New policy for compute quality in TrivialEar.

Bugfixed LeipaEar.
Added new algorithm "selfintersection" with test for self intersection.
This commit is contained in:
Paolo Cignoni 2006-10-18 15:06:47 +00:00
parent 310fcc2947
commit 8af861d31d
1 changed files with 418 additions and 47 deletions

View File

@ -24,6 +24,9 @@
History
$Log: not supported by cvs2svn $
Revision 1.7 2006/10/10 09:12:02 giec
Bugfix and added a new type of ear (Liepa like)
Revision 1.6 2006/10/09 10:07:07 giec
Optimized version of "EAR HOLE FILLING", the Ear is selected according to its dihedral angle.
@ -47,6 +50,8 @@ First Non working Version
#ifndef __VCG_TRI_UPDATE_HOLE
#define __VCG_TRI_UPDATE_HOLE
#include <vcg/math/base.h>
/*
Questa Classe serve per gestire la non duplicazione degli edge durante la chiusura
di un buco.
@ -278,7 +283,9 @@ namespace vcg {
public:
face::Pos<typename MSH_TYPE::FaceType> e0;
face::Pos<typename MSH_TYPE::FaceType> e1;
typename MSH_TYPE::ScalarType quality;
typedef typename MSH_TYPE::ScalarType ScalarType;
ScalarType quality;
ScalarType angle;
TrivialEar(){}
TrivialEar(const face::Pos<typename MSH_TYPE::FaceType> & ep)
{
@ -287,31 +294,52 @@ namespace vcg {
e1=e0;
e1.NextB();
ComputeQuality();
computeAngle();
}
// Nota: minori invertiti
inline bool operator < ( const TrivialEar & c ) const { return quality > c.quality; }
inline bool operator > ( const TrivialEar & c ) const { return quality < c.quality; }
inline bool operator == ( const TrivialEar & c ) const { return quality == c.quality; }
inline bool operator != ( const TrivialEar & c ) const { return quality != c.quality; }
inline bool operator >= ( const TrivialEar & c ) const { return quality <= c.quality; }
inline bool operator <= ( const TrivialEar & c ) const { return quality >= c.quality; }
void computeAngle()
{
Point3f p1 = e0.VFlip()->P() - e0.v->P();
Point3f p2 = e1.v->P() - e0.v->P();
ScalarType w = p2.Norm()*p1.Norm();
if(w==0) angle =90;
MSH_TYPE::ScalarType p = (p2*p1);
p= p/w;
p = acos(p);
if(p < -1) p = -1;
if(p > 1) p = 1;
Point3f t = p2^p1;
ScalarType n = t* e0.v->N();
if(n<0)
{
p = 2.0 *(float)M_PI - p;
}
angle = p;
}
inline bool operator < ( const TrivialEar & c ) const { return quality < c.quality; }
bool IsNull(){return e0.IsNull() || e1.IsNull();}
void SetNull(){e0.SetNull();e1.SetNull();}
void ComputeQuality()
{
//comute quality by max(dihedral ancgle)
Point3f n1 = (e0.v->N() + e1.v->N() + e0.VFlip()->N() ) / 3;
face::Pos<typename MSH_TYPE::FaceType> tmp = e1;
tmp.FlipE();tmp.FlipV();
Point3f n2= ( e1.VFlip()->N()+ e1.v->N()+ tmp.v->N())/3;
MSH_TYPE::ScalarType qt;
qt = Angle(n1,n2);
quality = qt * -1000;
};//dovrebbe
ScalarType ar;
ar = ( (e0.VFlip()->P() - e0.v->P()) ^ ( e1.v->P() - e0.v->P()) ).Norm() ;
ScalarType area = (ar);
ScalarType l1 = Distance( e0.v->P(),e1.v->P());
ScalarType l2 = Distance( e0.v->P(),e0.VFlip()->P());
ScalarType l3 = Distance( e0.VFlip()->P(),e1.v->P());
quality = area / ( (l1 *l1) + (l2 * l2) + (l3 * l3) );
};
bool IsUpToDate() {return (e0.IsBorder() && e1.IsBorder());};
bool IsConvex(){return (angle > (float)M_PI);}
bool Degen()
{
face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
@ -404,15 +432,16 @@ namespace vcg {
}
};
template<class MSH_TYPE> class LeipaEar
//Ear with Leipa's quality policy
template<class MSH_TYPE> class LeipaEar
{
public:
face::Pos<typename MSH_TYPE::FaceType> e0;
face::Pos<typename MSH_TYPE::FaceType> e1;
typename MSH_TYPE::ScalarType dihedral;
typename MSH_TYPE::ScalarType area;
typedef typename MSH_TYPE::ScalarType ScalarType;
ScalarType angle;
ScalarType dihedral;
ScalarType area;
LeipaEar(){}
LeipaEar(const face::Pos<typename MSH_TYPE::FaceType> & ep)
{
@ -421,33 +450,43 @@ namespace vcg {
e1=e0;
e1.NextB();
ComputeQuality();
computeAngle();
}
// Nota: minori invertiti
void computeAngle()
{
Point3f p1 = e0.VFlip()->P() - e0.v->P();
Point3f p2 = e1.v->P() - e0.v->P();
ScalarType w = p2.Norm()*p1.Norm();
if(w==0) angle =90;
ScalarType p = (p2*p1);
p= p/w;
p = acos(p);
if(p < -1) p = -1;
if(p > 1) p = 1;
Point3f t = p2^p1;
ScalarType n = t* e0.v->N();
if(n<0)
{
p = 2.0 *(float)M_PI - p;
}
angle = p;
}
// Nota: minori invertiti
inline bool operator < ( const LeipaEar & c ) const
{
if(dihedral < c.dihedral)return true;
else return ((dihedral == c.dihedral) && (area < c.area));
}
inline bool operator > ( const LeipaEar & c ) const
{
if(dihedral > c.dihedral)return true;
else return ((dihedral == c.dihedral) && (area > c.area));
}
inline bool operator == ( const LeipaEar & c ) const
{
return ((dihedral == c.dihedral) && (area == c.area));
}
inline bool operator != ( const LeipaEar & c ) const
{
return ((dihedral != c.dihedral)&& (area != c.area));
}
bool IsNull(){return e0.IsNull() || e1.IsNull();}
void SetNull(){e0.SetNull();e1.SetNull();}
void ComputeQuality()
{
//comute quality by (dihedral ancgle, area)
//comute quality by (dihedral ancgle, area/sum(edge^2) )
Point3f n1 = (e0.v->N() + e1.v->N() + e0.VFlip()->N() ) / 3;
face::Pos<typename MSH_TYPE::FaceType> tmp = e1;
tmp.FlipE();tmp.FlipV();
@ -455,15 +494,22 @@ namespace vcg {
MSH_TYPE::ScalarType qt;
qt = Angle(n1,n2);
dihedral = qt * -1000;
dihedral = -qt;
MSH_TYPE::ScalarType ar;
ar = ( (e0.VFlip()->P() - e0.v->P()) ^ ( e1.v->P() - e0.v->P()) ).Norm() ;
area = (ar)*1000;
/*ScalarType l1 = Distance( e0.v->P(),e1.v->P());
ScalarType l2 = Distance( e0.v->P(),e0.VFlip()->P());
ScalarType l3 = Distance( e0.VFlip()->P(),e1.v->P());*/
area = ar ;// ( (l1 *l1) + (l2 * l2) + (l3 * l3) );
};//dovrebbe
bool IsUpToDate() {return (e0.IsBorder() && e1.IsBorder());};
bool IsConvex(){return angle > (float)M_PI;}
bool Degen()
{
face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
@ -555,6 +601,178 @@ namespace vcg {
return true;
}
};
//Ear for selfintersection algorithm
template<class MSH_TYPE> class SelfIntersection
{
public:
face::Pos<typename MSH_TYPE::FaceType> e0;
face::Pos<typename MSH_TYPE::FaceType> e1;
typedef typename MSH_TYPE::ScalarType ScalarType;
ScalarType quality;
ScalarType angle;
SelfIntersection(){}
SelfIntersection(const face::Pos<typename MSH_TYPE::FaceType> & ep)
{
e0=ep;
assert(e0.IsBorder());
e1=e0;
e1.NextB();
ComputeQuality();
computeAngle();
}
inline bool operator < ( const SelfIntersection & c ) const
{
return (quality < c.quality);
}
void computeAngle()
{
Point3f p1 = e0.VFlip()->P() - e0.v->P();
Point3f p2 = e1.v->P() - e0.v->P();
ScalarType w = p2.Norm()*p1.Norm();
if(w==0) angle =90;
MSH_TYPE::ScalarType p = (p2*p1);
p= p/w;
p = acos(p);
if(p < -1) p = -1;
if(p > 1) p = 1;
Point3f t = p2^p1;
ScalarType n = t* e0.v->N();
if(n<0)
{
p = 2.0 *(float)M_PI - p;
}
angle = p;
}
bool IsNull(){return e0.IsNull() || e1.IsNull();}
void SetNull(){e0.SetNull();e1.SetNull();}
void ComputeQuality()
{
ScalarType ar;
ar = ( (e0.VFlip()->P() - e0.v->P()) ^ ( e1.v->P() - e0.v->P()) ).Norm() ;
ScalarType area = (ar);
ScalarType l1 = Distance( e0.v->P(),e1.v->P());
ScalarType l2 = Distance( e0.v->P(),e0.VFlip()->P());
ScalarType l3 = Distance( e0.VFlip()->P(),e1.v->P());
quality = area / ( (l1 *l1) + (l2 * l2) + (l3 * l3) );
};
bool IsUpToDate() {return (e0.IsBorder() && e1.IsBorder());};
bool IsConvex(){ return (angle > (float)M_PI);}
bool Degen()
{
face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
face::Pos<typename MSH_TYPE::FaceType> en=e1; en.NextB(); // he successivo a e1
// caso ear degenere per buco triangolare
if(ep==en) return true;//provo a togliere sto controllo
// Caso ear non manifold a
if(ep.v==en.v) return true;
// Caso ear non manifold b
if(ep.VFlip()==e1.v) return true;
return false;
}
bool Close(SelfIntersection &ne0, SelfIntersection &ne1, typename MSH_TYPE::FaceType * f, std::vector<typename MSH_TYPE::FaceType> vf)
{
// simple topological check
if(e0.f==e1.f) {
printf("Avoided bad ear");
return false;
}
face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
face::Pos<typename MSH_TYPE::FaceType> en=e1; en.NextB(); // he successivo a e1
//costruisco la faccia e poi testo, o copio o butto via.
(*f).V(0) = e0.VFlip();
(*f).V(1) = e0.v;
(*f).V(2) = e1.v;
(*f).FFp(0) = e0.f;
(*f).FFi(0) = e0.z;
(*f).FFp(1) = e1.f;
(*f).FFi(1) = e1.z;
(*f).FFp(2) = f;
(*f).FFi(2) = 2;
int a1, a2;
a1=e0.z;
a2=e1.z;
e0.f->FFp(e0.z)=f;
e0.f->FFi(e0.z)=0;
e1.f->FFp(e1.z)=f;
e1.f->FFi(e1.z)=1;
std::vector< MSH_TYPE::FaceType>::iterator it;
for(it = vf.begin();it!= vf.end();++it)
{
if(!it->IsD())
if( tri::Clean<MSH_TYPE>::TestIntersection(&(*f),&(*it)))
{
//rimetto a posto
e0.f->FFp(e0.z)=e0.f;
e0.f->FFi(e0.z)=a1;
e1.f->FFp(e1.z)=e1.f;
e1.f->FFi(e1.z)=a2;
return false;
}
}
// caso ear degenere per buco triangolare
if(ep==en)
{
printf("Closing the last triangle");
f->FFp(2)=en.f;
f->FFi(2)=en.z;
en.f->FFp(en.z)=f;
en.f->FFi(en.z)=2;
ne0.SetNull();
ne1.SetNull();
}
// Caso ear non manifold a
else if(ep.v==en.v)
{
printf("Ear Non manif A\n");
face::Pos<typename MSH_TYPE::FaceType> enold=en;
en.NextB();
f->FFp(2)=enold.f;
f->FFi(2)=enold.z;
enold.f->FFp(enold.z)=f;
enold.f->FFi(enold.z)=2;
ne0=SelfIntersection(ep);
ne1=SelfIntersection(en);
}
// Caso ear non manifold b
else if(ep.VFlip()==e1.v)
{
printf("Ear Non manif B\n");
face::Pos<typename MSH_TYPE::FaceType> epold=ep;
ep.FlipV(); ep.NextB(); ep.FlipV();
f->FFp(2)=epold.f;
f->FFi(2)=epold.z;
epold.f->FFp(epold.z)=f;
epold.f->FFi(epold.z)=2;
ne0=SelfIntersection(ep);
ne1=SelfIntersection(en);
}
else // caso standard
// Now compute the new ears;
{
ne0=SelfIntersection(ep);
ne1=SelfIntersection(face::Pos<typename MSH_TYPE::FaceType>(f,2,e1.v));
}
return true;
}
};
// Funzione principale per chiudier un buco in maniera topologicamente corretta.
@ -586,13 +804,12 @@ namespace vcg {
}
template<class MESH,class EAR , class VECTOR_EAR>
void refreshHole(MESH &m, VECTOR_EAR &ve, face::Pos<typename MESH::FaceType> &fp, std::vector<typename MESH::VertexType > &vv)
void refreshHole(MESH &m, VECTOR_EAR &ve, face::Pos<typename MESH::FaceType> &fp)
{
face::Pos<typename MESH::FaceType> ff = fp;
do{
ve.push_back(EAR(fp));
vv.push_back(*fp.v);
fp.NextB();//semmai da provare a sostituire il codice della NextB();
assert(fp.IsBorder());
}while(fp!=ff);
@ -609,13 +826,12 @@ namespace vcg {
h.Refresh(m);
assert(h.p.IsBorder());//test fondamentale altrimenti qualcosa s'e' rotto!
std::vector<MESH::VertexType > vv; //vettore di vertici
std::vector<EAR > H; //vettore di orecchie
H.reserve(h.size);
//prendo le informazioni sul buco
refreshHole<MESH,EAR, std::vector<EAR> >(m,H,h.p,vv);
refreshHole<MESH,EAR, std::vector<EAR> >(m,H,h.p);
bool fitted = false;
int cnt=h.size;
@ -623,7 +839,7 @@ namespace vcg {
make_heap(H.begin(), H.end());
while( cnt > 2 && !H.empty() ) //finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare
while( cnt > 2 && !H.empty() && !fitted) //finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare
{
pop_heap(H.begin(), H.end());
@ -632,7 +848,7 @@ namespace vcg {
MESH::FaceIterator Fadd = f;
if(H.back().IsUpToDate())
if(H.back().IsUpToDate() && !H.back().IsConvex())
{
if(H.back().Degen()){
// Nota che nel caso di ear degeneri si DEVE permettere la creazione di un edge che gia'esiste
@ -640,6 +856,7 @@ namespace vcg {
}
else
{
if(H.back().Close(en0,en1,&*f))
{
if(!en0.IsNull()){
@ -727,7 +944,6 @@ namespace vcg {
{
app=(tri::HoleInfo<MESH>)*ith;
if(app.size < sizeHole){
//app.Refresh(m);//non so se serve
fillHoleEar<MESH, EAR >(m, app,UBIT);
}
}
@ -739,6 +955,161 @@ namespace vcg {
}
}
/*
FillHoleSelfIntersection
*/
template <class MESH, class EAR>
void fillHoleInt(MESH &m, tri::HoleInfo<MESH> &h ,int UBIT, std::vector<typename MESH::FaceType > vf)
{
//Aggiungo le facce e aggiorno il puntatore alla faccia!
std::vector<MESH::FacePointer *> app;
app.push_back( &h.p.f );
MESH::FaceIterator f = tri::Allocator<MESH>::AddFaces(m, h.size-2, app);
h.Refresh(m);
assert(h.p.IsBorder());//test fondamentale altrimenti qualcosa s'e' rotto!
std::vector<EAR > H; //vettore di orecchie
H.reserve(h.size);
//prendo le informazioni sul buco
tri::refreshHole<MESH,EAR, std::vector<EAR> >(m,H,h.p);
bool fitted = false;
int cnt=h.size;
MESH::FaceIterator tmp;
make_heap(H.begin(), H.end());
//finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare.
while( cnt > 2 && !H.empty() )
{
pop_heap(H.begin(), H.end());
EAR en0,en1;
MESH::FaceIterator Fadd = f;
if(H.back().IsUpToDate() && !H.back().IsConvex())
{
if(H.back().Degen()){
// Nota che nel caso di ear degeneri si DEVE permettere la creazione di un edge che gia'esiste.
printf("\n -> Evitata orecchia brutta!");
}
else
{
if(H.back().Close(en0,en1,&*f,vf))
{
if(!en0.IsNull()){
H.push_back(en0);
push_heap( H.begin(), H.end());
}
if(!en1.IsNull()){
H.push_back(en1);
push_heap( H.begin(), H.end());
}
--cnt;
f->SetUserBit(UBIT);
vf.push_back(*f);
++f;
fitted = true;
}
}
//ultimo buco o unico buco.
if(cnt == 3 && !fitted)
{
if(H.back().Close(en0,en1,&*f,vf))
{
--cnt;
tmp = f;
vf.push_back(*f);
++f;
}
}
}//is update()
fitted = false;
//non ho messo il triangolo quindi tolgo l'orecchio e continuo.
H.pop_back();
}//fine del while principale.
//tolgo le facce non utilizzate.
while(f!=m.face.end())
{
(*f).SetD();
++f;
m.fn--;
}
}
//hole filling selfintersection main algorithm
template<class MESH, class EAR>
void holeFillingIntersection(MESH &m, int sizeHole,bool Selected = false)
{
MESH::FaceIterator fi;
std::vector<tri::HoleInfo<MESH> > vinfo;
int UBIT = fi->LastBitFlag();
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
{
if(!(*fi).IsD())
{
if(Selected && !(*fi).IsS())
{
//se devo considerare solo i triangoli selezionati e
//quello che sto considerando non lo e' lo marchio e vado avanti
(*fi).SetUserBit(UBIT);
}
else
{
if( !(*fi).IsUserBit(UBIT) )
{
(*fi).SetUserBit(UBIT);
for(int j =0; j<3 ; ++j)
{
if( (*fi).IsB(j) )
{//Trovato una faccia di bordo non ancora visitata.
face::Pos<typename MESH::FaceType> sp(&*fi, j, (*fi).V(j));
// if(!(*fi).IsR())return;
tri::HoleInfo<MESH> HI = tri::getHoleInfo<MESH>(m,sp,sp, UBIT);
//ho recuperato l'inofrmazione su tutto il buco
vinfo.push_back(HI);
}
}//for sugli edge del triangolo
}//se e' gia stato visitato
}//S & !S
}//!IsD()
}//for principale!!!
std::vector<MESH::FaceType > vf;
face::Pos<typename MESH::FaceType>sp;
face::Pos<typename MESH::FaceType>ap;
std::vector<tri::HoleInfo<MESH> >::iterator ith;
tri::HoleInfo<MESH> app;
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
{
app=(tri::HoleInfo<MESH>)*ith;
if(app.size < sizeHole){
app.Refresh(m);
//colleziono il ring intorno al buco per poi fare il test sul'intersezione
sp = app.p;
do
{
ap = sp;
do
{
ap.FlipE();
ap.FlipF();
vf.push_back(*ap.f);
}while(!ap.IsBorder());
sp.NextB();
}while(sp != app.p);
fillHoleInt<MESH, EAR >(m, app,UBIT,vf);
vf.clear();
}
}
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
{
if(!(*fi).IsD())
(*fi).ClearUserBit(UBIT);
}
}
/*
Trivial Ear con preferred Normal