(just fixed a warning-producing redundant assert)
This commit is contained in:
parent
2c3d20ca40
commit
90cdbb6214
|
@ -35,8 +35,8 @@
|
|||
|
||||
namespace vcg {
|
||||
|
||||
/*
|
||||
Annotations:
|
||||
/*
|
||||
Annotations:
|
||||
Opengl stores matrix in column-major order. That is, the matrix is stored as:
|
||||
|
||||
a0 a4 a8 a12
|
||||
|
@ -69,153 +69,153 @@ for 'column' vectors.
|
|||
|
||||
*/
|
||||
|
||||
/** This class represent a 4x4 matrix. T is the kind of element in the matrix.
|
||||
*/
|
||||
/** This class represent a 4x4 matrix. T is the kind of element in the matrix.
|
||||
*/
|
||||
template <class T> class Matrix44 {
|
||||
protected:
|
||||
T _a[16];
|
||||
T _a[16];
|
||||
|
||||
public:
|
||||
typedef T ScalarType;
|
||||
typedef T ScalarType;
|
||||
|
||||
///@{
|
||||
///@{
|
||||
|
||||
/** $name Constructors
|
||||
* No automatic casting and default constructor is empty
|
||||
*/
|
||||
Matrix44() {}
|
||||
~Matrix44() {}
|
||||
Matrix44(const Matrix44 &m);
|
||||
Matrix44(const T v[]);
|
||||
/** $name Constructors
|
||||
* No automatic casting and default constructor is empty
|
||||
*/
|
||||
Matrix44() {}
|
||||
~Matrix44() {}
|
||||
Matrix44(const Matrix44 &m);
|
||||
Matrix44(const T v[]);
|
||||
|
||||
T &ElementAt(const int row, const int col);
|
||||
T ElementAt(const int row, const int col) const;
|
||||
//T &operator[](const int i);
|
||||
//const T &operator[](const int i) const;
|
||||
T *V();
|
||||
const T *V() const ;
|
||||
T &ElementAt(const int row, const int col);
|
||||
T ElementAt(const int row, const int col) const;
|
||||
//T &operator[](const int i);
|
||||
//const T &operator[](const int i) const;
|
||||
T *V();
|
||||
const T *V() const ;
|
||||
|
||||
T *operator[](const int i);
|
||||
const T *operator[](const int i) const;
|
||||
T *operator[](const int i);
|
||||
const T *operator[](const int i) const;
|
||||
|
||||
// return a copy of the i-th column
|
||||
Point4<T> GetColumn4(const int& i)const{
|
||||
assert(i>=0 && i<4);
|
||||
return Point4<T>(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i),ElementAt(3,i));
|
||||
//return Point4<T>(_a[i],_a[i+4],_a[i+8],_a[i+12]);
|
||||
}
|
||||
//return Point4<T>(_a[i],_a[i+4],_a[i+8],_a[i+12]);
|
||||
}
|
||||
|
||||
Point3<T> GetColumn3(const int& i)const{
|
||||
assert(i>=0 && i<4);
|
||||
return Point3<T>(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i));
|
||||
}
|
||||
Point3<T> GetColumn3(const int& i)const{
|
||||
assert(i>=0 && i<4);
|
||||
return Point3<T>(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i));
|
||||
}
|
||||
|
||||
Point4<T> GetRow4(const int& i)const{
|
||||
assert(i>=0 && i<4);
|
||||
return Point4<T>(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2),ElementAt(i,3));
|
||||
// return *((Point4<T>*)(&_a[i<<2])); alternativa forse + efficiente
|
||||
}
|
||||
Point4<T> GetRow4(const int& i)const{
|
||||
assert(i>=0 && i<4);
|
||||
return Point4<T>(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2),ElementAt(i,3));
|
||||
// return *((Point4<T>*)(&_a[i<<2])); alternativa forse + efficiente
|
||||
}
|
||||
|
||||
Point3<T> GetRow3(const int& i)const{
|
||||
assert(i>=0 && i<4);
|
||||
return Point3<T>(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2));
|
||||
// return *((Point4<T>*)(&_a[i<<2])); alternativa forse + efficiente
|
||||
}
|
||||
Point3<T> GetRow3(const int& i)const{
|
||||
assert(i>=0 && i<4);
|
||||
return Point3<T>(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2));
|
||||
// return *((Point4<T>*)(&_a[i<<2])); alternativa forse + efficiente
|
||||
}
|
||||
|
||||
Matrix44 operator+(const Matrix44 &m) const;
|
||||
Matrix44 operator-(const Matrix44 &m) const;
|
||||
Matrix44 operator*(const Matrix44 &m) const;
|
||||
Point4<T> operator*(const Point4<T> &v) const;
|
||||
Matrix44 operator+(const Matrix44 &m) const;
|
||||
Matrix44 operator-(const Matrix44 &m) const;
|
||||
Matrix44 operator*(const Matrix44 &m) const;
|
||||
Point4<T> operator*(const Point4<T> &v) const;
|
||||
|
||||
bool operator==(const Matrix44 &m) const;
|
||||
bool operator!= (const Matrix44 &m) const;
|
||||
bool operator==(const Matrix44 &m) const;
|
||||
bool operator!= (const Matrix44 &m) const;
|
||||
|
||||
Matrix44 operator-() const;
|
||||
Matrix44 operator*(const T k) const;
|
||||
void operator+=(const Matrix44 &m);
|
||||
void operator-=(const Matrix44 &m);
|
||||
void operator*=( const Matrix44 & m );
|
||||
void operator*=( const T k );
|
||||
Matrix44 operator-() const;
|
||||
Matrix44 operator*(const T k) const;
|
||||
void operator+=(const Matrix44 &m);
|
||||
void operator-=(const Matrix44 &m);
|
||||
void operator*=( const Matrix44 & m );
|
||||
void operator*=( const T k );
|
||||
|
||||
template <class Matrix44Type>
|
||||
void ToMatrix(Matrix44Type & m) const {for(int i = 0; i < 16; i++) m.V()[i]=V()[i];}
|
||||
template <class Matrix44Type>
|
||||
void ToMatrix(Matrix44Type & m) const {for(int i = 0; i < 16; i++) m.V()[i]=V()[i];}
|
||||
|
||||
void ToEulerAngles(T &alpha, T &beta, T &gamma);
|
||||
void ToEulerAngles(T &alpha, T &beta, T &gamma);
|
||||
|
||||
template <class Matrix44Type>
|
||||
void FromMatrix(const Matrix44Type & m){for(int i = 0; i < 16; i++) V()[i]=m.V()[i];}
|
||||
|
||||
template <class EigenMatrix44Type>
|
||||
void ToEigenMatrix(EigenMatrix44Type & m) const {
|
||||
for(int i = 0; i < 4; i++)
|
||||
for(int j = 0; j < 4; j++)
|
||||
m(i,j)=(*this)[i][j];
|
||||
}
|
||||
template <class EigenMatrix44Type>
|
||||
void ToEigenMatrix(EigenMatrix44Type & m) const {
|
||||
for(int i = 0; i < 4; i++)
|
||||
for(int j = 0; j < 4; j++)
|
||||
m(i,j)=(*this)[i][j];
|
||||
}
|
||||
|
||||
template <class EigenMatrix44Type>
|
||||
void FromEigenMatrix(const EigenMatrix44Type & m){
|
||||
for(int i = 0; i < 4; i++)
|
||||
for(int j = 0; j < 4; j++)
|
||||
ElementAt(i,j)=m(i,j);
|
||||
for(int i = 0; i < 4; i++)
|
||||
for(int j = 0; j < 4; j++)
|
||||
ElementAt(i,j)=m(i,j);
|
||||
}
|
||||
|
||||
void FromEulerAngles(T alpha, T beta, T gamma);
|
||||
void SetZero();
|
||||
void SetIdentity();
|
||||
void SetDiagonal(const T k);
|
||||
Matrix44 &SetScale(const T sx, const T sy, const T sz);
|
||||
Matrix44 &SetScale(const Point3<T> &t);
|
||||
Matrix44<T>& SetColumn(const unsigned int ii,const Point4<T> &t);
|
||||
Matrix44<T>& SetColumn(const unsigned int ii,const Point3<T> &t);
|
||||
Matrix44 &SetTranslate(const Point3<T> &t);
|
||||
Matrix44 &SetTranslate(const T sx, const T sy, const T sz);
|
||||
Matrix44 &SetShearXY(const T sz);
|
||||
Matrix44 &SetShearXZ(const T sy);
|
||||
Matrix44 &SetShearYZ(const T sx);
|
||||
void SetIdentity();
|
||||
void SetDiagonal(const T k);
|
||||
Matrix44 &SetScale(const T sx, const T sy, const T sz);
|
||||
Matrix44 &SetScale(const Point3<T> &t);
|
||||
Matrix44<T>& SetColumn(const unsigned int ii,const Point4<T> &t);
|
||||
Matrix44<T>& SetColumn(const unsigned int ii,const Point3<T> &t);
|
||||
Matrix44 &SetTranslate(const Point3<T> &t);
|
||||
Matrix44 &SetTranslate(const T sx, const T sy, const T sz);
|
||||
Matrix44 &SetShearXY(const T sz);
|
||||
Matrix44 &SetShearXZ(const T sy);
|
||||
Matrix44 &SetShearYZ(const T sx);
|
||||
|
||||
///use radiants for angle.
|
||||
Matrix44 &SetRotateDeg(T AngleDeg, const Point3<T> & axis);
|
||||
Matrix44 &SetRotateRad(T AngleRad, const Point3<T> & axis);
|
||||
///use radiants for angle.
|
||||
Matrix44 &SetRotateDeg(T AngleDeg, const Point3<T> & axis);
|
||||
Matrix44 &SetRotateRad(T AngleRad, const Point3<T> & axis);
|
||||
|
||||
T Determinant() const;
|
||||
T Determinant() const;
|
||||
|
||||
template <class Q> void Import(const Matrix44<Q> &m) {
|
||||
for(int i = 0; i < 16; i++)
|
||||
_a[i] = (T)(m.V()[i]);
|
||||
}
|
||||
template <class Q>
|
||||
static inline Matrix44 Construct( const Matrix44<Q> & b )
|
||||
{
|
||||
Matrix44<T> tmp; tmp.FromMatrix(b);
|
||||
return tmp;
|
||||
}
|
||||
template <class Q> void Import(const Matrix44<Q> &m) {
|
||||
for(int i = 0; i < 16; i++)
|
||||
_a[i] = (T)(m.V()[i]);
|
||||
}
|
||||
template <class Q>
|
||||
static inline Matrix44 Construct( const Matrix44<Q> & b )
|
||||
{
|
||||
Matrix44<T> tmp; tmp.FromMatrix(b);
|
||||
return tmp;
|
||||
}
|
||||
|
||||
static inline const Matrix44 &Identity( )
|
||||
{
|
||||
static Matrix44<T> tmp; tmp.SetIdentity();
|
||||
return tmp;
|
||||
}
|
||||
static inline const Matrix44 &Identity( )
|
||||
{
|
||||
static Matrix44<T> tmp; tmp.SetIdentity();
|
||||
return tmp;
|
||||
}
|
||||
|
||||
// for the transistion to eigen
|
||||
Matrix44 transpose() const
|
||||
{
|
||||
Matrix44 res = *this;
|
||||
Transpose(res);
|
||||
return res;
|
||||
}
|
||||
void transposeInPlace() { Transpose(*this); }
|
||||
// for the transistion to eigen
|
||||
Matrix44 transpose() const
|
||||
{
|
||||
Matrix44 res = *this;
|
||||
Transpose(res);
|
||||
return res;
|
||||
}
|
||||
void transposeInPlace() { Transpose(*this); }
|
||||
|
||||
void print() {
|
||||
unsigned int i, j, p;
|
||||
for (i=0, p=0; i<4; i++, p+=4)
|
||||
{
|
||||
std::cout << "[\t";
|
||||
for (j=0; j<4; j++)
|
||||
std::cout << _a[p+j] << "\t";
|
||||
unsigned int i, j, p;
|
||||
for (i=0, p=0; i<4; i++, p+=4)
|
||||
{
|
||||
std::cout << "[\t";
|
||||
for (j=0; j<4; j++)
|
||||
std::cout << _a[p+j] << "\t";
|
||||
|
||||
std::cout << "]\n";
|
||||
}
|
||||
std::cout << "\n";
|
||||
std::cout << "]\n";
|
||||
}
|
||||
std::cout << "\n";
|
||||
}
|
||||
|
||||
};
|
||||
|
@ -224,16 +224,16 @@ public:
|
|||
/** Class for solving A * x = b. */
|
||||
template <class T> class LinearSolve: public Matrix44<T> {
|
||||
public:
|
||||
LinearSolve(const Matrix44<T> &m);
|
||||
Point4<T> Solve(const Point4<T> &b); // solve A <20> x = b
|
||||
///If you need to solve some equation you can use this function instead of Matrix44 one for speed.
|
||||
T Determinant() const;
|
||||
LinearSolve(const Matrix44<T> &m);
|
||||
Point4<T> Solve(const Point4<T> &b); // solve A <20> x = b
|
||||
///If you need to solve some equation you can use this function instead of Matrix44 one for speed.
|
||||
T Determinant() const;
|
||||
protected:
|
||||
///Holds row permutation.
|
||||
int index[4]; //hold permutation
|
||||
///Hold sign of row permutation (used for determinant sign)
|
||||
T d;
|
||||
bool Decompose();
|
||||
///Holds row permutation.
|
||||
int index[4]; //hold permutation
|
||||
///Hold sign of row permutation (used for determinant sign)
|
||||
T d;
|
||||
bool Decompose();
|
||||
};
|
||||
|
||||
/*** Postmultiply */
|
||||
|
@ -254,135 +254,135 @@ typedef Matrix44<double> Matrix44d;
|
|||
|
||||
|
||||
template <class T> Matrix44<T>::Matrix44(const Matrix44<T> &m) {
|
||||
memcpy((T *)_a, (T *)m._a, 16 * sizeof(T));
|
||||
memcpy((T *)_a, (T *)m._a, 16 * sizeof(T));
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T>::Matrix44(const T v[]) {
|
||||
memcpy((T *)_a, v, 16 * sizeof(T));
|
||||
memcpy((T *)_a, v, 16 * sizeof(T));
|
||||
}
|
||||
|
||||
template <class T> T &Matrix44<T>::ElementAt(const int row, const int col) {
|
||||
assert(row >= 0 && row < 4);
|
||||
assert(col >= 0 && col < 4);
|
||||
return _a[(row<<2) + col];
|
||||
assert(row >= 0 && row < 4);
|
||||
assert(col >= 0 && col < 4);
|
||||
return _a[(row<<2) + col];
|
||||
}
|
||||
|
||||
template <class T> T Matrix44<T>::ElementAt(const int row, const int col) const {
|
||||
assert(row >= 0 && row < 4);
|
||||
assert(col >= 0 && col < 4);
|
||||
return _a[(row<<2) + col];
|
||||
assert(row >= 0 && row < 4);
|
||||
assert(col >= 0 && col < 4);
|
||||
return _a[(row<<2) + col];
|
||||
}
|
||||
|
||||
//template <class T> T &Matrix44<T>::operator[](const int i) {
|
||||
// assert(i >= 0 && i < 16);
|
||||
// return ((T *)_a)[i];
|
||||
// assert(i >= 0 && i < 16);
|
||||
// return ((T *)_a)[i];
|
||||
//}
|
||||
//
|
||||
//template <class T> const T &Matrix44<T>::operator[](const int i) const {
|
||||
// assert(i >= 0 && i < 16);
|
||||
// return ((T *)_a)[i];
|
||||
// assert(i >= 0 && i < 16);
|
||||
// return ((T *)_a)[i];
|
||||
//}
|
||||
template <class T> T *Matrix44<T>::operator[](const int i) {
|
||||
assert(i >= 0 && i < 4);
|
||||
return _a+i*4;
|
||||
assert(i >= 0 && i < 4);
|
||||
return _a+i*4;
|
||||
}
|
||||
|
||||
template <class T> const T *Matrix44<T>::operator[](const int i) const {
|
||||
assert(i >= 0 && i < 4);
|
||||
return _a+i*4;
|
||||
assert(i >= 0 && i < 4);
|
||||
return _a+i*4;
|
||||
}
|
||||
template <class T> T *Matrix44<T>::V() { return _a;}
|
||||
template <class T> const T *Matrix44<T>::V() const { return _a;}
|
||||
|
||||
|
||||
template <class T> Matrix44<T> Matrix44<T>::operator+(const Matrix44 &m) const {
|
||||
Matrix44<T> ret;
|
||||
for(int i = 0; i < 16; i++)
|
||||
ret.V()[i] = V()[i] + m.V()[i];
|
||||
return ret;
|
||||
Matrix44<T> ret;
|
||||
for(int i = 0; i < 16; i++)
|
||||
ret.V()[i] = V()[i] + m.V()[i];
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> Matrix44<T>::operator-(const Matrix44 &m) const {
|
||||
Matrix44<T> ret;
|
||||
for(int i = 0; i < 16; i++)
|
||||
ret.V()[i] = V()[i] - m.V()[i];
|
||||
return ret;
|
||||
Matrix44<T> ret;
|
||||
for(int i = 0; i < 16; i++)
|
||||
ret.V()[i] = V()[i] - m.V()[i];
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> Matrix44<T>::operator*(const Matrix44 &m) const {
|
||||
Matrix44 ret;
|
||||
for(int i = 0; i < 4; i++)
|
||||
for(int j = 0; j < 4; j++) {
|
||||
T t = 0.0;
|
||||
for(int k = 0; k < 4; k++)
|
||||
t += ElementAt(i, k) * m.ElementAt(k, j);
|
||||
ret.ElementAt(i, j) = t;
|
||||
}
|
||||
return ret;
|
||||
Matrix44 ret;
|
||||
for(int i = 0; i < 4; i++)
|
||||
for(int j = 0; j < 4; j++) {
|
||||
T t = 0.0;
|
||||
for(int k = 0; k < 4; k++)
|
||||
t += ElementAt(i, k) * m.ElementAt(k, j);
|
||||
ret.ElementAt(i, j) = t;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <class T> Point4<T> Matrix44<T>::operator*(const Point4<T> &v) const {
|
||||
Point4<T> ret;
|
||||
for(int i = 0; i < 4; i++){
|
||||
T t = 0.0;
|
||||
for(int k = 0; k < 4; k++)
|
||||
t += ElementAt(i,k) * v[k];
|
||||
ret[i] = t;
|
||||
}
|
||||
return ret;
|
||||
Point4<T> ret;
|
||||
for(int i = 0; i < 4; i++){
|
||||
T t = 0.0;
|
||||
for(int k = 0; k < 4; k++)
|
||||
t += ElementAt(i,k) * v[k];
|
||||
ret[i] = t;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
template <class T> bool Matrix44<T>::operator==(const Matrix44 &m) const {
|
||||
for(int i = 0; i < 4; ++i)
|
||||
for(int j = 0; j < 4; ++j)
|
||||
if(ElementAt(i,j) != m.ElementAt(i,j))
|
||||
return false;
|
||||
return true;
|
||||
for(int i = 0; i < 4; ++i)
|
||||
for(int j = 0; j < 4; ++j)
|
||||
if(ElementAt(i,j) != m.ElementAt(i,j))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
template <class T> bool Matrix44<T>::operator!=(const Matrix44 &m) const {
|
||||
for(int i = 0; i < 4; ++i)
|
||||
for(int j = 0; j < 4; ++j)
|
||||
if(ElementAt(i,j) != m.ElementAt(i,j))
|
||||
return true;
|
||||
return false;
|
||||
for(int i = 0; i < 4; ++i)
|
||||
for(int j = 0; j < 4; ++j)
|
||||
if(ElementAt(i,j) != m.ElementAt(i,j))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> Matrix44<T>::operator-() const {
|
||||
Matrix44<T> res;
|
||||
for(int i = 0; i < 16; i++)
|
||||
res.V()[i] = -V()[i];
|
||||
return res;
|
||||
Matrix44<T> res;
|
||||
for(int i = 0; i < 16; i++)
|
||||
res.V()[i] = -V()[i];
|
||||
return res;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> Matrix44<T>::operator*(const T k) const {
|
||||
Matrix44<T> res;
|
||||
for(int i = 0; i < 16; i++)
|
||||
res.V()[i] =V()[i] * k;
|
||||
return res;
|
||||
Matrix44<T> res;
|
||||
for(int i = 0; i < 16; i++)
|
||||
res.V()[i] =V()[i] * k;
|
||||
return res;
|
||||
}
|
||||
|
||||
template <class T> void Matrix44<T>::operator+=(const Matrix44 &m) {
|
||||
for(int i = 0; i < 16; i++)
|
||||
V()[i] += m.V()[i];
|
||||
for(int i = 0; i < 16; i++)
|
||||
V()[i] += m.V()[i];
|
||||
}
|
||||
template <class T> void Matrix44<T>::operator-=(const Matrix44 &m) {
|
||||
for(int i = 0; i < 16; i++)
|
||||
V()[i] -= m.V()[i];
|
||||
for(int i = 0; i < 16; i++)
|
||||
V()[i] -= m.V()[i];
|
||||
}
|
||||
template <class T> void Matrix44<T>::operator*=( const Matrix44 & m ) {
|
||||
*this = *this *m;
|
||||
*this = *this *m;
|
||||
}
|
||||
|
||||
template < class PointType , class T > void operator*=( std::vector<PointType> &vert, const Matrix44<T> & m ) {
|
||||
typename std::vector<PointType>::iterator ii;
|
||||
for(ii=vert.begin();ii!=vert.end();++ii)
|
||||
(*ii).P()=m * (*ii).P();
|
||||
typename std::vector<PointType>::iterator ii;
|
||||
for(ii=vert.begin();ii!=vert.end();++ii)
|
||||
(*ii).P()=m * (*ii).P();
|
||||
}
|
||||
|
||||
template <class T> void Matrix44<T>::operator*=( const T k ) {
|
||||
for(int i = 0; i < 16; i++)
|
||||
_a[i] *= k;
|
||||
for(int i = 0; i < 16; i++)
|
||||
_a[i] *= k;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
|
@ -390,7 +390,7 @@ void Matrix44<T>::ToEulerAngles(T &alpha, T &beta, T &gamma)
|
|||
{
|
||||
alpha = atan2(ElementAt(1,2), ElementAt(2,2));
|
||||
beta = asin(-ElementAt(0,2));
|
||||
gamma = atan2(ElementAt(0,1), ElementAt(0,0));
|
||||
gamma = atan2(ElementAt(0,1), ElementAt(0,0));
|
||||
}
|
||||
|
||||
template <class T>
|
||||
|
@ -421,48 +421,48 @@ void Matrix44<T>::FromEulerAngles(T alpha, T beta, T gamma)
|
|||
}
|
||||
|
||||
template <class T> void Matrix44<T>::SetZero() {
|
||||
memset((T *)_a, 0, 16 * sizeof(T));
|
||||
memset((T *)_a, 0, 16 * sizeof(T));
|
||||
}
|
||||
|
||||
template <class T> void Matrix44<T>::SetIdentity() {
|
||||
SetDiagonal(1);
|
||||
SetDiagonal(1);
|
||||
}
|
||||
|
||||
template <class T> void Matrix44<T>::SetDiagonal(const T k) {
|
||||
SetZero();
|
||||
ElementAt(0, 0) = k;
|
||||
ElementAt(1, 1) = k;
|
||||
ElementAt(2, 2) = k;
|
||||
ElementAt(3, 3) = 1;
|
||||
SetZero();
|
||||
ElementAt(0, 0) = k;
|
||||
ElementAt(1, 1) = k;
|
||||
ElementAt(2, 2) = k;
|
||||
ElementAt(3, 3) = 1;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> &Matrix44<T>::SetScale(const Point3<T> &t) {
|
||||
SetScale(t[0], t[1], t[2]);
|
||||
return *this;
|
||||
SetScale(t[0], t[1], t[2]);
|
||||
return *this;
|
||||
}
|
||||
template <class T> Matrix44<T> &Matrix44<T>::SetScale(const T sx, const T sy, const T sz) {
|
||||
SetZero();
|
||||
ElementAt(0, 0) = sx;
|
||||
ElementAt(1, 1) = sy;
|
||||
ElementAt(2, 2) = sz;
|
||||
ElementAt(3, 3) = 1;
|
||||
return *this;
|
||||
SetZero();
|
||||
ElementAt(0, 0) = sx;
|
||||
ElementAt(1, 1) = sy;
|
||||
ElementAt(2, 2) = sz;
|
||||
ElementAt(3, 3) = 1;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const Point3<T> &t) {
|
||||
SetTranslate(t[0], t[1], t[2]);
|
||||
return *this;
|
||||
SetTranslate(t[0], t[1], t[2]);
|
||||
return *this;
|
||||
}
|
||||
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const T tx, const T ty, const T tz) {
|
||||
SetIdentity();
|
||||
ElementAt(0, 3) = tx;
|
||||
ElementAt(1, 3) = ty;
|
||||
ElementAt(2, 3) = tz;
|
||||
return *this;
|
||||
SetIdentity();
|
||||
ElementAt(0, 3) = tx;
|
||||
ElementAt(1, 3) = ty;
|
||||
ElementAt(2, 3) = tz;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> &Matrix44<T>::SetColumn(const unsigned int ii,const Point3<T> &t) {
|
||||
assert((ii >= 0) && (ii < 4));
|
||||
assert( ii < 4 );
|
||||
ElementAt(0, ii) = t.X();
|
||||
ElementAt(1, ii) = t.Y();
|
||||
ElementAt(2, ii) = t.Z();
|
||||
|
@ -470,53 +470,53 @@ template <class T> Matrix44<T> &Matrix44<T>::SetColumn(const unsigned int ii,con
|
|||
}
|
||||
|
||||
template <class T> Matrix44<T> &Matrix44<T>::SetColumn(const unsigned int ii,const Point4<T> &t) {
|
||||
assert((ii < 4));
|
||||
ElementAt(0, ii) = t[0];
|
||||
ElementAt(1, ii) = t[1];
|
||||
ElementAt(2, ii) = t[2];
|
||||
ElementAt(3, ii) = t[3];
|
||||
return *this;
|
||||
assert( ii < 4 );
|
||||
ElementAt(0, ii) = t[0];
|
||||
ElementAt(1, ii) = t[1];
|
||||
ElementAt(2, ii) = t[2];
|
||||
ElementAt(3, ii) = t[3];
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
template <class T> Matrix44<T> &Matrix44<T>::SetRotateDeg(T AngleDeg, const Point3<T> & axis) {
|
||||
return SetRotateRad(math::ToRad(AngleDeg),axis);
|
||||
return SetRotateRad(math::ToRad(AngleDeg),axis);
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> &Matrix44<T>::SetRotateRad(T AngleRad, const Point3<T> & axis) {
|
||||
//angle = angle*(T)3.14159265358979323846/180; e' in radianti!
|
||||
T c = math::Cos(AngleRad);
|
||||
T s = math::Sin(AngleRad);
|
||||
T q = 1-c;
|
||||
Point3<T> t = axis;
|
||||
t.Normalize();
|
||||
ElementAt(0,0) = t[0]*t[0]*q + c;
|
||||
ElementAt(0,1) = t[0]*t[1]*q - t[2]*s;
|
||||
ElementAt(0,2) = t[0]*t[2]*q + t[1]*s;
|
||||
ElementAt(0,3) = 0;
|
||||
ElementAt(1,0) = t[1]*t[0]*q + t[2]*s;
|
||||
ElementAt(1,1) = t[1]*t[1]*q + c;
|
||||
ElementAt(1,2) = t[1]*t[2]*q - t[0]*s;
|
||||
ElementAt(1,3) = 0;
|
||||
ElementAt(2,0) = t[2]*t[0]*q -t[1]*s;
|
||||
ElementAt(2,1) = t[2]*t[1]*q +t[0]*s;
|
||||
ElementAt(2,2) = t[2]*t[2]*q +c;
|
||||
ElementAt(2,3) = 0;
|
||||
ElementAt(3,0) = 0;
|
||||
ElementAt(3,1) = 0;
|
||||
ElementAt(3,2) = 0;
|
||||
ElementAt(3,3) = 1;
|
||||
return *this;
|
||||
//angle = angle*(T)3.14159265358979323846/180; e' in radianti!
|
||||
T c = math::Cos(AngleRad);
|
||||
T s = math::Sin(AngleRad);
|
||||
T q = 1-c;
|
||||
Point3<T> t = axis;
|
||||
t.Normalize();
|
||||
ElementAt(0,0) = t[0]*t[0]*q + c;
|
||||
ElementAt(0,1) = t[0]*t[1]*q - t[2]*s;
|
||||
ElementAt(0,2) = t[0]*t[2]*q + t[1]*s;
|
||||
ElementAt(0,3) = 0;
|
||||
ElementAt(1,0) = t[1]*t[0]*q + t[2]*s;
|
||||
ElementAt(1,1) = t[1]*t[1]*q + c;
|
||||
ElementAt(1,2) = t[1]*t[2]*q - t[0]*s;
|
||||
ElementAt(1,3) = 0;
|
||||
ElementAt(2,0) = t[2]*t[0]*q -t[1]*s;
|
||||
ElementAt(2,1) = t[2]*t[1]*q +t[0]*s;
|
||||
ElementAt(2,2) = t[2]*t[2]*q +c;
|
||||
ElementAt(2,3) = 0;
|
||||
ElementAt(3,0) = 0;
|
||||
ElementAt(3,1) = 0;
|
||||
ElementAt(3,2) = 0;
|
||||
ElementAt(3,3) = 1;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/*
|
||||
Given a non singular, non projective matrix (e.g. with the last row equal to [0,0,0,1] )
|
||||
This procedure decompose it in a sequence of
|
||||
Scale,Shear,Rotation e Translation
|
||||
- Scale,Shear,Rotation e Translation
|
||||
|
||||
- ScaleV and Tranv are obiviously scaling and translation.
|
||||
- ShearV contains three scalars with, respectively
|
||||
ShearXY, ShearXZ e ShearYZ
|
||||
- ShearV contains three scalars with, respectively,
|
||||
ShearXY, ShearXZ and ShearYZ
|
||||
- RotateV contains the rotations (in degree!) around the x,y,z axis
|
||||
The input matrix is modified leaving inside it a simple roto translation.
|
||||
|
||||
|
@ -535,14 +535,14 @@ double srv() { return (double(rand()%40)-20)/2.0; } // small random value
|
|||
|
||||
Matrix44d Scl; Scl.SetScale(ScV);
|
||||
Matrix44d Sxy; Sxy.SetShearXY(ShV[0]);
|
||||
Matrix44d Sxz; Sxz.SetShearXZ(ShV[1]);
|
||||
Matrix44d Syz; Syz.SetShearYZ(ShV[2]);
|
||||
Matrix44d Sxz; Sxz.SetShearXZ(ShV[1]);
|
||||
Matrix44d Syz; Syz.SetShearYZ(ShV[2]);
|
||||
Matrix44d Rtx; Rtx.SetRotate(math::ToRad(RtV[0]),Point3d(1,0,0));
|
||||
Matrix44d Rty; Rty.SetRotate(math::ToRad(RtV[1]),Point3d(0,1,0));
|
||||
Matrix44d Rtz; Rtz.SetRotate(math::ToRad(RtV[2]),Point3d(0,0,1));
|
||||
Matrix44d Trn; Trn.SetTranslate(TrV);
|
||||
Matrix44d Rty; Rty.SetRotate(math::ToRad(RtV[1]),Point3d(0,1,0));
|
||||
Matrix44d Rtz; Rtz.SetRotate(math::ToRad(RtV[2]),Point3d(0,0,1));
|
||||
Matrix44d Trn; Trn.SetTranslate(TrV);
|
||||
|
||||
Matrix44d StartM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy *Scl;
|
||||
Matrix44d StartM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy *Scl;
|
||||
Matrix44d ResultM=StartM;
|
||||
Decompose(ResultM,ScVOut,ShVOut,RtVOut,TrVOut);
|
||||
|
||||
|
@ -556,8 +556,9 @@ double srv() { return (double(rand()%40)-20)/2.0; } // small random value
|
|||
Trn.SetTranslate(TrVOut);
|
||||
|
||||
// Now Rebuild is equal to StartM
|
||||
Matrix44d RebuildM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy * Scl ;
|
||||
Matrix44d RebuildM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy * Scl ;
|
||||
*/
|
||||
|
||||
template <class T>
|
||||
bool Decompose(Matrix44<T> &M, Point3<T> &ScaleV, Point3<T> &ShearV, Point3<T> &RotV,Point3<T> &TranV)
|
||||
{
|
||||
|
@ -565,9 +566,8 @@ bool Decompose(Matrix44<T> &M, Point3<T> &ScaleV, Point3<T> &ShearV, Point3<T> &
|
|||
return false;
|
||||
if(math::Abs(M.Determinant())<1e-10) return false; // matrix should be at least invertible...
|
||||
|
||||
// First Step recover the traslation
|
||||
TranV=M.GetColumn3(3);
|
||||
|
||||
// First Step recover the traslation
|
||||
TranV=M.GetColumn3(3);
|
||||
|
||||
// Second Step Recover Scale and Shearing interleaved
|
||||
ScaleV[0]=Norm(M.GetColumn3(0));
|
||||
|
@ -577,10 +577,10 @@ bool Decompose(Matrix44<T> &M, Point3<T> &ScaleV, Point3<T> &ShearV, Point3<T> &
|
|||
|
||||
ShearV[0]=R[0]*M.GetColumn3(1); // xy shearing
|
||||
R[1]= M.GetColumn3(1)-R[0]*ShearV[0];
|
||||
assert(math::Abs(R[1]*R[0])<1e-10);
|
||||
ScaleV[1]=Norm(R[1]); // y scaling
|
||||
R[1]=R[1]/ScaleV[1];
|
||||
ShearV[0]=ShearV[0]/ScaleV[1];
|
||||
assert(math::Abs(R[1]*R[0])<1e-10);
|
||||
ScaleV[1]=Norm(R[1]); // y scaling
|
||||
R[1]=R[1]/ScaleV[1];
|
||||
ShearV[0]=ShearV[0]/ScaleV[1];
|
||||
|
||||
ShearV[1]=R[0]*M.GetColumn3(2); // xz shearing
|
||||
R[2]= M.GetColumn3(2)-R[0]*ShearV[1];
|
||||
|
@ -598,81 +598,81 @@ bool Decompose(Matrix44<T> &M, Point3<T> &ScaleV, Point3<T> &ShearV, Point3<T> &
|
|||
|
||||
ShearV[2]=R[1]*M.GetColumn3(2); // yz shearing
|
||||
ShearV[2]=ShearV[2]/ScaleV[2];
|
||||
int i,j;
|
||||
for(i=0;i<3;++i)
|
||||
for(j=0;j<3;++j)
|
||||
M[i][j]=R[j][i];
|
||||
int i,j;
|
||||
for(i=0;i<3;++i)
|
||||
for(j=0;j<3;++j)
|
||||
M[i][j]=R[j][i];
|
||||
|
||||
// Third and last step: Recover the rotation
|
||||
//now the matrix should be a pure rotation matrix so its determinant is +-1
|
||||
double det=M.Determinant();
|
||||
if(math::Abs(det)<1e-10) return false; // matrix should be at least invertible...
|
||||
assert(math::Abs(math::Abs(det)-1.0)<1e-10); // it should be +-1...
|
||||
if(det<0) {
|
||||
ScaleV *= -1;
|
||||
M *= -1;
|
||||
}
|
||||
double det=M.Determinant();
|
||||
if(math::Abs(det)<1e-10) return false; // matrix should be at least invertible...
|
||||
assert(math::Abs(math::Abs(det)-1.0)<1e-10); // it should be +-1...
|
||||
if(det<0) {
|
||||
ScaleV *= -1;
|
||||
M *= -1;
|
||||
}
|
||||
|
||||
double alpha,beta,gamma; // rotations around the x,y and z axis
|
||||
beta=asin( M[0][2]);
|
||||
double cosbeta=cos(beta);
|
||||
if(math::Abs(cosbeta) > 1e-5)
|
||||
{
|
||||
alpha=asin(-M[1][2]/cosbeta);
|
||||
if((M[2][2]/cosbeta) < 0 ) alpha=M_PI-alpha;
|
||||
gamma=asin(-M[0][1]/cosbeta);
|
||||
if((M[0][0]/cosbeta)<0) gamma = M_PI-gamma;
|
||||
}
|
||||
else
|
||||
{
|
||||
alpha=asin(-M[1][0]);
|
||||
if(M[1][1]<0) alpha=M_PI-alpha;
|
||||
gamma=0;
|
||||
}
|
||||
if(math::Abs(cosbeta) > 1e-5)
|
||||
{
|
||||
alpha=asin(-M[1][2]/cosbeta);
|
||||
if((M[2][2]/cosbeta) < 0 ) alpha=M_PI-alpha;
|
||||
gamma=asin(-M[0][1]/cosbeta);
|
||||
if((M[0][0]/cosbeta)<0) gamma = M_PI-gamma;
|
||||
}
|
||||
else
|
||||
{
|
||||
alpha=asin(-M[1][0]);
|
||||
if(M[1][1]<0) alpha=M_PI-alpha;
|
||||
gamma=0;
|
||||
}
|
||||
|
||||
RotV[0]=math::ToDeg(alpha);
|
||||
RotV[1]=math::ToDeg(beta);
|
||||
RotV[2]=math::ToDeg(gamma);
|
||||
RotV[0]=math::ToDeg(alpha);
|
||||
RotV[1]=math::ToDeg(beta);
|
||||
RotV[2]=math::ToDeg(gamma);
|
||||
|
||||
return true;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <class T> T Matrix44<T>::Determinant() const {
|
||||
Eigen::Matrix4d mm;
|
||||
this->ToEigenMatrix(mm);
|
||||
return mm.determinant();
|
||||
Eigen::Matrix4d mm;
|
||||
this->ToEigenMatrix(mm);
|
||||
return mm.determinant();
|
||||
}
|
||||
|
||||
|
||||
template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p) {
|
||||
T w;
|
||||
Point3<T> s;
|
||||
s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(0, 1)*p[1] + m.ElementAt(0, 2)*p[2] + m.ElementAt(0, 3);
|
||||
s[1] = m.ElementAt(1, 0)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(1, 2)*p[2] + m.ElementAt(1, 3);
|
||||
s[2] = m.ElementAt(2, 0)*p[0] + m.ElementAt(2, 1)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(2, 3);
|
||||
w = m.ElementAt(3, 0)*p[0] + m.ElementAt(3, 1)*p[1] + m.ElementAt(3, 2)*p[2] + m.ElementAt(3, 3);
|
||||
if(w!= 0) s /= w;
|
||||
return s;
|
||||
T w;
|
||||
Point3<T> s;
|
||||
s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(0, 1)*p[1] + m.ElementAt(0, 2)*p[2] + m.ElementAt(0, 3);
|
||||
s[1] = m.ElementAt(1, 0)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(1, 2)*p[2] + m.ElementAt(1, 3);
|
||||
s[2] = m.ElementAt(2, 0)*p[0] + m.ElementAt(2, 1)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(2, 3);
|
||||
w = m.ElementAt(3, 0)*p[0] + m.ElementAt(3, 1)*p[1] + m.ElementAt(3, 2)*p[2] + m.ElementAt(3, 3);
|
||||
if(w!= 0) s /= w;
|
||||
return s;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> &Transpose(Matrix44<T> &m) {
|
||||
for(int i = 1; i < 4; i++)
|
||||
for(int j = 0; j < i; j++) {
|
||||
math::Swap(m.ElementAt(i, j), m.ElementAt(j, i));
|
||||
}
|
||||
return m;
|
||||
for(int i = 1; i < 4; i++)
|
||||
for(int j = 0; j < i; j++) {
|
||||
math::Swap(m.ElementAt(i, j), m.ElementAt(j, i));
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> Inverse(const Matrix44<T> &m) {
|
||||
Eigen::Matrix4d mm,mmi;
|
||||
m.ToEigenMatrix(mm);
|
||||
mmi=mm.inverse();
|
||||
Matrix44<T> res;
|
||||
res.FromEigenMatrix(mmi);
|
||||
return res;
|
||||
Eigen::Matrix4d mm,mmi;
|
||||
m.ToEigenMatrix(mm);
|
||||
mmi=mm.inverse();
|
||||
Matrix44<T> res;
|
||||
res.FromEigenMatrix(mmi);
|
||||
return res;
|
||||
}
|
||||
|
||||
} //namespace
|
||||
|
|
Loading…
Reference in New Issue