ComputeVOlume moved outside the class and other
minor corrections
This commit is contained in:
parent
26d5839f5f
commit
936850026b
|
@ -24,6 +24,9 @@
|
||||||
History
|
History
|
||||||
|
|
||||||
$Log: not supported by cvs2svn $
|
$Log: not supported by cvs2svn $
|
||||||
|
Revision 1.6 2004/06/25 18:17:03 ganovelli
|
||||||
|
minor changes
|
||||||
|
|
||||||
Revision 1.5 2004/05/13 12:51:00 turini
|
Revision 1.5 2004/05/13 12:51:00 turini
|
||||||
Changed SolidAngle : table EV in table EofV
|
Changed SolidAngle : table EV in table EofV
|
||||||
Changed DiedralAngle : tables FE and FV in tables FofE and FofV
|
Changed DiedralAngle : tables FE and FV in tables FofE and FofV
|
||||||
|
@ -271,12 +274,12 @@ static int FofEE(const int &indexE0,const int &indexE1)
|
||||||
Templated class for storing a generic tetrahedron in a 3D space.
|
Templated class for storing a generic tetrahedron in a 3D space.
|
||||||
Note the relation with the Face class of TetraMesh complex, both classes provide the P(i) access functions to their points and therefore they share the algorithms on it (e.g. area, normal etc...)
|
Note the relation with the Face class of TetraMesh complex, both classes provide the P(i) access functions to their points and therefore they share the algorithms on it (e.g. area, normal etc...)
|
||||||
*/
|
*/
|
||||||
template <class ScalarTetraType>
|
template <class ScalarType>
|
||||||
class Tetra3
|
class Tetra3:public Tetra
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
typedef Point3< ScalarTetraType > CoordType;
|
typedef Point3< ScalarType > CoordType;
|
||||||
typedef ScalarTetraType ScalarType;
|
typedef ScalarType ScalarType;
|
||||||
|
|
||||||
/*********************************************
|
/*********************************************
|
||||||
|
|
||||||
|
@ -289,6 +292,9 @@ private:
|
||||||
public:
|
public:
|
||||||
|
|
||||||
/// Shortcut per accedere ai punti delle facce
|
/// Shortcut per accedere ai punti delle facce
|
||||||
|
inline CoordType & P( const int j ) { return _v[j];}
|
||||||
|
inline CoordType const & cP( const int j )const { return _v[j];}
|
||||||
|
|
||||||
inline CoordType & P0( const int j ) { return _v[j];}
|
inline CoordType & P0( const int j ) { return _v[j];}
|
||||||
inline CoordType & P1( const int j ) { return _v[(j+1)%4];}
|
inline CoordType & P1( const int j ) { return _v[(j+1)%4];}
|
||||||
inline CoordType & P2( const int j ) { return _v[(j+2)%4];}
|
inline CoordType & P2( const int j ) { return _v[(j+2)%4];}
|
||||||
|
@ -304,10 +310,6 @@ public:
|
||||||
inline const CoordType & cP2( const int j ) const { return _v[(j+2)%4];}
|
inline const CoordType & cP2( const int j ) const { return _v[(j+2)%4];}
|
||||||
inline const CoordType & cP3( const int j ) const { return _v[(j+3)%4];}
|
inline const CoordType & cP3( const int j ) const { return _v[(j+3)%4];}
|
||||||
|
|
||||||
/// compute and return the volume of a tetrahedron
|
|
||||||
ScalarTetraType ComputeVolume(){
|
|
||||||
return (( _v[2]-_v[0])^(_v[1]-_v[0] ))*(_v[3]-_v[0])/6.0;
|
|
||||||
}
|
|
||||||
/// compute and return the barycenter of a tetrahedron
|
/// compute and return the barycenter of a tetrahedron
|
||||||
CoordType ComputeBarycenter()
|
CoordType ComputeBarycenter()
|
||||||
{
|
{
|
||||||
|
@ -329,21 +331,21 @@ double SolidAngle(int vind)
|
||||||
{
|
{
|
||||||
int f1=FofE(edgeind,0);
|
int f1=FofE(edgeind,0);
|
||||||
int f2=FofE(edgeind,1);
|
int f2=FofE(edgeind,1);
|
||||||
Point3d p0=_v[FofV(f1,0)];
|
CoordType p0=_v[FofV(f1,0)];
|
||||||
Point3d p1=_v[FofV(f1,1)];
|
CoordType p1=_v[FofV(f1,1)];
|
||||||
Point3d p2=_v[FofV(f1,2)];
|
CoordType p2=_v[FofV(f1,2)];
|
||||||
Point3d norm1=((p1-p0)^(p2-p0));
|
CoordType norm1=((p1-p0)^(p2-p0));
|
||||||
p0=_v[FofV(f2,0)];
|
p0=_v[FofV(f2,0)];
|
||||||
p1=_v[FofV(f2,1)];
|
p1=_v[FofV(f2,1)];
|
||||||
p2=_v[FofV(f2,2)];
|
p2=_v[FofV(f2,2)];
|
||||||
Point3d norm2=((p1-p0)^(p2-p0));
|
CoordType norm2=((p1-p0)^(p2-p0));
|
||||||
norm1.Normalize();
|
norm1.Normalize();
|
||||||
norm2.Normalize();
|
norm2.Normalize();
|
||||||
return (M_PI-acos(double(norm1*norm2)));
|
return (M_PI-acos(double(norm1*norm2)));
|
||||||
}
|
}
|
||||||
|
|
||||||
/// compute and return the aspect ratio of the tetrahedron
|
/// compute and return the aspect ratio of the tetrahedron
|
||||||
ScalarTetraType ComputeAspectRatio()
|
ScalarType ComputeAspectRatio()
|
||||||
{
|
{
|
||||||
double a0=SolidAngle(0);
|
double a0=SolidAngle(0);
|
||||||
double a1=SolidAngle(1);
|
double a1=SolidAngle(1);
|
||||||
|
@ -355,11 +357,17 @@ ScalarTetraType ComputeAspectRatio()
|
||||||
|
|
||||||
}; //end Class
|
}; //end Class
|
||||||
|
|
||||||
// Returns the normal to the plane passing through p0,p1,p2
|
// compute and return the volume of a tetrahedron
|
||||||
|
template<class TetraType>
|
||||||
|
typename TetraType::ScalarType ComputeVolume( const TetraType & t){
|
||||||
|
return (( t.cP(2)-t.cP(0))^(t.cP(1)-t.cP(0) ))*(t.cP(3)-t.cP(0))/6.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the normal to the face face of the tetrahedron t
|
||||||
template<class TetraType>
|
template<class TetraType>
|
||||||
Point3<typename TetraType::ScalarTetraType> Normal(const TetraType &t,int face)
|
Point3<typename TetraType::ScalarType> Normal( const TetraType &t,const int &face)
|
||||||
{
|
{
|
||||||
return(((t.P0(Tetra::VofF(face,1))-t.P0(Tetra::VofF(face,0)))^(t.P0(Tetra::VofF(face,2))-t.P0(Tetra::VofF(face,0)))).Normalize());
|
return(((t.cP(Tetra::VofF(face,1))-t.cP(Tetra::VofF(face,0)))^(t.cP(Tetra::VofF(face,2))-t.cP(Tetra::VofF(face,0)))).Normalize());
|
||||||
}
|
}
|
||||||
|
|
||||||
} // end namespace
|
} // end namespace
|
||||||
|
|
Loading…
Reference in New Issue