minimal ply tetra importer and tetragl (immediate mode)

This commit is contained in:
T.Alderighi 2018-05-14 20:01:43 +02:00
parent fb0684974a
commit 85f3a5fad5
3 changed files with 984 additions and 1125 deletions

View File

@ -39,7 +39,7 @@ class GLW {
public: public:
enum DrawMode {DMNone, DMSmallTetra,DMFlat,DMWire, DMHidden,DMTransparent,DMFlatWire} ; enum DrawMode {DMNone, DMSmallTetra,DMFlat,DMWire, DMHidden,DMTransparent,DMFlatWire} ;
enum NormalMode{NMFlat,NMSmooth, NMUser, NMPerMesh}; enum NormalMode{NMFlat,NMSmooth, NMUser, NMPerMesh};
enum ColorMode {CMNone, CMPerMesh,CMUser,CMPerTetraF,CMPerVertexF,CMPerVertex}; enum ColorMode {CMNone, CMPerMesh,CMUser,CMPerTetra,CMPerVertexF,CMPerVertex};
enum Hint {HShrinkFactor}; enum Hint {HShrinkFactor};
}; };
@ -112,6 +112,10 @@ public:
{ {
P=p; P=p;
} }
bool IsClipped(Point3x p)
{
return D.V(0) * p.X() + D.V(1) * p.Y() + D.V(2) * p.Z() - vcg::Norm(P) < 0;
}
void GlClip() void GlClip()
{ {
@ -148,7 +152,6 @@ public:
glPopAttrib(); glPopAttrib();
glPopMatrix(); glPopMatrix();
} }
void Transform(vcg::Matrix44<float> Tr) void Transform(vcg::Matrix44<float> Tr)
@ -177,7 +180,7 @@ public:
ClipPlane section; ClipPlane section;
private: private:
ScalarType shrink_factor; ScalarType shrink_factor = 0.95f;
public: public:
@ -199,15 +202,7 @@ public:
section.active=false; section.active=false;
} }
typedef Color4b (*color_func_vertex)(VertexType&v);
color_func_vertex color_vertex;
typedef Color4b (*color_func_tetra)(TetraType&v);
color_func_tetra color_tetra;
template <DrawMode dm,NormalMode nm,ColorMode cm > template <DrawMode dm,NormalMode nm,ColorMode cm >
void Draw(){ void Draw(){
switch (dm){ switch (dm){
case DMNone: break; case DMNone: break;
@ -223,19 +218,15 @@ public:
private: private:
template <ColorMode cm > template <ColorMode cm >
void _DrawSmallTetra(){ void _DrawSmallTetra(){
Point3x p[4],br;
typename CONT_TETRA::iterator it; typename CONT_TETRA::iterator it;
glPushAttrib(0xffffffff);
glEnable(GL_COLOR_MATERIAL); // glPushAttrib(0xffff);
glEnable(GL_LIGHT0); // glEnable(GL_COLOR_MATERIAL);
glEnable(GL_LIGHTING); // glEnable(GL_NORMALIZE);
glEnable(GL_NORMALIZE); // glPolygonMode(GL_FRONT, GL_FILL);
glPolygonMode(GL_FRONT,GL_FILL); // glLight(GL_LIGHT0, GL_DIFFUSE, vcg::Color4b::White);
if (section.active) // glEnable(GL_LIGHT0);
{ // glEnable(GL_LIGHTING);
section.GlClip();
section.GlDraw();
}
/*glBegin(GL_TRIANGLES);*/ /*glBegin(GL_TRIANGLES);*/
for( it = tetra->begin(); it != tetra->end(); ++it) for( it = tetra->begin(); it != tetra->end(); ++it)
if((!it->IsD())&&(!(it->IsS()))) //draw as normal if((!it->IsD())&&(!(it->IsS()))) //draw as normal
@ -248,7 +239,12 @@ template <ColorMode cm >
_DrawSelectedTetra(*it); _DrawSelectedTetra(*it);
} }
//glEnd(); //glEnd();
glPopAttrib(); // glPopAttrib();
if (section.active)
{
// section.GlClip();
section.GlDraw();
}
} }
template <NormalMode nm,ColorMode cm > template <NormalMode nm,ColorMode cm >
@ -280,6 +276,7 @@ void _DrawSurface(){
} }
else else
{ {
glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING); glEnable(GL_LIGHTING);
glEnable(GL_NORMALIZE); glEnable(GL_NORMALIZE);
glPolygonMode(GL_FRONT,GL_FILL); glPolygonMode(GL_FRONT,GL_FILL);
@ -356,14 +353,16 @@ void _ChooseColorTetra(TetraType &t)
else else
glColor3d(0.8f,0.8f,0.8f); glColor3d(0.8f,0.8f,0.8f);
} }
else if (cm == CMPerTetra)
if(cm == CMPerTetraF) vcg::glColor(t.C());
{ // else
Color4b c; // if(cm == CMPerTetraF)
c = color_tetra(t); // {
GLint ic[4]; ic[0] = c[0];ic[1] = c[1];ic[2] = c[2];ic[3] = c[3]; // Color4b c;
glMaterialiv(GL_FRONT,GL_DIFFUSE ,ic); // c = color_tetra(t);
} // GLint ic[4]; ic[0] = c[0];ic[1] = c[1];ic[2] = c[2];ic[3] = c[3];
// glMaterialiv(GL_FRONT,GL_DIFFUSE ,ic);
// }
} }
template <ColorMode cm > template <ColorMode cm >
@ -371,16 +370,16 @@ void _ChooseColorVertex(VertexType &v)
{ {
if (cm!=CMNone) if (cm!=CMNone)
{ {
if(cm == CMPerVertexF) // if(cm == CMPerVertexF)
{ // {
Color4b c; // Color4b c;
c = color_vertex(v); // c = color_vertex(v);
GLint ic[4]; ic[0] = c[0];ic[1] = c[1];ic[2] = c[2];ic[3] = c[3]; // GLint ic[4]; ic[0] = c[0];ic[1] = c[1];ic[2] = c[2];ic[3] = c[3];
glMaterialiv(GL_FRONT,GL_DIFFUSE ,ic); // glMaterialiv(GL_FRONT,GL_DIFFUSE ,ic);
} // }
else // else
if(cm == CMPerVertex) if(cm == CMPerVertex)
glColor3f(v.C()[0],v.C()[1],v.C()[2]); vcg::glColor(v.C());
} }
} }
@ -409,10 +408,10 @@ template <ColorMode cm >
void _DrawFace(TetraType &t,int face) void _DrawFace(TetraType &t,int face)
{ {
glBegin(GL_TRIANGLES); glBegin(GL_TRIANGLES);
glNormal(t.N(face));
VertexType *v0=t.V(Tetra::VofF(face,0)); VertexType *v0=t.V(Tetra::VofF(face,0));
VertexType *v1=t.V(Tetra::VofF(face,1)); VertexType *v1=t.V(Tetra::VofF(face,1));
VertexType *v2=t.V(Tetra::VofF(face,2)); VertexType *v2=t.V(Tetra::VofF(face,2));
glNormal(vcg::Normal(v0->P(), v1->P(), v2->P()).normalized());
_ChooseColorVertex<cm>(*v0); _ChooseColorVertex<cm>(*v0);
glVertex(v0->P()); glVertex(v0->P());
_ChooseColorVertex<cm>(*v1); _ChooseColorVertex<cm>(*v1);
@ -425,24 +424,39 @@ glBegin(GL_TRIANGLES);
template < ColorMode cm > template < ColorMode cm >
void _DrawSmallTetra(TetraType &t) void _DrawSmallTetra(TetraType &t)
{ {
Tetra3<ScalarType> T=Tetra3<ScalarType>();
T.P0(0)=t.V(0)->cP();
T.P1(0)=t.V(1)->cP();
T.P2(0)=t.V(2)->cP();
T.P3(0)=t.V(3)->cP();
Point3x p[4], br; Point3x p[4], br;
br=T.ComputeBarycenter(); br = Tetra::Barycenter(t);
if (section.IsClipped(br))
return;
bool border = false;
bool clipBorder = false;
for (int i = 0; i < 4; ++i)
{
border = border || t.IsB(i);
Point3x br1 = Tetra::Barycenter(*t.TTp(i));
clipBorder = clipBorder || section.IsClipped(br1);
}
if (!border && !clipBorder)
return;
for(int i = 0; i < 4; ++i) for(int i = 0; i < 4; ++i)
p[i] = t.V(i)->P() * shrink_factor + br * (1 - shrink_factor); p[i] = t.V(i)->P() * shrink_factor + br * (1 - shrink_factor);
_ChooseColorTetra<cm>(t); _ChooseColorTetra<cm>(t);
glBegin(GL_TRIANGLES); glBegin(GL_TRIANGLES);
for(int i = 0; i < 4; ++i) for(int i = 0; i < 4; ++i)
{ {
glNormal(t.N(i));
VertexType *v0=t.V(Tetra::VofF(i,0)); VertexType *v0=t.V(Tetra::VofF(i,0));
VertexType *v1=t.V(Tetra::VofF(i,1)); VertexType *v1=t.V(Tetra::VofF(i,1));
VertexType *v2=t.V(Tetra::VofF(i,2)); VertexType *v2=t.V(Tetra::VofF(i,2));
glNormal(vcg::Normal(v0->P(), v1->P(), v2->P()).normalized());
_ChooseColorVertex<cm>(*v0); _ChooseColorVertex<cm>(*v0);
glVertex(p[Tetra::VofF(i,0)]); glVertex(p[Tetra::VofF(i,0)]);
_ChooseColorVertex<cm>(*v1); _ChooseColorVertex<cm>(*v1);
@ -452,8 +466,6 @@ void _DrawSmallTetra(TetraType &t)
} }
glEnd(); glEnd();
} }
}; };
} // end namespace tetra } // end namespace tetra

View File

@ -85,6 +85,7 @@ struct LoadPly_TetraAux
unsigned char r; unsigned char r;
unsigned char g; unsigned char g;
unsigned char b; unsigned char b;
unsigned char a;
unsigned char data[MAX_USER_DATA]; unsigned char data[MAX_USER_DATA];
}; };
@ -106,6 +107,7 @@ struct LoadPly_VertAux
unsigned char r; unsigned char r;
unsigned char g; unsigned char g;
unsigned char b; unsigned char b;
unsigned char a;
unsigned char data[MAX_USER_DATA]; unsigned char data[MAX_USER_DATA];
}; };
@ -140,15 +142,15 @@ struct LoadPly_VertAux
static const PropDescriptor &VertDesc(int i) static const PropDescriptor &VertDesc(int i)
{ {
const static PropDescriptor pv[9]={ const static PropDescriptor pv[9]={
{"vertex", "x", ply::T_FLOAT, PlyType<ScalarType>(),offsetof(LoadPly_VertAux<ScalarType>,p[0]),0,0,0,0,0}, {"vertex", "x", ply::T_FLOAT, PlyType<ScalarType>(), offsetof(LoadPly_VertAux<ScalarType>,p),0,0,0,0,0},
{"vertex", "y", ply::T_FLOAT, PlyType<ScalarType>(),offsetof(LoadPly_VertAux<ScalarType>,p[1]),0,0,0,0,0}, {"vertex", "y", ply::T_FLOAT, PlyType<ScalarType>(), offsetof(LoadPly_VertAux<ScalarType>,p) + sizeof(ScalarType),0,0,0,0,0},
{"vertex", "z", ply::T_FLOAT, PlyType<ScalarType>(),offsetof(LoadPly_VertAux<ScalarType>,p[2]),0,0,0,0,0}, {"vertex", "z", ply::T_FLOAT, PlyType<ScalarType>(), offsetof(LoadPly_VertAux<ScalarType>,p) + 2 * sizeof(ScalarType),0,0,0,0,0},
{"vertex", "flags", ply::T_INT, ply::T_INT, offsetof(LoadPly_VertAux<ScalarType>,flags),0,0,0,0,0}, {"vertex", "flags", ply::T_INT, ply::T_INT, offsetof(LoadPly_VertAux<ScalarType>,flags),0,0,0,0,0},
{"vertex", "quality", ply::T_FLOAT, ply::T_FLOAT, offsetof(LoadPly_VertAux<ScalarType>,q),0,0,0,0,0}, {"vertex", "quality", ply::T_FLOAT, ply::T_FLOAT, offsetof(LoadPly_VertAux<ScalarType>,q),0,0,0,0,0},
{"vertex", "red" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,r),0,0,0,0,0}, {"vertex", "red" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,r),0,0,0,0,0},
{"vertex", "green", ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,g),0,0,0,0,0}, {"vertex", "green", ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,g),0,0,0,0,0},
{"vertex", "blue" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,b),0,0,0,0,0}, {"vertex", "blue" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,b),0,0,0,0,0},
{"vertex", "confidence",ply::T_FLOAT, ply::T_FLOAT, offsetof(LoadPly_VertAux<ScalarType>,q),0,0,0,0,0}, {"vertex", "alpha" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,a),0,0,0,0,0},
}; };
return pv[i]; return pv[i];
} }
@ -167,51 +169,13 @@ static const PropDescriptor &TetraDesc(int i)
{"tetra", "red" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_TetraAux,r), 0,0,0,0,0}, {"tetra", "red" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_TetraAux,r), 0,0,0,0,0},
{"tetra", "green", ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_TetraAux,g), 0,0,0,0,0}, {"tetra", "green", ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_TetraAux,g), 0,0,0,0,0},
{"tetra", "blue" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_TetraAux,b), 0,0,0,0,0}, {"tetra", "blue" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_TetraAux,b), 0,0,0,0,0},
{"tetra", "vertex_index", ply::T_INT, ply::T_INT, offsetof(LoadPly_TetraAux,v), 1,0,ply::T_UCHAR,ply::T_CHAR,offsetof(LoadPly_TetraAux,size) }, {"tetra", "alpha" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_TetraAux,a), 0,0,0,0,0},
}; };
return qf[i]; return qf[i];
} }
//static const PropDescriptor &TristripDesc(int i)
//{
// const static PropDescriptor qf[1]=
// {
// {"tristrips","vertex_indices", ply::T_INT, ply::T_INT, offsetof(LoadPly_TristripAux,v), 1,1,ply::T_INT,ply::T_INT,offsetof(LoadPly_TristripAux,size) },
// };
// return qf[i];
//}
//static const PropDescriptor &CameraDesc(int i)
//{
// const static PropDescriptor cad[23] =
// {
// {"camera","view_px",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,view_px),0,0,0,0,0},
// {"camera","view_py",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,view_py),0,0,0,0,0},
// {"camera","view_pz",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,view_pz),0,0,0,0,0},
// {"camera","x_axisx",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,x_axisx),0,0,0,0,0},
// {"camera","x_axisy",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,x_axisy),0,0,0,0,0},
// {"camera","x_axisz",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,x_axisz),0,0,0,0,0},
// {"camera","y_axisx",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,y_axisx),0,0,0,0,0},
// {"camera","y_axisy",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,y_axisy),0,0,0,0,0},
// {"camera","y_axisz",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,y_axisz),0,0,0,0,0},
// {"camera","z_axisx",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,z_axisx),0,0,0,0,0},
// {"camera","z_axisy",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,z_axisy),0,0,0,0,0},
// {"camera","z_axisz",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,z_axisz),0,0,0,0,0},
// {"camera","focal" ,ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,focal ),0,0,0,0,0},
// {"camera","scalex" ,ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,scalex ),0,0,0,0,0},
// {"camera","scaley" ,ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,scaley ),0,0,0,0,0},
// {"camera","centerx",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,centerx),0,0,0,0,0},
// {"camera","centery",ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,centery),0,0,0,0,0},
// {"camera","viewportx",ply::T_INT,ply::T_INT ,offsetof(LoadPly_Camera,viewportx),0,0,0,0,0},
// {"camera","viewporty",ply::T_INT,ply::T_INT ,offsetof(LoadPly_Camera,viewporty),0,0,0,0,0},
// {"camera","k1" ,ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,k1 ),0,0,0,0,0},
// {"camera","k2" ,ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,k2 ),0,0,0,0,0},
// {"camera","k3" ,ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,k3 ),0,0,0,0,0},
// {"camera","k4" ,ply::T_FLOAT,ply::T_FLOAT,offsetof(LoadPly_Camera,k4 ),0,0,0,0,0}
// };
// return cad[i];
//}
/// Standard call for reading a mesh /// Standard call for reading a mesh
static int Open( OpenMeshType &m, const char * filename, CallBackPos *cb=0) static int Open( OpenMeshType &m, const char * filename, CallBackPos *cb=0)
@ -236,8 +200,8 @@ static int Open( OpenMeshType &m, const char * filename, PlyInfo & pi )
{ {
assert(filename!=0); assert(filename!=0);
vector<VertexPointer> index; vector<VertexPointer> index;
LoadPly_TetraAux fa; LoadPly_TetraAux fa;
// LoadPly_TristripAux tsa;
LoadPly_VertAux<ScalarType> va; LoadPly_VertAux<ScalarType> va;
pi.mask = 0; pi.mask = 0;
@ -250,91 +214,63 @@ static int Open( OpenMeshType &m, const char * filename, PlyInfo & pi )
vcg::ply::PlyFile pf; vcg::ply::PlyFile pf;
// Open the file and parse the header // Open the file and parse the header
std::cerr << "Parsing the header.." << std::endl;
if( pf.Open(filename,vcg::ply::PlyFile::MODE_READ)== -1 ) if( pf.Open(filename,vcg::ply::PlyFile::MODE_READ)== -1 )
{ {
pi.status = pf.GetError(); pi.status = pf.GetError();
return -1; return -1;
} }
std::cerr << "Parsed the header.." << std::endl;
pi.header = pf.GetHeader(); pi.header = pf.GetHeader();
// Descrittori della camera
{ // Check that all the camera properties are present.
/* bool found = true;
for(int i=0;i<23;++i)
{
if( pf.AddToRead(CameraDesc(i))==-1 ) {
found = false;
break;
}
}
if(found) pi.mask |= ply::PLYMask::PM_CAMERA;*/
}
// Descrittori dati standard (vertex coord e faces) // Descrittori dati standard (vertex coord e faces)
if( pf.AddToRead(VertDesc(0)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return -1; } if( pf.AddToRead(VertDesc(0)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return -1; }
if( pf.AddToRead(VertDesc(1)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return -1; } if( pf.AddToRead(VertDesc(1)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return -1; }
if( pf.AddToRead(VertDesc(2)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return -1; } if( pf.AddToRead(VertDesc(2)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return -1; }
if( pf.AddToRead(TetraDesc(0))== -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return -1; } if( pf.AddToRead(TetraDesc(0))== -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return -1; }
// Se fallisce si prova anche la sintassi di rapidform con index al posto di indices
// if( pf.AddToRead(TetraDesc(9))==-1 )
// if(pf.AddToRead(TristripDesc(0))==-1) // Se fallisce tutto si prova a vedere se ci sono tristrip alla levoy.
// { pi.status = PlyInfo::E_NO_FACE; return -1; }
// Descrittori facoltativi dei flags // Descrittori facoltativi dei flags
if( pf.AddToRead(VertDesc(3))!=-1 ) if( pf.AddToRead(VertDesc(3))!=-1 )
pi.mask |= ply::PLYMask::PM_VERTFLAGS; pi.mask |= vcg::tetra::io::Mask::IOM_VERTFLAGS;
if( VertexType::HasQuality() ) if( VertexType::HasQuality() )
{ {
if( pf.AddToRead(VertDesc(4))!=-1 || if( pf.AddToRead(VertDesc(4))!=-1 ||
pf.AddToRead(VertDesc(8))!=-1 ) pf.AddToRead(VertDesc(9))!=-1 )
pi.mask |= ply::PLYMask::PM_VERTQUALITY; pi.mask |= vcg::tetra::io::Mask::IOM_VERTQUALITY;
} }
if( VertexType::HasColor() ) if( VertexType::HasColor() )
{ {
if( pf.AddToRead(VertDesc(5))!=-1 ) if( pf.AddToRead(VertDesc(5))!=-1 )
{ {
pf.AddToRead(VertDesc(6)); pf.AddToRead(VertDesc(6));
pf.AddToRead(VertDesc(7)); pf.AddToRead(VertDesc(7));
pi.mask |= ply::PLYMask::PM_VERTCOLOR; pf.AddToRead(VertDesc(8));
}
}
pi.mask |= vcg::tetra::io::Mask::IOM_VERTCOLOR;
}
}
// se ci sono i flag per vertice ci devono essere anche i flag per faccia // se ci sono i flag per vertice ci devono essere anche i flag per faccia
if( pf.AddToRead(TetraDesc(1))!=-1 ) if( pf.AddToRead(TetraDesc(1))!=-1 )
pi.mask |= ply::PLYMask::PM_TETRAFLAGS; pi.mask |= vcg::tetra::io::Mask::IOM_TETRAFLAGS;
if( TetraType::HasQuality())
if( TetraType::HasTetraQuality())
{ {
if( pf.AddToRead(TetraDesc(2))!=-1 ) if( pf.AddToRead(TetraDesc(2))!=-1 )
pi.mask |= ply::PLYMask::PM_TETRAQUALITY; pi.mask |= vcg::tetra::io::Mask::IOM_TETRAQUALITY;
} }
if( TetraType::HasColor() )
if( TetraType::HasTetraColor() )
{ {
if( pf.AddToRead(TetraDesc(6))!=-1 ) if( pf.AddToRead(TetraDesc(6))!=-1 )
{ {
pf.AddToRead(TetraDesc(7)); pf.AddToRead(TetraDesc(7));
pf.AddToRead(TetraDesc(8)); pf.AddToRead(TetraDesc(8));
pi.mask |= ply::PLYMask::PM_TETRACOLOR; pf.AddToRead(TetraDesc(9));
pi.mask |= vcg::tetra::io::Mask::IOM_TETRACOLOR;
} }
} }
// if( FaceType::HasWedgeColor() || FaceType::HasFaceColor() || VertexType::HasColor())
//{
// if( pf.AddToRead(TetraDesc(4))!=-1 )
// {
// pi.mask |= ply::PLYMask::PM_WEDGCOLOR;
// }
//}
// Descrittori definiti dall'utente, // Descrittori definiti dall'utente,
vector<PropDescriptor> VPV(pi.vdn); // property descriptor relative al tipo LoadPly_VertexAux vector<PropDescriptor> VPV(pi.vdn); // property descriptor relative al tipo LoadPly_VertexAux
vector<PropDescriptor> FPV(pi.fdn); // property descriptor relative al tipo LoadPly_FaceAux vector<PropDescriptor> FPV(pi.fdn); // property descriptor relative al tipo LoadPly_FaceAux
if(pi.vdn>0){ if(pi.vdn>0){
// Compute the total size needed to load additional per vertex data. // Compute the total size needed to load additional per vertex data.
size_t totsz=0; size_t totsz=0;
@ -364,7 +300,6 @@ static int Open( OpenMeshType &m, const char * filename, PlyInfo & pi )
return -1; return -1;
} }
} }
/**************************************************************/ /**************************************************************/
/* Main Reading Loop */ /* Main Reading Loop */
/**************************************************************/ /**************************************************************/
@ -373,46 +308,7 @@ static int Open( OpenMeshType &m, const char * filename, PlyInfo & pi )
{ {
int n = pf.ElemNumber(i); int n = pf.ElemNumber(i);
if( !strcmp( pf.ElemName(i),"camera" ) ) if( !strcmp( pf.ElemName(i),"vertex" ) )
{
pf.SetCurElement(i);
// LoadPly_Camera ca;
for(int j=0;j<n;++j)
{
/* if( pf.Read( (void *)&(ca) )==-1 )
{
pi.status = PlyInfo::E_SHORTFILE;
return -1;
} */
//camera.valid = true;
//camera.view_p[0] = ca.view_px;
//camera.view_p[1] = ca.view_py;
//camera.view_p[2] = ca.view_pz;
//camera.x_axis[0] = ca.x_axisx;
//camera.x_axis[1] = ca.x_axisy;
//camera.x_axis[2] = ca.x_axisz;
//camera.y_axis[0] = ca.y_axisx;
//camera.y_axis[1] = ca.y_axisy;
//camera.y_axis[2] = ca.y_axisz;
//camera.z_axis[0] = ca.z_axisx;
//camera.z_axis[1] = ca.z_axisy;
//camera.z_axis[2] = ca.z_axisz;
//camera.f = ca.focal;
//camera.s[0] = ca.scalex;
//camera.s[1] = ca.scaley;
//camera.c[0] = ca.centerx;
//camera.c[1] = ca.centery;
//camera.viewport[0] = ca.viewportx;
//camera.viewport[1] = ca.viewporty;
//camera.k[0] = ca.k1;
//camera.k[1] = ca.k2;
//camera.k[2] = ca.k3;
//camera.k[3] = ca.k4;
}
}
else if( !strcmp( pf.ElemName(i),"vertex" ) )
{ {
int j; int j;
@ -432,18 +328,18 @@ static int Open( OpenMeshType &m, const char * filename, PlyInfo & pi )
(*vi).P()[1] = va.p[1]; (*vi).P()[1] = va.p[1];
(*vi).P()[2] = va.p[2]; (*vi).P()[2] = va.p[2];
if( pi.mask & ply::PLYMask::PM_VERTFLAGS ) if( pi.mask & vcg::tetra::io::Mask::IOM_VERTFLAGS )
(*vi).Flags() = va.flags; (*vi).Flags() = va.flags;
if( pi.mask & ply::PLYMask::PM_VERTQUALITY ) if( pi.mask & vcg::tetra::io::Mask::IOM_VERTQUALITY )
(*vi).Q() = va.q; (*vi).Q() = va.q;
if( pi.mask & vcg::tetra::io::Mask::IOM_VERTCOLOR )
if( pi.mask & ply::PLYMask::PM_VERTCOLOR )
{ {
(*vi).C()[0] = va.r; (*vi).C()[0] = va.r;
(*vi).C()[1] = va.g; (*vi).C()[1] = va.g;
(*vi).C()[2] = va.b; (*vi).C()[2] = va.b;
(*vi).C()[3] = 255; (*vi).C()[3] = va.a;
} }
@ -462,7 +358,7 @@ static int Open( OpenMeshType &m, const char * filename, PlyInfo & pi )
{ {
int j; int j;
int k; int k;
TetraIterator fi=Allocator<OpenMeshType>::AddTetra(m,n); TetraIterator ti = Allocator<OpenMeshType>::AddTetras(m, n);
pf.SetCurElement(i); pf.SetCurElement(i);
for(j=0;j<n;++j) for(j=0;j<n;++j)
@ -488,81 +384,34 @@ static int Open( OpenMeshType &m, const char * filename, PlyInfo & pi )
pi.status = PlyInfo::E_BAD_VERT_INDEX; pi.status = PlyInfo::E_BAD_VERT_INDEX;
return -1; return -1;
} }
(*fi).V(k) = index[ fa.v[k] ]; (*ti).V(k) = index[ fa.v[k] ];
} }
if( pi.mask & ply::PLYMask::PM_TETRAFLAGS ) if( pi.mask & vcg::tetra::io::Mask::IOM_TETRAFLAGS )
{ {
(*fi).Flags() = fa.flags; (*ti).Flags() = fa.flags;
} }
if( pi.mask & ply::PLYMask::PM_TETRAQUALITY ) if( pi.mask & vcg::tetra::io::Mask::IOM_TETRAQUALITY )
{ {
(*fi).Q() = fa.q; (*ti).Q() = fa.q;
} }
if( pi.mask & ply::PLYMask::PM_TETRACOLOR ) if( pi.mask & vcg::tetra::io::Mask::IOM_TETRACOLOR )
{ {
(*fi).C()[0] = fa.r; (*ti).C()[0] = fa.r;
(*fi).C()[1] = fa.g; (*ti).C()[1] = fa.g;
(*fi).C()[2] = fa.b; (*ti).C()[2] = fa.b;
(*fi).C()[3] = 255; (*ti).C()[3] = fa.a;
}
if(TetraType::HasTetraColor()){
{
(*fi).C()[0] = (unsigned char)((fa.colors[0*3+0]*255+fa.colors[1*3+0]*255+fa.colors[2*3+0]*255)/3.0f);
(*fi).C()[1] = (unsigned char)((fa.colors[0*3+1]*255+fa.colors[1*3+1]*255+fa.colors[2*3+1]*255)/3.0f);
(*fi).C()[2] = (unsigned char)((fa.colors[0*3+2]*255+fa.colors[1*3+2]*255+fa.colors[2*3+2]*255)/3.0f);
}
} }
++ti;
} }
for(k=0;k<pi.fdn;k++) for(k=0;k<pi.fdn;k++)
memcpy((char *)(&(*fi)) + pi.TetraData[k].offset1, memcpy((char *)(&(*ti)) + pi.TetraData[k].offset1,
(char *)(&fa) + FPV[k].offset1, (char *)(&fa) + FPV[k].offset1,
FPV[k].memtypesize()); FPV[k].memtypesize());
++fi;
} }
// }
//else if( !strcmp( pf.ElemName(i),"tristrips") )//////////////////// LETTURA TRISTRIP DI STANFORD
// {
// int j;
// pf.SetCurElement(i);
// int numvert_tmp = m.vert.size();
// for(j=0;j<n;++j)
// {
// int k;
// if(pi.cb && (j%1000)==0) pi.cb(50+j*50/n,"Tristrip Face Loading");
// if( pf.Read(&tsa)==-1 )
// {
// pi.status = PlyInfo::E_SHORTFILE;
// return -1;
// }
// int remainder=0;
// //int startface=m.face.size();
// for(k=0;k<tsa.size-2;++k)
// {
// if(pi.cb && (k%1000)==0) pi.cb(50+k*50/tsa.size,"Tristrip Face Loading");
// if(tsa.v[k]<0 || tsa.v[k]>=numvert_tmp ) {
// pi.status = PlyInfo::E_BAD_VERT_INDEX;
// return -1;
// }
// if(tsa.v[k+2]==-1)
// {
// k+=2;
// if(k%2) remainder=0;
// else remainder=1;
// continue;
// }
// tf.V(0) = index[ tsa.v[k+0] ];
// tf.V(1) = index[ tsa.v[k+1] ];
// tf.V(2) = index[ tsa.v[k+2] ];
// if((k+remainder)%2) swap (tf.V(0), tf.V(1) );
// m.face.push_back( tf );
// }
// }
// }
else else
{ {
// Skippaggio elementi non gestiti // Skippaggio elementi non gestiti
@ -635,79 +484,79 @@ static int Open( OpenMeshType &m, const char * filename, PlyInfo & pi )
} }
// Caricamento camera da un ply // // Caricamento camera da un ply
int LoadCamera(const char * filename) // int LoadCamera(const char * filename)
{ // {
vcg::ply::PlyFile pf; // vcg::ply::PlyFile pf;
if( pf.Open(filename,vcg::ply::PlyFile::MODE_READ)==-1 ) // if( pf.Open(filename,vcg::ply::PlyFile::MODE_READ)==-1 )
{ // {
pi.status = pf.GetError(); // pi.status = pf.GetError();
return -1; // return -1;
} // }
bool found = true; // bool found = true;
int i; // int i;
for(i=0;i<23;++i) // for(i=0;i<23;++i)
{ // {
if( pf.AddToRead(CameraDesc(i))==-1 ) // if( pf.AddToRead(CameraDesc(i))==-1 )
{ // {
found = false; // found = false;
break; // break;
} // }
} // }
if(!found) // if(!found)
return -1; // return -1;
for(i=0;i<int(pf.elements.size());i++) // for(i=0;i<int(pf.elements.size());i++)
{ // {
int n = pf.ElemNumber(i); // int n = pf.ElemNumber(i);
if( !strcmp( pf.ElemName(i),"camera" ) ) // if( !strcmp( pf.ElemName(i),"camera" ) )
{ // {
pf.SetCurElement(i); // pf.SetCurElement(i);
//LoadPly_Camera ca; // //LoadPly_Camera ca;
for(int j=0;j<n;++j) // for(int j=0;j<n;++j)
{ // {
if( pf.Read( (void *)&(ca) )==-1 ) // if( pf.Read( (void *)&(ca) )==-1 )
{ // {
pi.status = PlyInfo::E_SHORTFILE; // pi.status = PlyInfo::E_SHORTFILE;
return -1; // return -1;
} // }
camera.valid = true; // camera.valid = true;
camera.view_p[0] = ca.view_px; // camera.view_p[0] = ca.view_px;
camera.view_p[1] = ca.view_py; // camera.view_p[1] = ca.view_py;
camera.view_p[2] = ca.view_pz; // camera.view_p[2] = ca.view_pz;
camera.x_axis[0] = ca.x_axisx; // camera.x_axis[0] = ca.x_axisx;
camera.x_axis[1] = ca.x_axisy; // camera.x_axis[1] = ca.x_axisy;
camera.x_axis[2] = ca.x_axisz; // camera.x_axis[2] = ca.x_axisz;
camera.y_axis[0] = ca.y_axisx; // camera.y_axis[0] = ca.y_axisx;
camera.y_axis[1] = ca.y_axisy; // camera.y_axis[1] = ca.y_axisy;
camera.y_axis[2] = ca.y_axisz; // camera.y_axis[2] = ca.y_axisz;
camera.z_axis[0] = ca.z_axisx; // camera.z_axis[0] = ca.z_axisx;
camera.z_axis[1] = ca.z_axisy; // camera.z_axis[1] = ca.z_axisy;
camera.z_axis[2] = ca.z_axisz; // camera.z_axis[2] = ca.z_axisz;
camera.f = ca.focal; // camera.f = ca.focal;
camera.s[0] = ca.scalex; // camera.s[0] = ca.scalex;
camera.s[1] = ca.scaley; // camera.s[1] = ca.scaley;
camera.c[0] = ca.centerx; // camera.c[0] = ca.centerx;
camera.c[1] = ca.centery; // camera.c[1] = ca.centery;
camera.viewport[0] = ca.viewportx; // camera.viewport[0] = ca.viewportx;
camera.viewport[1] = ca.viewporty; // camera.viewport[1] = ca.viewporty;
camera.k[0] = ca.k1; // camera.k[0] = ca.k1;
camera.k[1] = ca.k2; // camera.k[1] = ca.k2;
camera.k[2] = ca.k3; // camera.k[2] = ca.k3;
camera.k[3] = ca.k4; // camera.k[3] = ca.k4;
} // }
break; // break;
} // }
} // }
return 0; // return 0;
} // }
bool LoadMask(const char * filename, int &mask) bool LoadMask(const char * filename, int &mask)
@ -722,25 +571,23 @@ bool LoadMask(const char * filename, int &mask)
if( pf.AddToRead(VertDesc(0))!=-1 && if( pf.AddToRead(VertDesc(0))!=-1 &&
pf.AddToRead(VertDesc(1))!=-1 && pf.AddToRead(VertDesc(1))!=-1 &&
pf.AddToRead(VertDesc(2))!=-1 ) mask |= ply::PLYMask::PM_VERTCOORD; pf.AddToRead(VertDesc(2))!=-1 ) mask |= vcg::tetra::io::Mask::IOM_VERTCOORD;
if( pf.AddToRead(VertDesc(3))!=-1 ) mask |= ply::PLYMask::PM_VERTFLAGS; if( pf.AddToRead(VertDesc(3))!=-1 ) mask |= vcg::tetra::io::Mask::IOM_VERTFLAGS;
if( pf.AddToRead(VertDesc(4))!=-1 ) mask |= ply::PLYMask::PM_VERTQUALITY; if( pf.AddToRead(VertDesc(4))!=-1 ) mask |= vcg::tetra::io::Mask::IOM_VERTQUALITY;
if( pf.AddToRead(VertDesc(8))!=-1 ) mask |= ply::PLYMask::PM_VERTQUALITY;
if( ( pf.AddToRead(VertDesc(5))!=-1 ) && if( ( pf.AddToRead(VertDesc(5))!=-1 ) &&
( pf.AddToRead(VertDesc(6))!=-1 ) && ( pf.AddToRead(VertDesc(6))!=-1 ) &&
( pf.AddToRead(VertDesc(7))!=-1 ) ) mask |= ply::PLYMask::PM_VERTCOLOR; ( pf.AddToRead(VertDesc(7))!=-1 ) &&
( pf.AddToRead(VertDesc(8))!=-1 ) ) mask |= vcg::tetra::io::Mask::IOM_VERTCOLOR;
if( pf.AddToRead(TetraDesc(0))!=-1 ) mask |= ply::PLYMask::PM_TETRAINDEX; if( pf.AddToRead(TetraDesc(0))!=-1 ) mask |= vcg::tetra::io::Mask::IOM_TETRAINDEX;
if( pf.AddToRead(TetraDesc(1))!=-1 ) mask |= ply::PLYMask::PM_TETRAFLAGS; if( pf.AddToRead(TetraDesc(1))!=-1 ) mask |= vcg::tetra::io::Mask::IOM_TETRAFLAGS;
if( pf.AddToRead(TetraDesc(2))!=-1 ) mask |= ply::PLYMask::PM_TETRAQUALITY; if( pf.AddToRead(TetraDesc(2))!=-1 ) mask |= vcg::tetra::io::Mask::IOM_TETRAQUALITY;
//if( pf.AddToRead(TetraDesc(3))!=-1 ) mask |= ply::PLYMask::PM_WEDGTEXCOORD;
//if( pf.AddToRead(TetraDesc(5))!=-1 ) mask |= ply::PLYMask::PM_WEDGTEXMULTI;
if( pf.AddToRead(TetraDesc(4))!=-1 ) mask |= ply::PLYMask::PM_WEDGCOLOR;
if( ( pf.AddToRead(TetraDesc(6))!=-1 ) && if( ( pf.AddToRead(TetraDesc(6))!=-1 ) &&
( pf.AddToRead(TetraDesc(7))!=-1 ) && ( pf.AddToRead(TetraDesc(7))!=-1 ) &&
( pf.AddToRead(TetraDesc(8))!=-1 ) ) mask |= ply::PLYMask::PM_TETRACOLOR; ( pf.AddToRead(TetraDesc(8))!=-1 ) &&
( pf.AddToRead(TetraDesc(9))!=-1 ) ) mask |= vcg::tetra::io::Mask::IOM_TETRACOLOR;
return true; return true;