fixed bugs sign of principal direction and mean curvature value
This commit is contained in:
parent
4b769a4e8a
commit
929c3d3276
|
@ -23,6 +23,9 @@
|
|||
/****************************************************************************
|
||||
History
|
||||
$Log: not supported by cvs2svn $
|
||||
Revision 1.4 2008/03/17 11:29:59 ganovelli
|
||||
taubin and desbrun estimates added (-> see vcg/simplex/vertexplus/component.h [component_ocf.h|component_occ.h ]
|
||||
|
||||
Revision 1.3 2006/02/27 18:02:57 ponchio
|
||||
Area -> doublearea/2
|
||||
|
||||
|
@ -110,7 +113,7 @@ public:
|
|||
VertexType* tempV;
|
||||
float totalDoubleAreaSize = 0.0f;
|
||||
|
||||
if (((firstV->P()-central_vertex->P())^(pos.VFlip()->P()-central_vertex->P()))*central_vertex->N()<=0.0f)
|
||||
if (((firstV->cP()-central_vertex->cP())^(pos.VFlip()->cP()-central_vertex->cP()))*central_vertex->cN()<=0.0f)
|
||||
{
|
||||
pos.Set(central_vertex->VFp(), central_vertex);
|
||||
pos.FlipE();
|
||||
|
@ -127,7 +130,7 @@ public:
|
|||
|
||||
v.isBorder = pos.IsBorder();
|
||||
v.vert = tempV;
|
||||
v.doubleArea = ((pos.F()->V(1)->P() - pos.F()->V(0)->P()) ^ (pos.F()->V(2)->P()- pos.F()->V(0)->P())).Norm();;
|
||||
v.doubleArea = ((pos.F()->V(1)->cP() - pos.F()->V(0)->cP()) ^ (pos.F()->V(2)->cP()- pos.F()->V(0)->cP())).Norm();;
|
||||
totalDoubleAreaSize += v.doubleArea;
|
||||
|
||||
vertices.push_back(v);
|
||||
|
@ -145,17 +148,17 @@ public:
|
|||
|
||||
Matrix33f Tp;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
Tp[i][i] = 1.0f - powf(central_vertex->N()[i],2);
|
||||
Tp[0][1] = Tp[1][0] = -1.0f * (central_vertex->N()[0] * central_vertex->N()[1]);
|
||||
Tp[1][2] = Tp[2][1] = -1.0f * (central_vertex->N()[1] * central_vertex->N()[2]);
|
||||
Tp[0][2] = Tp[2][0] = -1.0f * (central_vertex->N()[0] * central_vertex->N()[2]);
|
||||
Tp[i][i] = 1.0f - powf(central_vertex->cN()[i],2);
|
||||
Tp[0][1] = Tp[1][0] = -1.0f * (central_vertex->N()[0] * central_vertex->cN()[1]);
|
||||
Tp[1][2] = Tp[2][1] = -1.0f * (central_vertex->cN()[1] * central_vertex->cN()[2]);
|
||||
Tp[0][2] = Tp[2][0] = -1.0f * (central_vertex->cN()[0] * central_vertex->cN()[2]);
|
||||
|
||||
Matrix33f tempMatrix;
|
||||
Matrix33f M;
|
||||
M.SetZero();
|
||||
for (int i = 0; i < vertices.size(); ++i) {
|
||||
Point3f edge = (central_vertex->P() - vertices[i].vert->P());
|
||||
float curvature = (2.0f * (central_vertex->N() * edge) ) / edge.SquaredNorm();
|
||||
Point3f edge = (central_vertex->cP() - vertices[i].vert->cP());
|
||||
float curvature = (2.0f * (central_vertex->cN() * edge) ) / edge.SquaredNorm();
|
||||
Point3f T = (Tp*edge).Normalize();
|
||||
tempMatrix.ExternalProduct(T,T);
|
||||
M += tempMatrix * weights[i] * curvature ;
|
||||
|
@ -163,10 +166,10 @@ public:
|
|||
|
||||
Point3f W;
|
||||
Point3f e1(1.0f,0.0f,0.0f);
|
||||
if ((e1 - central_vertex->N()).SquaredNorm() > (e1 + central_vertex->N()).SquaredNorm())
|
||||
W = e1 - central_vertex->N();
|
||||
if ((e1 - central_vertex->cN()).SquaredNorm() > (e1 + central_vertex->cN()).SquaredNorm())
|
||||
W = e1 - central_vertex->cN();
|
||||
else
|
||||
W = e1 + central_vertex->N();
|
||||
W = e1 + central_vertex->cN();
|
||||
W.Normalize();
|
||||
|
||||
Matrix33f Q;
|
||||
|
@ -251,9 +254,8 @@ public:
|
|||
|
||||
(*vi).PD1() = Principal_Direction1 ;
|
||||
(*vi).PD2() = Principal_Direction2 ;
|
||||
(*vi).K1() = -Principal_Curvature1;
|
||||
(*vi).K2() = -Principal_Curvature2;
|
||||
|
||||
(*vi).K1() = Principal_Curvature1;
|
||||
(*vi).K2() = Principal_Curvature2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -276,14 +278,18 @@ Discrete Differential-Geometry Operators for Triangulated 2-Manifolds Mark Meyer
|
|||
float area0, area1, area2, angle0, angle1, angle2, e01, e12, e20;
|
||||
FaceIterator fi;
|
||||
VertexIterator vi;
|
||||
typename MeshType::CoordType e01v ,e12v ,e20v;
|
||||
|
||||
SimpleTempData<VertContainer, AreaData> TDAreaPtr(m.vert); TDAreaPtr.Start();
|
||||
SimpleTempData<VertContainer, typename MeshType::CoordType> TDContr(m.vert); TDContr.Start();
|
||||
|
||||
//Calcola AreaMix in H (vale anche per K)
|
||||
vcg::tri::UpdateNormals<MeshType>::PerVertexNormalized(m);
|
||||
//Compute AreaMix in H (vale anche per K)
|
||||
for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi) if(!(*vi).IsD())
|
||||
{
|
||||
(TDAreaPtr)[*vi].A = 0;
|
||||
(*vi).H() = 0;
|
||||
(TDAreaPtr)[*vi].A = 0.0;
|
||||
(TDContr)[*vi] =typename MeshType::CoordType(0.0,0.0,0.0);
|
||||
(*vi).H() = 0.0;
|
||||
(*vi).K() = (float)(2.0 * M_PI);
|
||||
}
|
||||
|
||||
|
@ -296,9 +302,9 @@ Discrete Differential-Geometry Operators for Triangulated 2-Manifolds Mark Meyer
|
|||
|
||||
if((angle0 < M_PI/2) && (angle1 < M_PI/2) && (angle2 < M_PI/2)) // triangolo non ottuso
|
||||
{
|
||||
float e01 = SquaredDistance( (*fi).V(1)->P() , (*fi).V(0)->P() );
|
||||
float e12 = SquaredDistance( (*fi).V(2)->P() , (*fi).V(1)->P() );
|
||||
float e20 = SquaredDistance( (*fi).V(0)->P() , (*fi).V(2)->P() );
|
||||
float e01 = SquaredDistance( (*fi).V(1)->cP() , (*fi).V(0)->cP() );
|
||||
float e12 = SquaredDistance( (*fi).V(2)->cP() , (*fi).V(1)->cP() );
|
||||
float e20 = SquaredDistance( (*fi).V(0)->cP() , (*fi).V(2)->cP() );
|
||||
|
||||
area0 = ( e20*(1.0/tan(angle1)) + e01*(1.0/tan(angle2)) ) / 8.0;
|
||||
area1 = ( e01*(1.0/tan(angle2)) + e12*(1.0/tan(angle0)) ) / 8.0;
|
||||
|
@ -309,7 +315,7 @@ Discrete Differential-Geometry Operators for Triangulated 2-Manifolds Mark Meyer
|
|||
(TDAreaPtr)[(*fi).V(2)].A += area2;
|
||||
|
||||
}
|
||||
else // triangolo ottuso
|
||||
else // obtuse
|
||||
{
|
||||
(TDAreaPtr)[(*fi).V(0)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 6.0;
|
||||
(TDAreaPtr)[(*fi).V(1)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 6.0;
|
||||
|
@ -323,17 +329,13 @@ Discrete Differential-Geometry Operators for Triangulated 2-Manifolds Mark Meyer
|
|||
angle1 = math::Abs(Angle( (*fi).P(0)-(*fi).P(1),(*fi).P(2)-(*fi).P(1) ));
|
||||
angle2 = M_PI-(angle0+angle1);
|
||||
|
||||
e01 = ( (*fi).V(1)->P() - (*fi).V(0)->P() ) * (*fi).V(0)->N();
|
||||
e12 = ( (*fi).V(2)->P() - (*fi).V(1)->P() ) * (*fi).V(1)->N();
|
||||
e20 = ( (*fi).V(0)->P() - (*fi).V(2)->P() ) * (*fi).V(2)->N();
|
||||
e01v = ( (*fi).V(1)->cP() - (*fi).V(0)->cP() ) ;
|
||||
e12v = ( (*fi).V(2)->cP() - (*fi).V(1)->cP() ) ;
|
||||
e20v = ( (*fi).V(0)->cP() - (*fi).V(2)->cP() ) ;
|
||||
|
||||
area0 = ( e20 * (1.0/tan(angle1)) + e01 * (1.0/tan(angle2)) ) / 4.0;
|
||||
area1 = ( e01 * (1.0/tan(angle2)) + e12 * (1.0/tan(angle0)) ) / 4.0;
|
||||
area2 = ( e12 * (1.0/tan(angle0)) + e20 * (1.0/tan(angle1)) ) / 4.0;
|
||||
|
||||
(*fi).V(0)->H() += area0;
|
||||
(*fi).V(1)->H() += area1;
|
||||
(*fi).V(2)->H() += area2;
|
||||
TDContr[(*fi).V(0)] += ( e20v * (1.0/tan(angle1)) - e01v * (1.0/tan(angle2)) ) / 4.0;
|
||||
TDContr[(*fi).V(1)] += ( e01v * (1.0/tan(angle2)) - e12v * (1.0/tan(angle0)) ) / 4.0;
|
||||
TDContr[(*fi).V(2)] += ( e12v * (1.0/tan(angle0)) - e20v * (1.0/tan(angle1)) ) / 4.0;
|
||||
|
||||
(*fi).V(0)->K() -= angle0;
|
||||
(*fi).V(1)->K() -= angle1;
|
||||
|
@ -349,10 +351,10 @@ Discrete Differential-Geometry Operators for Triangulated 2-Manifolds Mark Meyer
|
|||
vcg::face::Pos<FaceType> hp1=hp;
|
||||
|
||||
hp1.FlipV();
|
||||
e1=hp1.v->P() - hp.v->P();
|
||||
e1=hp1.v->cP() - hp.v->cP();
|
||||
hp1.FlipV();
|
||||
hp1.NextB();
|
||||
e2=hp1.v->P() - hp.v->P();
|
||||
e2=hp1.v->cP() - hp.v->cP();
|
||||
(*fi).V(i)->K() -= math::Abs(Angle(e1,e2));
|
||||
}
|
||||
}
|
||||
|
@ -367,12 +369,13 @@ Discrete Differential-Geometry Operators for Triangulated 2-Manifolds Mark Meyer
|
|||
}
|
||||
else
|
||||
{
|
||||
(*vi).H() /= (TDAreaPtr)[*vi].A;
|
||||
(*vi).H() = (((TDContr)[*vi]* (*vi).cN()>0)?1.0:-1.0)*((TDContr)[*vi] / (TDAreaPtr) [*vi].A).Norm();
|
||||
(*vi).K() /= (TDAreaPtr)[*vi].A;
|
||||
}
|
||||
}
|
||||
|
||||
TDAreaPtr.Stop();
|
||||
TDContr.Stop();
|
||||
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue