Added DihedralAngleRad that computes the signed dihedral angle between the normals of two adjacent faces

This commit is contained in:
Paolo Cignoni 2013-06-24 07:55:54 +00:00
parent 49d759af2a
commit 9ad68bc573
1 changed files with 135 additions and 85 deletions

View File

@ -8,7 +8,7 @@
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
@ -35,16 +35,16 @@ namespace face {
/*@{*/
/** Return a boolean that indicate if the face is complex.
@param j Index of the edge
@param j Index of the edge
@return true se la faccia e' manifold, false altrimenti
*/
template <class FaceType>
inline bool IsManifold( FaceType const & f, const int j )
inline bool IsManifold( FaceType const & f, const int j )
{
assert(f.cFFp(j) != 0); // never try to use this on uncomputed topology
if(FaceType::HasFFAdjacency())
return ( f.cFFp(j) == &f || &f == f.cFFp(j)->cFFp(f.cFFi(j)) );
else
return ( f.cFFp(j) == &f || &f == f.cFFp(j)->cFFp(f.cFFi(j)) );
else
return true;
}
@ -53,30 +53,80 @@ inline bool IsManifold( FaceType const & f, const int j )
@return true if j is an edge of border, false otherwise
*/
template <class FaceType>
inline bool IsBorder(FaceType const & f, const int j )
inline bool IsBorder(FaceType const & f, const int j )
{
if(FaceType::HasFFAdjacency())
return f.cFFp(j)==&f;
return f.cFFp(j)==&f;
//return f.IsBorder(j);
assert(0);
return true;
}
/*! \brief Compute the signed dihedral angle between the normals of two adjacent faces
*
* The angle between the normal is signed according to the concavity/convexity of the
* dihedral angle: negative if the edge shared between the two faces is concave, positive otherwise.
* The surface it is assumend to be oriented.
* It simply use the projection of the opposite vertex onto the plane of the other one.
* It does not assume anything on face normals.
*
* v0 ___________ vf1
* |\ |
* | \i1 f1 |
* | \ |
* |f0 i0\ |
* | \ |
* |__________\|
* vf0 v1
*/
template <class FaceType>
inline typename FaceType::ScalarType DihedralAngleRad(FaceType & f, const int i )
{
typedef typename FaceType::ScalarType ScalarType;
typedef typename FaceType::CoordType CoordType;
typedef typename FaceType::VertexType VertexType;
FaceType *f0 = &f;
FaceType *f1 = f.FFp(i);
int i0=i;
int i1=f.FFi(i);
VertexType *vf0 = f0->V2(i0);
VertexType *vf1 = f1->V2(i1);
CoordType n0 = NormalizedNormal(*f0);
CoordType n1 = NormalizedNormal(*f1);
ScalarType off0 = n0*vf0->P();
ScalarType off1 = n1*vf1->P();
ScalarType dist01 = off0 - n0*vf1->P();
ScalarType dist10 = off1 - n1*vf0->P();
// just to be sure use the sign of the largest in absolute value;
ScalarType sign;
if(fabs(dist01) > fabs(dist10)) sign = dist01;
else sign=dist10;
ScalarType angleRad=Angle(f0->N(),f1->N());
if(sign > 0 ) return angleRad;
else return -angleRad;
}
/// Count border edges of the face
template <class FaceType>
inline int BorderCount(FaceType const & f)
inline int BorderCount(FaceType const & f)
{
if(FaceType::HasFFAdjacency())
{
int t = 0;
if( IsBorder(f,0) ) ++t;
if( IsBorder(f,1) ) ++t;
if( IsBorder(f,2) ) ++t;
return t;
if( IsBorder(f,0) ) ++t;
if( IsBorder(f,1) ) ++t;
if( IsBorder(f,2) ) ++t;
return t;
}
else return 3;
else return 3;
}
@ -88,31 +138,31 @@ inline int ComplexSize(FaceType & f, const int e)
{
if(face::IsBorder<FaceType>(f,e)) return 1;
if(face::IsManifold<FaceType>(f,e)) return 2;
// Non manifold case
Pos< FaceType > fpos(&f,e);
Pos< FaceType > fpos(&f,e);
int cnt=0;
do
{
fpos.NextF();
fpos.NextF();
assert(!fpos.IsBorder());
assert(!fpos.IsManifold());
++cnt;
}
while(fpos.f!=&f);
++cnt;
}
while(fpos.f!=&f);
assert (cnt>2);
return cnt;
return cnt;
}
assert(0);
return 2;
return 2;
}
/** This function check the FF topology correctness for an edge of a face.
It's possible to use it also in non-two manifold situation.
/** This function check the FF topology correctness for an edge of a face.
It's possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't defined.
@param f the face to be checked
@param e Index of the edge to be checked
@param f the face to be checked
@param e Index of the edge to be checked
*/
template <class FaceType>
bool FFCorrectness(FaceType & f, const int e)
@ -125,7 +175,7 @@ bool FFCorrectness(FaceType & f, const int e)
else return false;
}
if(f.FFp(e)->FFp(f.FFi(e))==&f) // plain two manifold
if(f.FFp(e)->FFp(f.FFi(e))==&f) // plain two manifold
{
if(f.FFp(e)->FFi(f.FFi(e))==e) return true;
else return false;
@ -135,15 +185,15 @@ bool FFCorrectness(FaceType & f, const int e)
// all the faces must be connected in a loop.
Pos< FaceType > curFace(&f,e); // Build the half edge
int cnt=0;
int cnt=0;
do
{
if(curFace.IsManifold()) return false;
if(curFace.IsBorder()) return false;
curFace.NextF();
cnt++;
{
if(curFace.IsManifold()) return false;
if(curFace.IsBorder()) return false;
curFace.NextF();
cnt++;
assert(cnt<100);
}
}
while ( curFace.f != &f);
return true;
}
@ -162,7 +212,7 @@ void FFDetachManifold(FaceType & f, const int e)
assert(!IsBorder<FaceType>(f,e)); // Never try to detach a border edge!
FaceType *ffp = f.FFp(e);
//int ffi=f.FFp(e);
int ffi=f.FFi(e);
int ffi=f.FFi(e);
f.FFp(e)=&f;
f.FFi(e)=e;
@ -178,11 +228,11 @@ void FFDetachManifold(FaceType & f, const int e)
assert(FFCorrectness<FaceType>(*ffp,ffi));
}
/** This function detach the face from the adjacent face via the edge e.
It's possible to use it also in non-two manifold situation.
/** This function detach the face from the adjacent face via the edge e.
It's possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't defined.
@param f the face to be detached
@param e Index of the edge to be detached
@param f the face to be detached
@param e Index of the edge to be detached
*/
template <class FaceType>
@ -193,10 +243,10 @@ void FFDetach(FaceType & f, const int e)
int complexity;
assert(complexity=ComplexSize(f,e));
Pos< FaceType > FirstFace(&f,e); // Build the half edge
Pos< FaceType > FirstFace(&f,e); // Build the half edge
Pos< FaceType > LastFace(&f,e); // Build the half edge
FirstFace.NextF();
LastFace.NextF();
FirstFace.NextF();
LastFace.NextF();
int cnt=0;
// then in case of non manifold face continue to advance LastFace
@ -204,26 +254,26 @@ void FFDetach(FaceType & f, const int e)
// preceed the face I want to erase
while ( LastFace.f->FFp(LastFace.z) != &f)
{
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity);
{
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity);
assert(!LastFace.IsManifold()); // We enter in this loop only if we are on a non manifold edge
assert(!LastFace.IsBorder());
LastFace.NextF();
cnt++;
assert(cnt<100);
assert(cnt<100);
}
assert(LastFace.f->FFp(LastFace.z)==&f);
assert(LastFace.f->FFp(LastFace.z)==&f);
assert(f.FFp(e)== FirstFace.f);
// Now we link the last one to the first one, skipping the face to be detached;
// Now we link the last one to the first one, skipping the face to be detached;
LastFace.f->FFp(LastFace.z) = FirstFace.f;
LastFace.f->FFi(LastFace.z) = FirstFace.z;
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity-1);
// At the end selfconnect the chosen edge to make a border.
f.FFp(e) = &f;
f.FFi(e) = e;
f.FFi(e) = e;
assert(ComplexSize(f,e)==1);
assert(FFCorrectness<FaceType>(*LastFace.f,LastFace.z));
@ -235,7 +285,7 @@ void FFDetach(FaceType & f, const int e)
The function cannot be applicated if the adjacencies among faces aren't define.
@param z1 Index of the edge
@param f2 Pointer to the face
@param z2 The edge of the face f2
@param z2 The edge of the face f2
*/
template <class FaceType>
void FFAttach(FaceType * &f, int z1, FaceType *&f2, int z2)
@ -253,12 +303,12 @@ void FFAttach(FaceType * &f, int z1, FaceType *&f2, int z2)
//Salvo i dati di f1 prima di sovrascrivere
FaceType *f1prec = f->FFp(z1);
int z1prec = f->FFi(z1);
//Aggiorno f1
f->FFp(z1) = TEPB.f->FFp(TEPB.z);
f->FFi(z1) = TEPB.f->FFi(TEPB.z);
//Aggiorno la faccia che precede f2
TEPB.f->FFp(TEPB.z) = f1prec;
TEPB.f->FFi(TEPB.z) = z1prec;
//Aggiorno f1
f->FFp(z1) = TEPB.f->FFp(TEPB.z);
f->FFi(z1) = TEPB.f->FFi(TEPB.z);
//Aggiorno la faccia che precede f2
TEPB.f->FFp(TEPB.z) = f1prec;
TEPB.f->FFi(TEPB.z) = z1prec;
}
/** This function attach the face (via the edge z1) to another face (via the edge z2).
@ -300,7 +350,7 @@ void AssertAdj(FaceType & f)
assert(f.FFp(0)->FFi(f.FFi(0))==0);
assert(f.FFp(1)->FFi(f.FFi(1))==1);
assert(f.FFp(2)->FFi(f.FFi(2))==2);
assert(f.FFp(2)->FFi(f.FFi(2))==2);
}
/**
@ -325,7 +375,7 @@ bool CheckOrientation(FaceType &f, int z)
}
/**
/**
* This function change the orientation of the face by inverting the index of two vertex.
* @param z Index of the edge
*/
@ -436,21 +486,21 @@ bool CheckFlipEdge(FaceType &f, int z)
if (z<0 || z>2) return false;
// boundary edges cannot be flipped
// boundary edges cannot be flipped
if (face::IsBorder(f, z)) return false;
FaceType *g = f.FFp(z);
int w = f.FFi(z);
// check if the vertices of the edge are the same
// check if the vertices of the edge are the same
// e.g. the mesh has to be well oriented
if (g->V(w)!=f.V1(z) || g->V1(w)!=f.V(z) )
return false;
if (g->V(w)!=f.V1(z) || g->V1(w)!=f.V(z) )
return false;
// check if the flipped edge is already present in the mesh
// check if the flipped edge is already present in the mesh
// f_v2 and g_v2 are the vertices of the new edge
VertexType *f_v2 = f.V2(z);
VertexType *g_v2 = g->V2(w);
VertexType *g_v2 = g->V2(w);
// just a sanity check. If this happens the mesh is not manifold.
if (f_v2 == g_v2) return false;
@ -460,15 +510,15 @@ bool CheckFlipEdge(FaceType &f, int z)
PosType pos(&f, (z+2)%3, f_v2);
PosType startPos=pos;
do
{
pos.NextE();
do
{
pos.NextE();
if (g_v2 == pos.VFlip())
return false;
}
return false;
}
while (pos != startPos);
return true;
return true;
}
/*!
@ -477,20 +527,20 @@ bool CheckFlipEdge(FaceType &f, int z)
* \param f pointer to the face
* \param z the edge index
*
* Note: For <em>edge flip</em> we intend the swap of the diagonal of the rectangle
* Note: For <em>edge flip</em> we intend the swap of the diagonal of the rectangle
* formed by the face \a f and the face adjacent to the specified edge.
*/
template <class FaceType>
void FlipEdge(FaceType &f, const int z)
{
{
assert(z>=0);
assert(z<3);
assert( !IsBorder(f,z) );
assert( face::IsManifold<FaceType>(f, z));
FaceType *g = f.FFp(z);
FaceType *g = f.FFp(z);
int w = f.FFi(z);
assert( g->V(w) == f.V1(z) );
assert( g->V1(w)== f.V(z) );
assert( g->V2(w)!= f.V(z) );
@ -499,14 +549,14 @@ void FlipEdge(FaceType &f, const int z)
f.V1(z) = g->V2(w);
g->V1(w) = f.V2(z);
f.FFp(z) = g->FFp((w+1)%3);
f.FFp(z) = g->FFp((w+1)%3);
f.FFi(z) = g->FFi((w+1)%3);
g->FFp(w) = f.FFp((z+1)%3);
g->FFp(w) = f.FFp((z+1)%3);
g->FFi(w) = f.FFi((z+1)%3);
f.FFp((z+1)%3) = g;
f.FFp((z+1)%3) = g;
f.FFi((z+1)%3) = (w+1)%3;
g->FFp((w+1)%3) = &f;
g->FFp((w+1)%3) = &f;
g->FFi((w+1)%3) = (z+1)%3;
if(f.FFp(z)==g)
@ -539,7 +589,7 @@ void VFDetach(FaceType & f)
VFDetach(f,2);
}
// Stacca la faccia corrente dalla catena di facce incidenti sul vertice z,
// Stacca la faccia corrente dalla catena di facce incidenti sul vertice z,
// NOTA funziona SOLO per la topologia VF!!!
// usata nelle classi di collapse
template <class FaceType>
@ -553,8 +603,8 @@ void VFDetach(FaceType & f, int z)
}
else // scan the list of faces in order to finde the current face f to be detached
{
VFIterator<FaceType> x(f.V(z)->VFp(),f.V(z)->VFi());
VFIterator<FaceType> y;
VFIterator<FaceType> x(f.V(z)->VFp(),f.V(z)->VFi());
VFIterator<FaceType> y;
for(;;)
{
@ -571,14 +621,14 @@ void VFDetach(FaceType & f, int z)
}
}
/// Append a face in VF list of vertex f->V(z)
/// Append a face in VF list of vertex f->V(z)
template <class FaceType>
void VFAppend(FaceType* & f, int z)
{
typename FaceType::VertexType *v = f->V(z);
if (v->VFp()!=0)
{
FaceType *f0=v->VFp();
FaceType *f0=v->VFp();
int z0=v->VFi();
//append
f->VFp(z)=f0;
@ -608,7 +658,7 @@ void VVStarVF( typename FaceType::VertexType* vp, std::vector<typename FaceType:
starVec.push_back(vfi.F()->V2(vfi.I()));
++vfi;
}
std::sort(starVec.begin(),starVec.end());
typename std::vector<VertexPointer>::iterator new_end = std::unique(starVec.begin(),starVec.end());
starVec.resize(new_end-starVec.begin());
@ -780,7 +830,7 @@ void VFExtendedStarVF(typename FaceType::VertexType* vp,
faceVec.resize(dist);
}
}
/*!
* \brief Compute the ordered set of faces adjacent to a given vertex using FF adiacency
*