Utility functions for the trackmodes, first version
This commit is contained in:
parent
1c2f0e7db7
commit
9ed47e4afa
|
@ -0,0 +1,841 @@
|
|||
/****************************************************************************
|
||||
* VCGLib o o *
|
||||
* Visual and Computer Graphics Library o o *
|
||||
* _ O _ *
|
||||
* Copyright(C) 2004 \/)\/ *
|
||||
* Visual Computing Lab /\/| *
|
||||
* ISTI - Italian National Research Council | *
|
||||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||||
* for more details. *
|
||||
* *
|
||||
****************************************************************************/
|
||||
/****************************************************************************
|
||||
History
|
||||
|
||||
$Log: not supported by cvs2svn $
|
||||
|
||||
|
||||
****************************************************************************/
|
||||
|
||||
#ifndef TRACKUTILS_H
|
||||
#define TRACKUTILS_H
|
||||
|
||||
#include <assert.h>
|
||||
#include <vcg/math/base.h>
|
||||
#include <vcg/math/similarity.h>
|
||||
#include <vcg/space/intersection3.h>
|
||||
#include <vcg/space/line3.h>
|
||||
#include <vcg/space/plane3.h>
|
||||
#include <wrap/gl/math.h>
|
||||
#include <wrap/gl/space.h>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace vcg {
|
||||
|
||||
namespace trackutils {
|
||||
|
||||
/// Compute the plane perpedicular to view dir and passing through manip center
|
||||
Plane3f GetViewPlane (const View < float >&camera, const Point3f & center)
|
||||
{
|
||||
Point3f vp = camera.ViewPoint ();
|
||||
Plane3f pl;
|
||||
Point3f plnorm = vp - center;
|
||||
plnorm.Normalize ();
|
||||
pl.Set (plnorm, plnorm * center);
|
||||
return pl;
|
||||
}
|
||||
|
||||
Ray3f line2ray(const Line3f &l){
|
||||
Ray3f r(l.Origin(),l.Direction());
|
||||
r.Normalize();
|
||||
return r;
|
||||
}
|
||||
|
||||
// Given a point p in window coordinate it compute the point where the lie p
|
||||
// over the plane paralell the viewplane and passing through the center of the trackball
|
||||
Point3f HitViewPlane (Trackball * tb, const Point3f & p)
|
||||
{
|
||||
// plane perpedicular to view direction and passing through manip center
|
||||
Plane3f vp = GetViewPlane (tb->camera, tb->center);
|
||||
Line3fN ln = tb->camera.ViewLineFromWindow (Point3f (p[0], p[1], 0));
|
||||
Point3f PonVP;
|
||||
/*bool res = */ IntersectionLinePlane < float >(vp, ln, PonVP);
|
||||
return PonVP;
|
||||
}
|
||||
|
||||
/*
|
||||
dato un punto in coordinate di schermo e.g. in pixel stile opengl
|
||||
calcola il punto di intersezione tra la viewline che passa per viewpoint e per hitplane e l'iperboloide.
|
||||
l'iperboloide si assume essere quello di rotazione attorno alla retta viewpoint-center e di raggio rad
|
||||
si assume come sistema di riferimento quello con l'origine su center ecome x la retta center-viewpoint
|
||||
|
||||
eq linea
|
||||
hitplane.y
|
||||
y = - ----------- * x + hitplane.y
|
||||
viewpoint.x
|
||||
|
||||
eq hiperboloide di raggio r (e.g. che passa per (r/sqrt2,r/sqrt2)
|
||||
|
||||
1
|
||||
y = --- * (r^2 /2.0)
|
||||
x
|
||||
|
||||
hitplane.y
|
||||
----------- * x^2 - hitplane.y *x + (r^2/2.0) == 0
|
||||
viewpoint.x
|
||||
|
||||
*/
|
||||
bool HitHyper (Point3f center, float radius, Point3f viewpoint, Plane3f vp,
|
||||
Point3f hitplane, Point3f & hit)
|
||||
{
|
||||
float hitplaney = Distance (center, hitplane);
|
||||
float viewpointx = Distance (center, viewpoint);
|
||||
|
||||
float a = hitplaney / viewpointx;
|
||||
float b = -hitplaney;
|
||||
float c = radius * radius / 2.0f;
|
||||
float delta = b * b - 4 * a * c;
|
||||
float x1, x2, xval, yval;
|
||||
|
||||
if (delta > 0) {
|
||||
x1 = (-b - sqrt (delta)) / (2.0f * a);
|
||||
x2 = (-b + sqrt (delta)) / (2.0f * a);
|
||||
|
||||
xval = x1; // always take the minimum value solution
|
||||
yval = c / xval; // alternatively it also could be the other part of the equation yval=-(hitplaney/viewpointx)*xval+hitplaney;
|
||||
}
|
||||
else {
|
||||
return false;
|
||||
}
|
||||
// Computing the result in 3d space;
|
||||
Point3f dirRadial = hitplane - center;
|
||||
dirRadial.Normalize ();
|
||||
Point3f dirView = vp.Direction ();
|
||||
dirView.Normalize ();
|
||||
hit = center + dirRadial * yval + dirView * xval;
|
||||
return true;
|
||||
}
|
||||
|
||||
/* dato un punto in coordinate di schermo e.g. in pixel stile opengl
|
||||
restituisce un punto in coordinate di mondo sulla superficie
|
||||
della trackball.
|
||||
La superficie della trackball e' data da una sfera + una porzione
|
||||
di iperboloide di rotazione.
|
||||
Assumiamo la sfera di raggio unitario e centrata sull'origine e
|
||||
di guardare lungo la y negativa.
|
||||
|
||||
X 0 sqrt(1/2) 1
|
||||
eq sfera: y=sqrt(1-x*x); 1 sqrt(1/2) 0
|
||||
eq iperboloide : y=1/2*x; inf sqrt(1/2) 1/2
|
||||
eq cono y=x+sqrt(2);
|
||||
|
||||
*/
|
||||
|
||||
Point3f HitSphere (Trackball * tb, const Point3f & p)
|
||||
{
|
||||
// const float Thr = tb->radius/math::Sqrt(2.0f);
|
||||
Line3fN vn = tb->camera.ViewLineFromModel (tb->center);
|
||||
Line3fN ln = tb->camera.ViewLineFromWindow (Point3f (p[0], p[1], 0));
|
||||
Point3f viewpoint = tb->camera.ViewPoint ();
|
||||
Plane3f vp = GetViewPlane (tb->camera, tb->center);
|
||||
Point3f hit, hitPlane, hitSphere, hitSphere1, hitSphere2, hitHyper;
|
||||
IntersectionLinePlane < float >(vp, ln, hitPlane);
|
||||
|
||||
Sphere3f sphere (tb->center, tb->radius);
|
||||
bool resSp = IntersectionLineSphere < float >(sphere, ln, hitSphere1, hitSphere2);
|
||||
|
||||
if (resSp == true) {
|
||||
if (Distance (viewpoint, hitSphere1) < Distance (viewpoint, hitSphere2))
|
||||
hitSphere = hitSphere1;
|
||||
else
|
||||
hitSphere = hitSphere2;
|
||||
}
|
||||
|
||||
/*float dl= */ Distance (ln, tb->center);
|
||||
bool resHp = HitHyper (tb->center, tb->radius, viewpoint, vp, hitPlane, hitHyper);
|
||||
|
||||
// four cases
|
||||
|
||||
// 1) Degenerate line tangent to both sphere and hyperboloid!
|
||||
if ((!resSp && !resHp)) {
|
||||
hit = ClosestPoint (ln, tb->center);
|
||||
//printf("closest point to line %f\n",Distance(hit,tb->center));
|
||||
return hit;
|
||||
}
|
||||
if ((resSp && !resHp))
|
||||
return hitSphere; // 2) line cross only the sphere
|
||||
if ((!resSp && resHp))
|
||||
return hitHyper; // 3) line cross only the hyperboloid
|
||||
|
||||
// 4) line cross both sphere and hyperboloid: choose according angle.
|
||||
float angleDeg = math::ToDeg (Angle ((viewpoint - tb->center), (hitSphere - tb->center)));
|
||||
|
||||
//printf("Angle %f (%5.2f %5.2f %5.2f) (%5.2f %5.2f %5.2f)\n",angleDeg,hitSphere[0],hitSphere[1],hitSphere[2],hitHyper[0],hitHyper[1],hitHyper[2]);
|
||||
if (angleDeg < 45)
|
||||
return hitSphere;
|
||||
else
|
||||
return hitHyper;
|
||||
|
||||
// Codice ORIGINALE PONCHIO
|
||||
//vp.SetOffset(vp.Offset() + Thr);
|
||||
|
||||
//Point3f hit;
|
||||
//bool res = Intersection<float>(vp, ln, hit);
|
||||
//float d = Distance(tb->center - vn.Direction()*Thr, hit);
|
||||
//if(d < Thr) {
|
||||
// Point3f hit2;
|
||||
// Sphere3f sphere(tb->center, tb->radius);
|
||||
// bool res = Intersection<float>(sphere, ln, hit, hit2);
|
||||
|
||||
// //find closest intersection to sphere
|
||||
// float d = (hit - viewpoint).Norm();
|
||||
// float d2 = (hit2 - viewpoint).Norm();
|
||||
// if(d > d2) hit = hit2;
|
||||
// hit -= tb->center;
|
||||
//} else {
|
||||
// if(d > 2.99 * Thr)
|
||||
// d = 2.99 * Thr;
|
||||
// Point3f norm = (hit - tb->center)^(viewpoint - tb->center);
|
||||
// norm.Normalize();
|
||||
// float phi = -M_PI/4 - 3*M_PI/8 *(d - Thr)/Thr;
|
||||
|
||||
// Quaternionf q(phi, norm);
|
||||
// hit = q.Rotate((viewpoint - tb->center).Normalize() * tb->radius);
|
||||
//}
|
||||
// hit.Normalize();
|
||||
// return hit;
|
||||
}
|
||||
|
||||
/*
|
||||
calculates the minimal distance between 2 lines.
|
||||
P and Q are the lines, P_s and Q_t are set to be the closest points on these lines.
|
||||
it's returned the distance from P_s and Q_t, and a boolean value which is true
|
||||
if the lines are parallel enough.
|
||||
if P and Q are parallel P_s and Q_t aren't set.
|
||||
the formula is taken from pages 81-83 of
|
||||
"Eric Lengyel - Mathematics for 3D Game Programming & Computer Graphics"
|
||||
*/
|
||||
pair< float, bool > LineLineDistance(const Line3f & P,const Line3f & Q,Point3f & P_s, Point3f & Q_t){
|
||||
Point3f p0 = P.Origin (), Vp = P.Direction ();
|
||||
Point3f q0 = Q.Origin (), Vq = Q.Direction ();
|
||||
float VPVP = Vp * Vp;
|
||||
float VQVQ = Vq * Vq;
|
||||
float VPVQ = Vp * Vq;
|
||||
const float det = ( VPVP * VQVQ ) - ( VPVQ * VPVQ );
|
||||
const float EPSILON = 0.00001f;
|
||||
if ( fabs(det) < EPSILON ) {
|
||||
return make_pair(Distance(P,q0), true);
|
||||
}
|
||||
float b1= (q0 - p0) * Vp;
|
||||
float b2= (p0 - q0) * Vq;
|
||||
float s = ( (VQVQ * b1) + (VPVQ * b2) ) / det;
|
||||
float t = ( (VPVQ * b1) + (VPVP * b2) ) / det;
|
||||
P_s = p0 + (Vp * s);
|
||||
Q_t = q0 + (Vq * t);
|
||||
return make_pair(Distance(P_s,Q_t),false);
|
||||
}
|
||||
|
||||
/*
|
||||
calculates the minimal distance between a ray and a line
|
||||
R is the ray and Q is the line, R_s and Q_t are set to be the closest points on
|
||||
the ray and the line.
|
||||
it's returned the distance from R_s and Q_t, and a boolean value which is true
|
||||
if the ray and the line are parallel enough.
|
||||
if R and Q are parallel R_s and Q_t aren't set.
|
||||
*/
|
||||
pair< float, bool > RayLineDistance(const Ray3f & R,const Line3f & Q,Point3f & R_s, Point3f & Q_t){
|
||||
Point3f r0 = R.Origin (), Vr = R.Direction ();
|
||||
Point3f q0 = Q.Origin (), Vq = Q.Direction ();
|
||||
float VRVR = Vr * Vr;
|
||||
float VQVQ = Vq * Vq;
|
||||
float VRVQ = Vr * Vq;
|
||||
const float det = ( VRVR * VQVQ ) - ( VRVQ * VRVQ );
|
||||
const float EPSILON = 0.00001f;
|
||||
if ( ( det >= 0.0f ? det : -det) < EPSILON ) {
|
||||
return make_pair(Distance(Q,r0), true);
|
||||
}
|
||||
float b1= (q0 - r0) * Vr;
|
||||
float b2= (r0 - q0) * Vq;
|
||||
float s = ( (VQVQ * b1) + (VRVQ * b2) ) / det;
|
||||
float t = ( (VRVQ * b1) + (VRVR * b2) ) / det;
|
||||
if(s<0){
|
||||
R_s = r0;
|
||||
Q_t = ClosestPoint(Q,R_s);
|
||||
}else {
|
||||
R_s = r0 + (Vr * s);
|
||||
Q_t = q0 + (Vq * t);
|
||||
}
|
||||
return make_pair(Distance(R_s,Q_t),false);
|
||||
}
|
||||
|
||||
/*
|
||||
calculates the minimal distance between 2 segments
|
||||
R e Q are the segments, R_s and Q_t are set to be the closest points on
|
||||
the segments
|
||||
it's returned the distance from R_s and Q_t, and a boolean value which is true
|
||||
if the segments are parallel enough.
|
||||
*/
|
||||
pair< float, bool > SegmentSegmentDistance(const Segment3f & R, const Segment3f & Q, Point3f & R_s, Point3f & Q_t)
|
||||
{
|
||||
float R_len=Distance(R.P0(),R.P1());
|
||||
float Q_len=Distance(Q.P0(),Q.P1());
|
||||
const float EPSILON_LENGTH = max(R_len,Q_len)*0.0001f;
|
||||
if(R_len < EPSILON_LENGTH){
|
||||
R_s=R.P0();
|
||||
Q_t=ClosestPoint(Q,R_s);
|
||||
return make_pair(Distance(R_s,Q_t),true);
|
||||
}
|
||||
if( Q_len < EPSILON_LENGTH){
|
||||
Q_t=Q.P0();
|
||||
R_s=ClosestPoint(R,Q_t);
|
||||
return make_pair(Distance(R_s,Q_t),true);
|
||||
}
|
||||
Point3f r0 = R.P0(), Vr = (R.P1()-R.P0()).Normalize();
|
||||
Point3f q0 = Q.P0(), Vq = (Q.P1()-Q.P0()).Normalize();
|
||||
float VRVR = Vr * Vr;
|
||||
float VQVQ = Vq * Vq;
|
||||
float VRVQ = Vr * Vq;
|
||||
const float det = ( VRVR * VQVQ ) - ( VRVQ * VRVQ );
|
||||
const float EPSILON = 0.00001f;
|
||||
if ( ( det >= 0.0f ? det : -det) < EPSILON ) {
|
||||
Line3f lR(R.P0(),R.P1());
|
||||
float qa=lR.Projection(Q.P0());
|
||||
float qb=lR.Projection(Q.P1());
|
||||
if( (qa<=0.0f) && qb<=(0.0f)){
|
||||
R_s=R.P0();
|
||||
Q_t=ClosestPoint(Q,R_s);
|
||||
} else if ( (qa >= 1.0f) && (qb >= 1.0f) ){
|
||||
R_s=R.P1();
|
||||
Q_t=ClosestPoint(Q,R_s);
|
||||
} else {
|
||||
if( (qa >= 0.0f) && (qa <= 1.0f) ){
|
||||
Q_t=Q.P0();
|
||||
R_s=ClosestPoint(R,Q_t);
|
||||
} else if((qb >= 0.0f) && (qb <= 1.0f) ){
|
||||
Q_t=Q.P1();
|
||||
R_s=ClosestPoint(R,Q_t);
|
||||
} else {
|
||||
if( ((qa<=0.0f)&&(qb>=1.0f) ||((qb<=0.0f)&&(qa>=1.0f)))){
|
||||
R_s=R.P0();
|
||||
Q_t=ClosestPoint(Q,R_s);
|
||||
}else{
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
}
|
||||
return make_pair(Distance(R_s,Q_t),true);
|
||||
}
|
||||
float b1= (q0 - r0) * Vr;
|
||||
float b2= (r0 - q0) * Vq;
|
||||
float s = ( (VQVQ * b1) + (VRVQ * b2) ) / det;
|
||||
float t = ( (VRVQ * b1) + (VRVR * b2) ) / det;
|
||||
if( s < 0 ){
|
||||
R_s = R.P0();
|
||||
}else if ( s > R_len ){
|
||||
R_s = R.P1();
|
||||
} else {
|
||||
R_s = r0 + (Vr * s);
|
||||
}
|
||||
if( t < 0){
|
||||
Q_t = Q.P0();
|
||||
}else if ( t > Q_len ){
|
||||
Q_t = Q.P1();
|
||||
}else{
|
||||
Q_t = q0 + (Vq * t);
|
||||
}
|
||||
return make_pair(Distance(R_s,Q_t),false);
|
||||
}
|
||||
|
||||
|
||||
pair< Point3f,bool > HitNearestPointOnAxis (Trackball * tb,Line3f axis, Point3f point)
|
||||
{
|
||||
Ray3fN ray = line2ray(tb->camera.ViewLineFromWindow (point));
|
||||
Point3f axis_p(0,0,0), ray_p(0,0,0);
|
||||
pair< float, bool > resp=RayLineDistance(ray,axis,ray_p,axis_p);
|
||||
if(resp.second || (ray_p == ray.Origin())){
|
||||
return make_pair(Point3f(0,0,0),false);
|
||||
}
|
||||
return make_pair(axis_p,true);
|
||||
}
|
||||
|
||||
|
||||
Line3f ProjectLineOnPlane(const Line3f & ln, const Plane3f & pl)
|
||||
{
|
||||
Point3f l0=ln.Origin();
|
||||
Point3f l1=l0+ln.Direction();
|
||||
Point3f p1,p2;
|
||||
p1=pl.Projection(l0);
|
||||
p2=pl.Projection(l1);
|
||||
Line3f res(p1,p2-p1);
|
||||
return res;
|
||||
}
|
||||
|
||||
float signedDistance(Line3f line,Point3f pt,Point3f positive_dir)
|
||||
{
|
||||
return Distance(line,pt) * ((((pt-ClosestPoint(line,pt)) * positive_dir) >= 0.0 )? 1.0: -1.0);
|
||||
}
|
||||
|
||||
float getDeltaY(Trackball * tb, Point3f new_point)
|
||||
{
|
||||
float ScreenHeight = float (tb->camera.viewport[3] - tb->camera.viewport[1]);
|
||||
return (new_point[1] - tb->last_point[1]) / ScreenHeight;
|
||||
}
|
||||
|
||||
/// intersection between RAY and plane
|
||||
template<class T>
|
||||
inline bool IntersectionRayPlane( const Plane3<T> & pl, const Ray3<T> & ray, Point3<T> &po){
|
||||
const T epsilon = T(1e-8);
|
||||
|
||||
T k = pl.Direction() * ray.Direction(); // Compute 'k' factor
|
||||
if( (k > -epsilon) && (k < epsilon))
|
||||
return false;
|
||||
T r = (pl.Offset() - pl.Direction()*ray.Origin())/k; // Compute ray distance
|
||||
if (r < 0)
|
||||
return false;
|
||||
po = ray.Origin() + ray.Direction()*r;
|
||||
return true;
|
||||
}
|
||||
|
||||
pair< Point3f, bool > HitPlane (Trackball * tb, Point3f point, Plane3f plane)
|
||||
{
|
||||
Ray3fN ray = line2ray(tb->camera.ViewLineFromWindow (point));
|
||||
Point3f p(0,0,0);
|
||||
bool res = IntersectionRayPlane < float >(plane, ray, p);
|
||||
return make_pair(p,res);
|
||||
}
|
||||
|
||||
|
||||
// drawing section
|
||||
|
||||
class DrawingHint {
|
||||
public:
|
||||
DrawingHint () {
|
||||
CircleStep = 64;
|
||||
HideStill = false;
|
||||
DrawTrack = false;
|
||||
LineWidthStill = 0.5f;
|
||||
LineWidthMoving = 1.5f;
|
||||
color = Color4b::LightBlue;
|
||||
}
|
||||
int CircleStep;
|
||||
bool HideStill, DrawTrack;
|
||||
Color4b color;
|
||||
float LineWidthStill;
|
||||
float LineWidthMoving;
|
||||
};
|
||||
|
||||
DrawingHint DH;
|
||||
|
||||
void DrawPlaneHandle ()
|
||||
{
|
||||
float r = 1.0;
|
||||
float dr = r / 10.0f;
|
||||
|
||||
glBegin (GL_LINE_STRIP);
|
||||
glVertex3f (+r + dr, +r, 0.0);
|
||||
glVertex3f (+r, +r + dr, 0.0);
|
||||
glVertex3f (+r - dr, +r, 0.0);
|
||||
glVertex3f (+r, +r - dr, 0.0);
|
||||
glVertex3f (+r + dr, +r, 0.0);
|
||||
glEnd ();
|
||||
glBegin (GL_LINE_STRIP);
|
||||
glVertex3f (-r + dr, -r, 0.0);
|
||||
glVertex3f (-r, -r + dr, 0.0);
|
||||
glVertex3f (-r - dr, -r, 0.0);
|
||||
glVertex3f (-r, -r - dr, 0.0);
|
||||
glVertex3f (-r + dr, -r, 0.0);
|
||||
glEnd ();
|
||||
}
|
||||
|
||||
void DrawCircle ()
|
||||
{
|
||||
int nside = DH.CircleStep;
|
||||
const double pi2 = 3.14159265 * 2.0;
|
||||
glBegin (GL_LINE_LOOP);
|
||||
for (double i = 0; i < nside; i++) {
|
||||
glNormal3d (cos (i * pi2 / nside), sin (i * pi2 / nside), 0.0);
|
||||
glVertex3d (cos (i * pi2 / nside), sin (i * pi2 / nside), 0.0);
|
||||
}
|
||||
glEnd ();
|
||||
DrawPlaneHandle ();
|
||||
}
|
||||
|
||||
void DrawSphereIcon (Trackball * tb,bool active)
|
||||
{
|
||||
glPushMatrix ();
|
||||
glTranslate (tb->center);
|
||||
glMultMatrix (tb->track.InverseMatrix ());
|
||||
glScale (tb->radius);
|
||||
Matrix44f r;
|
||||
tb->track.rot.ToMatrix (r);
|
||||
glMultMatrix (r);
|
||||
|
||||
glPushMatrix ();
|
||||
float amb[4] = { .3f, .3f, .3f, 1.0f };
|
||||
float col[4] = { .5f, .5f, .8f, 1.0f };
|
||||
glPushAttrib (GL_ENABLE_BIT | GL_LINE_BIT | GL_CURRENT_BIT | GL_LIGHTING_BIT);
|
||||
if (active)
|
||||
glLineWidth (DH.LineWidthMoving);
|
||||
else
|
||||
glLineWidth (DH.LineWidthStill);
|
||||
glEnable (GL_LIGHTING);
|
||||
glEnable (GL_LIGHT0);
|
||||
glEnable (GL_LINE_SMOOTH);
|
||||
glEnable (GL_BLEND);
|
||||
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
||||
glColor (DH.color);
|
||||
glMaterialfv (GL_FRONT_AND_BACK, GL_EMISSION, amb);
|
||||
glMaterialfv (GL_FRONT_AND_BACK, GL_DIFFUSE, col);
|
||||
glPushMatrix ();
|
||||
DrawCircle ();
|
||||
glPushMatrix ();
|
||||
glRotatef (90, 1, 0, 0);
|
||||
DrawCircle ();
|
||||
glRotatef (90, 0, 1, 0);
|
||||
DrawCircle ();
|
||||
glPopMatrix ();
|
||||
glPopMatrix ();
|
||||
glPopAttrib ();
|
||||
glPopMatrix ();
|
||||
glPopMatrix ();
|
||||
|
||||
}
|
||||
|
||||
// TEMPORARY drawing section
|
||||
// Disclaimer: the following code is of VERY POOR quality
|
||||
// feel free to delete and rewrite everything
|
||||
|
||||
void prepara_attrib()
|
||||
{
|
||||
float amb[4] = { .3f, .3f, .3f, 1.0f };
|
||||
float col[4] = { .5f, .5f, .8f, 1.0f };
|
||||
glEnable (GL_LIGHTING);
|
||||
glEnable (GL_LIGHT0);
|
||||
glEnable (GL_LINE_SMOOTH);
|
||||
glEnable (GL_BLEND);
|
||||
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
||||
glMaterialfv (GL_FRONT_AND_BACK, GL_EMISSION, amb);
|
||||
glMaterialfv (GL_FRONT_AND_BACK, GL_DIFFUSE, col);
|
||||
}
|
||||
|
||||
void DrawUglyLetter(Trackball * tb,vector<Point3f> ugly_letter)
|
||||
{
|
||||
Point3f center=tb->camera.Project(tb->center);
|
||||
float offset=0;
|
||||
offset=max(offset,Distance(center,tb->camera.Project(tb->center+(Point3f(1,0,0) * tb->radius))));
|
||||
offset=max(offset,Distance(center,tb->camera.Project(tb->center+(Point3f(0,1,0) * tb->radius))));
|
||||
offset=max(offset,Distance(center,tb->camera.Project(tb->center+(Point3f(0,0,1) * tb->radius))));
|
||||
glPushMatrix();
|
||||
glPushAttrib (GL_ALL_ATTRIB_BITS);
|
||||
// go to world coords
|
||||
glTranslate (tb->center);
|
||||
glMultMatrix (tb->track.InverseMatrix ());
|
||||
glTranslate (-tb->center);
|
||||
prepara_attrib();
|
||||
glColor3f(1,1,1);
|
||||
glLineWidth(4.0);
|
||||
|
||||
glBegin(GL_LINE_STRIP);
|
||||
for(unsigned int i=0;i<ugly_letter.size();i++){
|
||||
glVertex(tb->camera.UnProject(center+(ugly_letter[i] * offset * 0.25)
|
||||
+Point3f(-offset,-offset,0)));
|
||||
}
|
||||
glEnd();
|
||||
glPopAttrib ();
|
||||
glPopMatrix();
|
||||
|
||||
}
|
||||
|
||||
void DrawUglyPanMode(Trackball * tb)
|
||||
{
|
||||
vector<Point3f> ugly_p;
|
||||
ugly_p.push_back(Point3f(-1,-1,0));
|
||||
ugly_p.push_back(Point3f(-1,1,0));
|
||||
ugly_p.push_back(Point3f(1,1,0));
|
||||
ugly_p.push_back(Point3f(1,0,0));
|
||||
ugly_p.push_back(Point3f(-1,0,0));
|
||||
|
||||
DrawUglyLetter(tb,ugly_p);
|
||||
}
|
||||
|
||||
void DrawUglyZMode(Trackball * tb)
|
||||
{
|
||||
vector<Point3f> ugly_z;
|
||||
ugly_z.push_back(Point3f(-1,1,0));
|
||||
ugly_z.push_back(Point3f(1,1,0));
|
||||
ugly_z.push_back(Point3f(-1,-1,0));
|
||||
ugly_z.push_back(Point3f(1,-1,0));
|
||||
DrawUglyLetter(tb,ugly_z);
|
||||
}
|
||||
|
||||
void DrawUglyScaleMode(Trackball * tb)
|
||||
{
|
||||
vector<Point3f> ugly_s;
|
||||
ugly_s.push_back(Point3f(1,1,0));
|
||||
ugly_s.push_back(Point3f(-1,1,0));
|
||||
ugly_s.push_back(Point3f(-1,0,0));
|
||||
ugly_s.push_back(Point3f(1,0,0));
|
||||
ugly_s.push_back(Point3f(1,-1,0));
|
||||
ugly_s.push_back(Point3f(-1,-1,0));
|
||||
DrawUglyLetter(tb,ugly_s);
|
||||
}
|
||||
|
||||
void DrawUglyAxisMode(Trackball * tb,Line3f axis)
|
||||
{
|
||||
glPushMatrix();
|
||||
glPushAttrib (GL_ALL_ATTRIB_BITS);
|
||||
// go to world coords
|
||||
glTranslate (tb->center);
|
||||
glMultMatrix (tb->track.InverseMatrix ());
|
||||
glTranslate (-tb->center);
|
||||
prepara_attrib();
|
||||
glColor3f(0.9,0.9,0.2);
|
||||
glLineWidth(2.0);
|
||||
glBegin(GL_LINES);
|
||||
glVertex(axis.Origin()+(axis.Direction()*100));
|
||||
glVertex(axis.Origin()-(axis.Direction()*100));
|
||||
glEnd();
|
||||
glPointSize(8.0);
|
||||
glColor3f(0.2,0.2,0.9);
|
||||
glBegin(GL_POINTS);
|
||||
glVertex(axis.Origin());
|
||||
glEnd();
|
||||
glPopAttrib ();
|
||||
glPopMatrix();
|
||||
}
|
||||
|
||||
void DrawUglyPlaneMode(Trackball * tb,Plane3f plane)
|
||||
{
|
||||
glPushMatrix();
|
||||
glPushAttrib (GL_ALL_ATTRIB_BITS);
|
||||
// go to world coords
|
||||
glTranslate (tb->center);
|
||||
glMultMatrix (tb->track.InverseMatrix ());
|
||||
glTranslate (-tb->center);
|
||||
prepara_attrib();
|
||||
Point3f p0,d1,d2,norm;
|
||||
norm=plane.Direction();
|
||||
p0=plane.Projection(Point3f(0,0,0));
|
||||
d1=Point3f(0,1,0);
|
||||
if(norm == d1 || norm == -d1)
|
||||
d1 = Point3f(1,0,0);
|
||||
d2=plane.Projection(d1);
|
||||
d1=(d2 - p0).Normalize();
|
||||
d2=(d1 ^ norm).Normalize();
|
||||
glLineWidth(3.0);
|
||||
glColor3f(0.2,0.2,0.9);
|
||||
glBegin(GL_LINES);
|
||||
glVertex(p0);
|
||||
glVertex(p0+norm);
|
||||
glEnd();
|
||||
glLineWidth(1.0);
|
||||
for(float i=0.5;i<100.0; i+=0.7){
|
||||
glBegin(GL_LINE_LOOP);
|
||||
for(int a=0;a<360;a+=10){
|
||||
float f0=i*cos((M_PI*a)/180);
|
||||
float f1=i*sin((M_PI*a)/180);
|
||||
glVertex(p0+(d1*f0)+(d2*f1));
|
||||
}
|
||||
glEnd();
|
||||
}
|
||||
glColor3f(0.9,0.9,0.2);
|
||||
glPointSize(8.0);
|
||||
glBegin(GL_POINTS);
|
||||
glVertex(p0);
|
||||
glEnd();
|
||||
glColor3f(0.7,0.7,0);
|
||||
glPointSize(6.0);
|
||||
glBegin(GL_POINTS);
|
||||
glVertex(p0+norm);
|
||||
glEnd();
|
||||
glPopAttrib ();
|
||||
glPopMatrix();
|
||||
}
|
||||
|
||||
void DrawUglyCylinderMode(Trackball * tb,Line3f axis)
|
||||
{
|
||||
glPushMatrix();
|
||||
glPushAttrib (GL_ALL_ATTRIB_BITS);
|
||||
// go to world coords
|
||||
glTranslate (tb->center);
|
||||
glMultMatrix (tb->track.InverseMatrix ());
|
||||
glTranslate (-tb->center);
|
||||
prepara_attrib();
|
||||
Plane3f plane;
|
||||
plane.Init(axis.Origin(),axis.Direction());
|
||||
Point3f p0,d1,d2,norm;
|
||||
norm=plane.Direction();
|
||||
p0=plane.Projection(Point3f(0,0,0));
|
||||
d1=Point3f(0,1,0);
|
||||
if(norm == d1 || norm == -d1)
|
||||
d1 = Point3f(1,0,0);
|
||||
d2=plane.Projection(d1);
|
||||
d1=(d2 - p0).Normalize();
|
||||
d2=(d1 ^ norm).Normalize();
|
||||
glLineWidth(1.0);
|
||||
glColor3f(0.2,0.2,0.9);
|
||||
for(int i=-100;i<100;i++){
|
||||
glBegin(GL_LINE_LOOP);
|
||||
for(int a=0;a<360;a+=10){
|
||||
float f0=(tb->radius)*cos((M_PI*a)/180);
|
||||
float f1=(tb->radius)*sin((M_PI*a)/180);
|
||||
glVertex(p0+(norm*i)+(d1*f0)+(d2*f1));
|
||||
}
|
||||
glEnd();
|
||||
}
|
||||
glLineWidth(3.0);
|
||||
glColor3f(0.2,0.2,0.9);
|
||||
glBegin(GL_LINES);
|
||||
glVertex(axis.Origin());
|
||||
glVertex(axis.Origin()+(axis.Direction()*100));
|
||||
glEnd();
|
||||
glLineWidth(1.5);
|
||||
glColor3f(0.9,0.2,0.9);
|
||||
glBegin(GL_LINES);
|
||||
glVertex(axis.Origin());
|
||||
glVertex(axis.Origin()-(axis.Direction()*100));
|
||||
glEnd();
|
||||
glColor3f(0.9,0.9,0.2);
|
||||
glPointSize(8.0);
|
||||
glBegin(GL_POINTS);
|
||||
glVertex(axis.Origin());
|
||||
glEnd();
|
||||
glPopAttrib ();
|
||||
glPopMatrix();
|
||||
}
|
||||
|
||||
void DrawUglyPathMode(Trackball * tb,const vector < Point3f > &points,
|
||||
Point3f current_point,Point3f prev_point,
|
||||
Point3f next_point,Point3f old_hitpoint,bool wrap)
|
||||
{
|
||||
glPushMatrix();
|
||||
glPushAttrib (GL_ALL_ATTRIB_BITS);
|
||||
// go to world coords
|
||||
glTranslate (tb->center);
|
||||
glMultMatrix (tb->track.InverseMatrix ());
|
||||
glTranslate (-tb->center);
|
||||
prepara_attrib();
|
||||
glColor3f(0.9,0.9,0.2);
|
||||
glLineWidth(2.0);
|
||||
if(wrap)
|
||||
glBegin(GL_LINE_LOOP);
|
||||
else
|
||||
glBegin(GL_LINE_STRIP);
|
||||
for (vector < Point3f >::const_iterator i = points.begin (); i != points.end (); ++i){
|
||||
glVertex(*i);
|
||||
}
|
||||
glEnd();
|
||||
glColor3f(1,0,1);
|
||||
glPointSize(8.0);
|
||||
glBegin(GL_POINTS);
|
||||
glVertex(current_point);
|
||||
glEnd();
|
||||
glColor3f(0.6,0,0.6);
|
||||
glPointSize(7.0);
|
||||
glBegin(GL_POINTS);
|
||||
glVertex(old_hitpoint);
|
||||
glEnd();
|
||||
glColor3f(0.7,0.7,0.7);
|
||||
glPointSize(6.5);
|
||||
glBegin(GL_POINTS);
|
||||
glVertex(prev_point);
|
||||
glVertex(next_point);
|
||||
glEnd();
|
||||
glPopAttrib ();
|
||||
glPopMatrix();
|
||||
}
|
||||
|
||||
void DrawUglyAreaMode(Trackball * tb,const vector < Point3f > &points,
|
||||
Point3f status,Point3f old_status,Plane3f plane,
|
||||
const vector < Point3f > &path,Point3f rubberband_handle)
|
||||
{
|
||||
glPushMatrix();
|
||||
glPushAttrib (GL_ALL_ATTRIB_BITS);
|
||||
// go to world coords
|
||||
glTranslate (tb->center);
|
||||
glMultMatrix (tb->track.InverseMatrix ());
|
||||
glTranslate (-tb->center);
|
||||
prepara_attrib();
|
||||
glColor3f(0.9,0.9,0.2);
|
||||
glLineWidth(2.0);
|
||||
glBegin(GL_LINE_LOOP);
|
||||
for (vector < Point3f >::const_iterator i = points.begin (); i != points.end (); ++i){
|
||||
glVertex(*i);
|
||||
}
|
||||
glEnd();
|
||||
glColor3f(0.0,0.9,0.2);
|
||||
glLineWidth(1.2);
|
||||
glBegin(GL_LINE_STRIP);
|
||||
for (vector < Point3f >::const_iterator i = path.begin (); i != path.end (); ++i){
|
||||
glVertex(*i);
|
||||
}
|
||||
glEnd();
|
||||
glColor3f(1,0,1);
|
||||
glPointSize(8.0);
|
||||
glBegin(GL_POINTS);
|
||||
glVertex(status);
|
||||
glEnd();
|
||||
glColor3f(0.6,0,0.6);
|
||||
glPointSize(7.0);
|
||||
glBegin(GL_POINTS);
|
||||
glVertex(old_status);
|
||||
glEnd();
|
||||
glColor3f(0.6,0,0.0);
|
||||
glPointSize(6.0);
|
||||
glBegin(GL_POINTS);
|
||||
glVertex(rubberband_handle);
|
||||
glEnd();
|
||||
glLineWidth(1.0);
|
||||
glBegin(GL_LINES);
|
||||
glVertex(rubberband_handle);
|
||||
glVertex(status);
|
||||
glEnd();
|
||||
Point3f p0,d1,d2,norm;
|
||||
norm=plane.Direction();
|
||||
p0=plane.Projection(Point3f(0,0,0));
|
||||
d1=Point3f(0,1,0);
|
||||
if(norm == d1 || norm == -d1)
|
||||
d1 = Point3f(1,0,0);
|
||||
d2=plane.Projection(d1);
|
||||
d1=(d2 - p0).Normalize();
|
||||
d2=(d1 ^ norm).Normalize();
|
||||
glLineWidth(3.0);
|
||||
glColor3f(0.2,0.2,0.9);
|
||||
glBegin(GL_LINES);
|
||||
glVertex(p0);
|
||||
glVertex(p0+norm);
|
||||
glEnd();
|
||||
glLineWidth(0.1);
|
||||
for(float i=0.5;i<100.0; i+=0.7){
|
||||
glBegin(GL_LINE_LOOP);
|
||||
for(int a=0;a<360;a+=10){
|
||||
float f0=i*cos((M_PI*a)/180);
|
||||
float f1=i*sin((M_PI*a)/180);
|
||||
glVertex(p0+(d1*f0)+(d2*f1));
|
||||
}
|
||||
glEnd();
|
||||
}
|
||||
|
||||
glPopAttrib ();
|
||||
glPopMatrix();
|
||||
}
|
||||
|
||||
|
||||
} //end namespace trackutils
|
||||
|
||||
} //end namespace vcg
|
||||
|
||||
#endif //TRACKUTILS_H
|
Loading…
Reference in New Issue