FrontEdge belongs to
class FrontEdge {
public:
int v0, v1, v2; //v0, v1 represent the FrontEdge, v2 the other vertex
//in the face this FrontEdge belongs to
bool active; //keep tracks of wether it is in front or in deads
//the loops in the front are mantained as a double linked list
std::list<FrontEdge>::iterator next;
std::list<FrontEdge>::iterator next;
std::list<FrontEdge>::iterator previous;
FrontEdge() {}
FrontEdge(int _v0, int _v1, int _v2):
v0(_v0), v1(_v1), v2(_v2), active(true) {
assert(v0 != v1 && v1 != v2 && v0 != v2);
}
bool operator==(const FrontEdge& f) const
{
return ((v0 == f.v0) && (v1 == f.v1) && (v2 == f.v2) );
}
};
{
return ((v0 == f.v0) && (v1 == f.v1) && (v2 == f.v2) );
}
};
template <class MESH> class AdvancingFront {
public:
@ -45,58 +45,58 @@ template <class MESH> class AdvancingFront {
typedef typename MESH::FaceIterator FaceIterator;
typedef typename MESH::ScalarType ScalarType;
typedef typename MESH::VertexType::CoordType Point3x;
//class FrontEdgeLists
//{
//};
// protected:
std::list<FrontEdge> front;
std::list<FrontEdge> front;
std::list<FrontEdge> deads;
std::vector<int> nb; //number of fronts a vertex is into,
//this is used for the Visited and Border flags
//but adding topology may not be needed anymore
public:
MESH &mesh; //this structure will be filled by the algorithm
AdvancingFront(MESH &_mesh): mesh(_mesh) {
UpdateFlags<MESH>::FaceBorderFromNone(mesh);
UpdateFlags<MESH>::VertexBorderFromFace(mesh);
UpdateFlags<MESH>::FaceBorderFromNone(mesh);
UpdateFlags<MESH>::VertexBorderFromFace(mesh);
nb.clear();
nb.resize(mesh.vert.size(), 0);
CreateLoops();
}
virtual ~AdvancingFront() {}
void BuildMesh(CallBackPos call = NULL, int interval = 512)
{
float finalfacesext = mesh.vert.size() * 2.0f;
if(call) call(0, "Advancing front");
while(1) {
if(call) call(0, "Advancing front");
while(1) {
for(int i = 0; i < interval; i++) {
if(!front.size() && !SeedFace()) return;
AddFace();
if(call)
{
float rap = float(mesh.face.size()) / finalfacesext;
int perc = (int) (100.0f * rap);
(*call)(perc,"Adding Faces");
}
if(call)
{
float rap = float(mesh.face.size()) / finalfacesext;
int perc = (int) (100.0f * rap);
(*call)(perc,"Adding Faces");
}
}
}
}
}
protected:
//Implement these functions in your subclass
//Implement these functions in your subclass
enum ListID {FRONT,DEADS};
typedef std::pair< ListID,std::list<FrontEdge>::iterator > ResultIterator;
virtual bool Seed(int &v0, int &v1, int &v2) = 0;
@ -109,20 +109,20 @@ protected:
{
for(size_t i = 0; i < mesh.face.size(); i++)
{
FaceType &f = mesh.face[i];
FaceType &f = mesh.face[i];
if(f.IsD()) continue;
for(int k = 0; k < 3; k++) {
if(f.IsB(k)) {
addNewEdge(FrontEdge(tri::Index(mesh,f.V0(k)),tri::Index(mesh,f.V1(k)),tri::Index(mesh,f.V2(k))) );
nb[tri::Index(mesh,f.V0(k))]++;
}
}
}
}
for(std::list<FrontEdge>::iterator s = front.begin(); s != front.end(); s++) {
(*s).previous = front.end();
(*s).next = front.end();
(*s).next = front.end();
}
//now create loops:
for(std::list<FrontEdge>::iterator s = front.begin(); s != front.end(); s++) {
@ -131,90 +131,90 @@ protected:
if((*s).v1 != (*j).v0) continue;
if((*j).previous != front.end()) continue;
(*s).next = j;
(*j).previous = s;
(*j).previous = s;
break;
}
}
for(std::list<FrontEdge>::iterator s = front.begin(); s != front.end(); s++) {
for(std::list<FrontEdge>::iterator s = front.begin(); s != front.end(); s++) {
assert((*s).next != front.end());
assert((*s).previous != front.end());
assert((*s).previous != front.end());
}
}
}
bool SeedFace() {
int v[3];
bool success = Seed(v[0], v[1], v[2]);
if(!success) return false;
nb.resize(mesh.vert.size(), 0);
//create the border of the first face
//create the border of the first face
std::list<FrontEdge>::iterator e = front.end();
std::list<FrontEdge>::iterator last = e;
std::list<FrontEdge>::iterator first;
for(int i = 0; i < 3; i++) {
int v0 = v[i];
int v1 = v[((i+1)%3)];
int v2 = v[((i+2)%3)];
mesh.vert[v0].SetB();
nb[v[i]]++;
e = front.insert(front.begin(), FrontEdge(v0, v1, v2));
if(i != 0) {
(*last).next = e;
(*last).next = e;
(*e).previous = last;
} else
first = e;
last = e;
}
}
//connect last and first
(*last).next = first;
(*first).previous = last;
AddFace(v[0], v[1], v[2]);
return true;
}
public:
public:
bool AddFace() {
if(!front.size()) return false;
if(!front.size()) return false;
std::list<FrontEdge>::iterator ei = front.begin();
FrontEdge &current = *ei;
FrontEdge &previous = *current.previous;
FrontEdge &next = *current.next;
FrontEdge &previous = *current.previous;
FrontEdge &next = *current.next;
int v0 = current.v0, v1 = current.v1;
assert(nb[v0] < 10 && nb[v1] < 10);
ResultIterator touch;
touch.first = FRONT;
touch.second = front.end();
touch.first = FRONT;
touch.second = front.end();
int v2 = Place(current, touch);
if(v2 == -1) {
KillEdge(ei);
return false;
}
assert(v2 != v0 && v2 != v1);
if ((touch.first == FRONT) && (touch.second != front.end()) ||
(touch.first == DEADS) && (touch.second != deads.end()))
{
//check for orientation and manifoldness
//touch == current.previous?
if(v2 == previous.v0) {
assert(v2 != v0 && v2 != v1);
if ( ( (touch.first == FRONT) && (touch.second != front.end()) ) ||
( (touch.first == DEADS) && (touch.second != deads.end()) ) )
{
//check for orientation and manifoldness
//touch == current.previous?
if(v2 == previous.v0) {
if(!CheckEdge(v2, v1)) {
KillEdge(ei);
return false;
}
/*touching previous FrontEdge (we reuse previous)
}
/*touching previous FrontEdge (we reuse previous)
next
------->v2 -----> v1------>
\ /
@ -222,9 +222,9 @@ public:
previous \ / current
\ /
v0 */
Detach(v0);
std::list<FrontEdge>::iterator up = addNewEdge(FrontEdge(v2, v1, v0));
MoveFront(up);
(*up).previous = previous.previous;
@ -235,21 +235,21 @@ public:
Erase(ei);
Glue(up);
//touch == (*current.next).next
} else if(v2 == next.v1) {
//touch == (*current.next).next
} else if(v2 == next.v1) {
if(!CheckEdge(v0, v2)) {
KillEdge(ei);
return false;
}
/*touching next FrontEdge (we reuse next)
}
/*touching next FrontEdge (we reuse next)
previous
------->v0 -----> v2------>
\ /
\ /
\ / next
\ /
v1 */
v1 */
Detach(v1);
std::list<FrontEdge>::iterator up = addNewEdge(FrontEdge(v0, v2, v1));
MoveFront(up);
@ -264,10 +264,10 @@ public:
if(!CheckEdge(v0, v2) || !CheckEdge(v2, v1)) {
KillEdge(ei);
return false;
}
}
//touching some loop: split (or merge it is local does not matter.
//like this
/*
//like this
/*
left right
<--------v2-<------
/|\
@ -276,44 +276,44 @@ public:
/ \
/ V
----v0 - - - > v1---------
current */
current */
std::list<FrontEdge>::iterator left = touch.second;
std::list<FrontEdge>::iterator right = (*touch.second).previous;
std::list<FrontEdge>::iterator right = (*touch.second).previous;
//this would be a really bad join
if(v1 == (*right).v0 || v0 == (*left).v1) {
KillEdge(ei);
return false;
}
nb[v2]++;
nb[v2]++;
std::list<FrontEdge>::iterator down = addNewEdge(FrontEdge(v2, v1, v0));
std::list<FrontEdge>::iterator up = addNewEdge(FrontEdge(v0, v2, v1));
(*right).next = down;
(*down).previous = right;
(*down).next = current.next;
next.previous = down;
next.previous = down;
(*left).previous = up;
(*up).next = left;
(*up).previous = current.previous;
previous.next = up;
Erase(ei);
}
}
else if ((touch.first == FRONT) && (touch.second == front.end()) ||
(touch.first == DEADS) && (touch.second == deads.end()))
{
}
}
else if (((touch.first == FRONT) && (touch.second == front.end())) ||
((touch.first == DEADS) && (touch.second == deads.end())) )
{
// assert(CheckEdge(v0, v2));
// assert(CheckEdge(v2, v1));
/* adding a new vertex
v2
/|\
/ \
@ -322,12 +322,12 @@ public:
/ V
----v0 - - - > v1--------- */
assert(!mesh.vert[v2].IsB()); //fatal error! a new point is already a border?
nb[v2]++;
nb[v2]++;
mesh.vert[v2].SetB();
std::list<FrontEdge>::iterator down = addNewEdge(FrontEdge(v2, v1, v0));
std::list<FrontEdge>::iterator up = addNewEdge(FrontEdge(v0, v2, v1));
(*down).previous = up;
(*up).next = down;
(*down).next = current.next;
@ -339,11 +339,11 @@ public:
AddFace(v0, v2, v1);
return false;
}
}
protected:
void AddFace(int v0, int v1, int v2) {
assert(v0 < (int)mesh.vert.size() && v1 < (int)mesh.vert.size() && v2 < (int)mesh.vert.size());
assert(v0 < (int)mesh.vert.size() && v1 < (int)mesh.vert.size() && v2 < (int)mesh.vert.size());
FaceIterator fi = vcg::tri::Allocator<MESH>::AddFaces(mesh,1);
fi->ClearFlags();
fi->V(0) = &mesh.vert[v0];
@ -361,17 +361,17 @@ protected:
}
}
}
void AddVertex(VertexType &vertex) {
VertexType *oldstart = NULL;
if(mesh.vert.size()) oldstart = &*mesh.vert.begin();
mesh.vert.push_back(vertex);
mesh.vn++;
VertexType *newstart = &*mesh.vert.begin();
if(oldstart && oldstart != newstart) {
if(oldstart && oldstart != newstart) {
for(int i = 0; i < mesh.face.size(); i++) {
FaceType &face = mesh.face[i];
for(int k = 0; k < 3; k++)
for(int k = 0; k < 3; k++)
face.V(k) = newstart + (face.V(k) - oldstart);
}
}
@ -386,7 +386,7 @@ protected:
bool CheckEdge(int v0, int v1) {
int tot = 0;
VertexType *vv0 = &(mesh.vert[v0]);
VertexType *vv1 = &(mesh.vert[v1]);
VertexType *vv1 = &(mesh.vert[v1]);
if(tri::HasVFAdjacency(mesh))
{
face::VFIterator<FaceType> vfi(vv0);
@ -401,11 +401,11 @@ protected:
}
return true;
}
for(int i = 0; i < (int)mesh.face.size(); i++) {
for(int i = 0; i < (int)mesh.face.size(); i++) {
FaceType &f = mesh.face[i];
for(int k = 0; k < 3; k++) {
if(vv0 == f.V0(k) && vv1 == f.V1(k)) //orientation non constistent
return false;
return false;
else if(vv1 == f.V0(k) && vv0 == f.V1(k)) ++tot;
}
if(tot >= 2) { //non manifold
@ -413,71 +413,71 @@ protected:
}
}
return true;
}
}
//front management:
//Add a new FrontEdge to the back of the queue
std::list<FrontEdge>::iterator addNewEdge(FrontEdge e) {
return front.insert(front.end(), e);
}
}
//move an Edge among the dead ones
void KillEdge(std::list<FrontEdge>::iterator e)
void KillEdge(std::list<FrontEdge>::iterator e)
{
if (e->active)
{
(*e).active = false;
//std::list<FrontEdge>::iterator res = std::find(front.begin(),front.end(),e);
FrontEdge tmp = *e;
deads.splice(deads.end(), front, e);
std::list<FrontEdge>::iterator newe = std::find(deads.begin(),deads.end(),tmp);
tmp.previous->next = newe;
tmp.next->previous = newe;
}
{
(*e).active = false;
//std::list<FrontEdge>::iterator res = std::find(front.begin(),front.end(),e);
FrontEdge tmp = *e;
deads.splice(deads.end(), front, e);
std::list<FrontEdge>::iterator newe = std::find(deads.begin(),deads.end(),tmp);
tmp.previous->next = newe;
tmp.next->previous = newe;
}
}
void Erase(std::list<FrontEdge>::iterator e) {
if((*e).active) front.erase(e);
else deads.erase(e);
}
//move an FrontEdge to the back of the queue
void MoveBack(std::list<FrontEdge>::iterator e) {
front.splice(front.end(), front, e);
front.splice(front.end(), front, e);
}
void MoveFront(std::list<FrontEdge>::iterator e) {
front.splice(front.begin(), front, e);
}
//check if e can be sewed with one of oits neighbours
bool Glue(std::list<FrontEdge>::iterator e) {
return Glue((*e).previous, e) || Glue(e, (*e).next);
}
//Glue toghether a and b (where a.next = b
bool Glue(std::list<FrontEdge>::iterator a, std::list<FrontEdge>::iterator b) {
if((*a).v0 != (*b).v1) return false;
if((*a).v0 != (*b).v1) return false;
std::list<FrontEdge>::iterator previous = (*a).previous;
std::list<FrontEdge>::iterator next = (*b).next;
(*previous).next = next;
(*next).previous = previous;
Detach((*a).v1);
Detach((*a).v0);
Detach((*a).v0);
Erase(a);
Erase(b);
Erase(b);
return true;
}
void Detach(int v) {
assert(nb[v] > 0);
if(--nb[v] == 0) {
mesh.vert[v].ClearB();
mesh.vert[v].ClearB();
}
}
}
};
template <class MESH> class AdvancingTest: public AdvancingFront<MESH> {
public:
typedef typename MESH::VertexType VertexType;
@ -487,10 +487,10 @@ template <class MESH> class AdvancingTest: public AdvancingFront<MESH> {
typedef typename MESH::ScalarType ScalarType;
typedef typename MESH::VertexType::CoordType Point3x;
AdvancingTest(MESH &_mesh): AdvancingFront<MESH>(_mesh) {}
bool Seed(int &v0, int &v1, int &v2) {
bool Seed(int &v0, int &v1, int &v2) {
VertexType v[3];
v[0].P() = Point3x(0, 0, 0);
v[1].P() = Point3x(1, 0, 0);
@ -507,7 +507,7 @@ template <class MESH> class AdvancingTest: public AdvancingFront<MESH> {
AddVertex(v[2]);
return true;
}
int Place(FrontEdge &e, typename AdvancingFront<MESH>::ResultIterator &touch)
{
Point3f p[3];
@ -517,31 +517,31 @@ template <class MESH> class AdvancingTest: public AdvancingFront<MESH> {
Point3f point = p[0] + p[1] - p[2];
int vn = this->mesh.vert.size();
for(int i = 0; i < this->mesh.vert.size(); i++)
{
if((this->mesh.vert[i].P() - point).Norm() < 0.1)
{
vn = i;
//find the border
assert(this->mesh.vert[i].IsB());
for(std::list<FrontEdge>::iterator k = this->front.begin(); k != this->front.end(); k++)
if((*k).v0 == i)
{
for(int i = 0; i < this->mesh.vert.size(); i++)
{
if((this->mesh.vert[i].P() - point).Norm() < 0.1)
{
vn = i;
//find the border
assert(this->mesh.vert[i].IsB());
for(std::list<FrontEdge>::iterator k = this->front.begin(); k != this->front.end(); k++)
if((*k).v0 == i)
{
touch.first = AdvancingFront<MESH>::FRONT;
touch.second = k;
}
touch.second = k;
}
for(std::list<FrontEdge>::iterator k = this->deads.begin(); k != this->deads.end(); k++)
if((*k).v0 == i)
if((*k).v0 == i)
{
for(std::list<FrontEdge>::iterator k = this->deads.begin(); k != this->deads.end(); k++)
if((*k).v0 == i)
if((*k).v0 == i)
{
touch.first = AdvancingFront<MESH>::FRONT;
touch.second = k;
}
break;
touch.second = k;
}
break;
}
}
if(vn == this->mesh.vert.size()) {
if(vn == this->mesh.vert.size()) {
VertexType v;
v.P() = point;
v.ClearFlags();

File diff suppressed because it is too large Load Diff

View File

@ -8,7 +8,7 @@
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
@ -24,10 +24,6 @@
#ifndef __VCGLIB_APPEND
#define __VCGLIB_APPEND
#include <vcg/complex/algorithms/update/flag.h>
#include <vcg/complex/algorithms/update/selection.h>
#include <set>
namespace vcg {
namespace tri {
/** \ingroup trimesh */
@ -68,7 +64,7 @@ public:
typedef typename ConstMeshRight::FacePointer FacePointerRight;
struct Remap{
std::vector<int> vert,face,edge, hedge;
std::vector<int> vert,face,edge, hedge;
};
static void ImportVertexAdj(MeshLeft &ml, ConstMeshRight &mr, VertexLeft &vl, VertexRight &vr, Remap &remap ){
@ -175,7 +171,7 @@ public:
}
// Append Right Mesh to the Left Mesh
// Append::Mesh(ml, mr) is equivalent to ml += mr.
// Append::Mesh(ml, mr) is equivalent to ml += mr.
// Note MeshRigth could be costant...
/*! \brief %Append the second mesh to the first one.
@ -316,60 +312,60 @@ static void Mesh(MeshLeft& ml, ConstMeshRight& mr, const bool selected = false,
ImportHEdgeAdj(ml,mr,ml.hedge[remap.hedge[Index(mr,*hi)]],*hi,remap,selected);
}
// phase 3.
// take care of other per mesh data: textures, attributes
// phase 3.
// take care of other per mesh data: textures, attributes
// At the end concatenate the vector with texture names.
ml.textures.insert(ml.textures.end(),mr.textures.begin(),mr.textures.end());
// At the end concatenate the vector with texture names.
ml.textures.insert(ml.textures.end(),mr.textures.begin(),mr.textures.end());
// Attributes. Copy only those attributes that are present in both meshes
// Two attributes in different meshes are considered the same if they have the same
// name and the same type. This may be deceiving because they could in fact have
// different semantic, but this is up to the developer.
// If the left mesh has attributes that are not in the right mesh, their values for the elements
// of the right mesh will be uninitialized
// Attributes. Copy only those attributes that are present in both meshes
// Two attributes in different meshes are considered the same if they have the same
// name and the same type. This may be deceiving because they could in fact have
// different semantic, but this is up to the developer.
// If the left mesh has attributes that are not in the right mesh, their values for the elements
// of the right mesh will be uninitialized
unsigned int id_r;
typename std::set< PointerToAttribute >::iterator al, ar;
unsigned int id_r;
typename std::set< PointerToAttribute >::iterator al, ar;
// per vertex attributes
for(al = ml.vert_attr.begin(); al != ml.vert_attr.end(); ++al)
if(!(*al)._name.empty()){
ar = mr.vert_attr.find(*al);
if(ar!= mr.vert_attr.end()){
id_r = 0;
for(vi=mr.vert.begin();vi!=mr.vert.end();++vi,++id_r)
if( !(*vi).IsD() && (!selected || (*vi).IsS()))
memcpy((*al)._handle->At(remap.vert[Index(mr,*vi)]),(*ar)._handle->At(id_r),
(*al)._handle->SizeOf());
}
}
// per vertex attributes
for(al = ml.vert_attr.begin(); al != ml.vert_attr.end(); ++al)
if(!(*al)._name.empty()){
ar = mr.vert_attr.find(*al);
if(ar!= mr.vert_attr.end()){
id_r = 0;
for(vi=mr.vert.begin();vi!=mr.vert.end();++vi,++id_r)
if( !(*vi).IsD() && (!selected || (*vi).IsS()))
memcpy((*al)._handle->At(remap.vert[Index(mr,*vi)]),(*ar)._handle->At(id_r),
(*al)._handle->SizeOf());
}
}
// per edge attributes
for(al = ml.edge_attr.begin(); al != ml.edge_attr.end(); ++al)
if(!(*al)._name.empty()){
ar = mr.edge_attr.find(*al);
if(ar!= mr.edge_attr.end()){
id_r = 0;
for(ei=mr.edge.begin();ei!=mr.edge.end();++ei,++id_r)
if( !(*ei).IsD() && (!selected || (*ei).IsS()))
// per edge attributes
for(al = ml.edge_attr.begin(); al != ml.edge_attr.end(); ++al)
if(!(*al)._name.empty()){
ar = mr.edge_attr.find(*al);
if(ar!= mr.edge_attr.end()){
id_r = 0;
for(ei=mr.edge.begin();ei!=mr.edge.end();++ei,++id_r)
if( !(*ei).IsD() && (!selected || (*ei).IsS()))
memcpy((*al)._handle->At(remap.edge[Index(mr,*ei)]),(*ar)._handle->At(id_r),
(*al)._handle->SizeOf());
}
}
(*al)._handle->SizeOf());
}
}
// per face attributes
for(al = ml.face_attr.begin(); al != ml.face_attr.end(); ++al)
if(!(*al)._name.empty()){
ar = mr.face_attr.find(*al);
if(ar!= mr.face_attr.end()){
id_r = 0;
for(fi=mr.face.begin();fi!=mr.face.end();++fi,++id_r)
if( !(*fi).IsD() && (!selected || (*fi).IsS()))
// per face attributes
for(al = ml.face_attr.begin(); al != ml.face_attr.end(); ++al)
if(!(*al)._name.empty()){
ar = mr.face_attr.find(*al);
if(ar!= mr.face_attr.end()){
id_r = 0;
for(fi=mr.face.begin();fi!=mr.face.end();++fi,++id_r)
if( !(*fi).IsD() && (!selected || (*fi).IsS()))
memcpy((*al)._handle->At(remap.face[Index(mr,*fi)]),(*ar)._handle->At(id_r),
(*al)._handle->SizeOf());
}
}
(*al)._handle->SizeOf());
}
}
// per mesh attributes
// if both ml and mr have an attribute with the same name, no action is done

View File

@ -8,7 +8,7 @@
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
@ -21,21 +21,30 @@
* *
****************************************************************************/
#ifndef __VCG_MESH
#ifndef __VCG_MESH_H
#define __VCG_MESH_H
#define __VCG_MESH
#include <assert.h>
#include <string>
#include <vector>
#include <set>
#include <exception>
#include <stack>
#include <algorithm>
#include <map>
#include <iostream>
#include <stdexcept>
#include <limits>
#include <set>
#include <vcg/complex/exception.h>
#include <vcg/container/simple_temporary_data.h>
#include <vcg/complex/used_types.h>
#include <vcg/complex/base.h>
#include <vcg/complex/allocate.h>
#include <vcg/complex/algorithms/update/flag.h>
#include <vcg/complex/algorithms/update/selection.h>
#include <vcg/complex/append.h>
#undef __VCG_MESH
#endif