found a bug in PrincipaDirections, clean up of the function and better comments (thanks E.Puppo)
This commit is contained in:
parent
4f2be6a4ba
commit
a0cdf71abf
|
@ -108,87 +108,96 @@ private:
|
|||
public:
|
||||
/// \brief Compute principal direction and magniuto of curvature.
|
||||
|
||||
/**
|
||||
Based on the paper <a href="http://mesh.caltech.edu/taubin/publications/taubin-iccv95b.pdf"> <em> "Estimating the Tensor of Curvature of a Surface from a Polyhedral Approximation" </em> </a>
|
||||
/*
|
||||
Compute principal direction and magniuto of curvature as describe in the paper:
|
||||
@InProceedings{bb33922,
|
||||
author = "G. Taubin",
|
||||
title = "Estimating the Tensor of Curvature of a Surface from a
|
||||
Polyhedral Approximation",
|
||||
booktitle = "International Conference on Computer Vision",
|
||||
year = "1995",
|
||||
pages = "902--907",
|
||||
URL = "http://dx.doi.org/10.1109/ICCV.1995.466840",
|
||||
bibsource = "http://www.visionbib.com/bibliography/describe440.html#TT32253",
|
||||
*/
|
||||
static void PrincipalDirections(MeshType &m) {
|
||||
|
||||
assert(m.HasVFTopology());
|
||||
|
||||
vcg::tri::UpdateNormals<MeshType>::PerVertexNormalized(m);
|
||||
vcg::tri::UpdateFlags<MeshType>::VertexBorderFromFace(m);
|
||||
|
||||
VertexIterator vi;
|
||||
VertexIterator vi;
|
||||
for (vi =m.vert.begin(); vi !=m.vert.end(); ++vi) {
|
||||
if ( ! (*vi).IsD() && (*vi).VFp() != NULL) {
|
||||
|
||||
VertexType * central_vertex = &(*vi);
|
||||
|
||||
std::vector<float> weights;
|
||||
std::vector<AdjVertex> vertices_dup,vertices;
|
||||
std::vector<AdjVertex> vertices;
|
||||
|
||||
assert((*vi).VFp() != NULL);
|
||||
vcg::face::JumpingPos<FaceType> pos((*vi).VFp(), central_vertex);
|
||||
|
||||
VertexType* firstV = pos.VFlip();
|
||||
VertexType* tempV;
|
||||
float totalDoubleAreaSize = 0.0f;
|
||||
|
||||
FaceType * startf = pos.F();
|
||||
FaceType* tempF;
|
||||
int hh = 0;
|
||||
if (((firstV->cP()-central_vertex->cP())^(pos.VFlip()->cP()-central_vertex->cP()))*central_vertex->cN()<=0.0f)
|
||||
{
|
||||
pos.Set(central_vertex->VFp(), central_vertex);
|
||||
pos.FlipE();
|
||||
firstV = pos.VFlip();
|
||||
}
|
||||
else pos.Set(central_vertex->VFp(), central_vertex);
|
||||
|
||||
// compute the area of each triangle around the central vertex as well as their total area
|
||||
do
|
||||
{ hh++;
|
||||
{
|
||||
pos.NextE();
|
||||
tempV = pos.VFlip();
|
||||
|
||||
AdjVertex v;
|
||||
|
||||
pos.FlipE();
|
||||
v.vert = pos.VFlip();
|
||||
v.doubleArea = vcg::DoubleArea(*pos.F());
|
||||
vertices_dup.push_back(v);
|
||||
v.isBorder = pos.IsBorder();
|
||||
v.vert = tempV;
|
||||
v.doubleArea = ((pos.F()->V(1)->cP() - pos.F()->V(0)->cP()) ^ (pos.F()->V(2)->cP()- pos.F()->V(0)->cP())).Norm();;
|
||||
totalDoubleAreaSize += v.doubleArea;
|
||||
|
||||
pos.FlipE();
|
||||
v.vert = pos.VFlip();
|
||||
v.doubleArea = vcg::DoubleArea(*pos.F());
|
||||
vertices_dup.push_back(v);
|
||||
|
||||
pos.NextFE();
|
||||
tempF = pos.F();
|
||||
vertices.push_back(v);
|
||||
}
|
||||
while(tempF != startf);
|
||||
while(tempV != firstV);
|
||||
|
||||
AdjVertex v;
|
||||
for(int i = 1 ; i <= vertices_dup.size(); )
|
||||
{
|
||||
v.vert = vertices_dup[(i)%vertices_dup.size()].vert;
|
||||
v.doubleArea = vertices_dup[i%vertices_dup.size()].doubleArea ;
|
||||
if( vertices_dup[(i)%vertices_dup.size()].vert == vertices_dup[(i+1)%vertices_dup.size()].vert){
|
||||
v.doubleArea += vertices_dup[(i+1)%vertices_dup.size()].doubleArea;
|
||||
i+=2;
|
||||
}else
|
||||
++i;
|
||||
|
||||
totalDoubleAreaSize+=v.doubleArea;
|
||||
vertices.push_back(v);
|
||||
// compute the weights for the formula computing matrix M
|
||||
for (int i = 0; i < vertices.size(); ++i) {
|
||||
if (vertices[i].isBorder) {
|
||||
weights.push_back(vertices[i].doubleArea / totalDoubleAreaSize);
|
||||
} else {
|
||||
weights.push_back(0.5f * (vertices[i].doubleArea + vertices[(i-1)%vertices.size()].doubleArea) / totalDoubleAreaSize);
|
||||
}
|
||||
assert(weights.back() < 1.0f);
|
||||
}
|
||||
|
||||
for (int i = 0; i < vertices.size(); ++i)
|
||||
weights.push_back(vertices[i].doubleArea / totalDoubleAreaSize);
|
||||
|
||||
// compute I-NN^t to be used for computing the T_i's
|
||||
Matrix33<ScalarType> Tp;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
Tp[i][i] = 1.0f - powf(central_vertex->cN()[i],2);
|
||||
Tp[0][1] = Tp[1][0] = -1.0f * (central_vertex->cN()[0] * central_vertex->cN()[1]);
|
||||
Tp[0][1] = Tp[1][0] = -1.0f * (central_vertex->N()[0] * central_vertex->cN()[1]);
|
||||
Tp[1][2] = Tp[2][1] = -1.0f * (central_vertex->cN()[1] * central_vertex->cN()[2]);
|
||||
Tp[0][2] = Tp[2][0] = -1.0f * (central_vertex->cN()[0] * central_vertex->cN()[2]);
|
||||
|
||||
// for all neighbors vi compute the directional curvatures k_i and the T_i
|
||||
// compute M by summing all w_i k_i T_i T_i^t
|
||||
Matrix33<ScalarType> tempMatrix;
|
||||
Matrix33<ScalarType> M;
|
||||
M.SetZero();
|
||||
for (int i = 0; i < vertices.size(); ++i) {
|
||||
CoordType edge = (central_vertex->cP() - vertices[i].vert->cP());
|
||||
float curvature = (2.0f * (central_vertex->cN() * edge) ) / edge.SquaredNorm();
|
||||
CoordType T = (Tp*edge).Normalize()*(-1.0); // -1.0 useless, just to conform the paper
|
||||
CoordType T = (Tp*edge).Normalize();
|
||||
tempMatrix.ExternalProduct(T,T);
|
||||
M += tempMatrix * weights[i] * curvature ;
|
||||
}
|
||||
|
||||
// compute vector W for the Householder matrix
|
||||
CoordType W;
|
||||
CoordType e1(1.0f,0.0f,0.0f);
|
||||
if ((e1 - central_vertex->cN()).SquaredNorm() > (e1 + central_vertex->cN()).SquaredNorm())
|
||||
|
@ -197,6 +206,7 @@ public:
|
|||
W = e1 + central_vertex->cN();
|
||||
W.Normalize();
|
||||
|
||||
// compute the Householder matrix I - 2WW^t
|
||||
Matrix33<ScalarType> Q;
|
||||
Q.SetIdentity();
|
||||
tempMatrix.ExternalProduct(W,W);
|
||||
|
@ -204,18 +214,19 @@ public:
|
|||
|
||||
Matrix33<ScalarType> Qt(Q);
|
||||
Qt.Transpose();
|
||||
|
||||
// compute matrix Q^t M Q
|
||||
Matrix33<ScalarType> QtMQ = (Qt * M * Q);
|
||||
|
||||
CoordType bl = Q.GetColumn(0);
|
||||
CoordType T1 = Q.GetColumn(1);
|
||||
CoordType T2 = Q.GetColumn(2);
|
||||
|
||||
// find sin and cos for the Givens rotation
|
||||
float s,c;
|
||||
// Gabriel Taubin hint and Valentino Fiorin impementation
|
||||
float qt21 = QtMQ[2][1];
|
||||
float qt12 = QtMQ[1][2];
|
||||
|
||||
|
||||
float alpha = QtMQ[1][1]-QtMQ[2][2];
|
||||
float beta = QtMQ[2][1];
|
||||
|
||||
|
@ -229,7 +240,7 @@ public:
|
|||
float min_error = std::numeric_limits<ScalarType>::infinity();
|
||||
for (int i=0; i<2; i++)
|
||||
{
|
||||
delta = sqrtf(powf(h[1], 2) + 4.0f);
|
||||
delta = sqrtf(powf(h[i], 2) + 4.0f);
|
||||
t[0] = (h[i]+delta) / 2.0f;
|
||||
t[1] = (h[i]-delta) / 2.0f;
|
||||
|
||||
|
@ -254,35 +265,41 @@ public:
|
|||
c = best_c;
|
||||
s = best_s;
|
||||
|
||||
vcg::Matrix33<ScalarType> minor22(QtMQ);
|
||||
// clean up
|
||||
minor22[0][0] = minor22[0][1] = minor22[0][2] = 0.0;
|
||||
minor22[0][0] = minor22[1][0] = minor22[2][0] = 0.0;
|
||||
vcg::ndim::MatrixMNf minor2x2 (2,2);
|
||||
vcg::ndim::MatrixMNf S (2,2);
|
||||
|
||||
vcg::Matrix33<ScalarType> S; S.SetIdentity();
|
||||
S[1][1] = S[2][2] = c;
|
||||
S[1][2] = s;
|
||||
S[2][1] = -1.0f * s;
|
||||
|
||||
vcg::Matrix33<ScalarType> St (S);
|
||||
// diagonalize M
|
||||
minor2x2[0][0] = QtMQ[1][1];
|
||||
minor2x2[0][1] = QtMQ[1][2];
|
||||
minor2x2[1][0] = QtMQ[2][1];
|
||||
minor2x2[1][1] = QtMQ[2][2];
|
||||
|
||||
S[0][0] = S[1][1] = c;
|
||||
S[0][1] = s;
|
||||
S[1][0] = -1.0f * s;
|
||||
|
||||
vcg::ndim::MatrixMNf St (S);
|
||||
St.Transpose();
|
||||
|
||||
vcg::Matrix33<ScalarType> StMS(St * minor22 * S);
|
||||
vcg::ndim::MatrixMNf StMS(St * minor2x2 * S);
|
||||
|
||||
float Principal_Curvature1 = (3.0f * StMS[1][1]) - StMS[2][2];
|
||||
float Principal_Curvature2 = (3.0f * StMS[2][2]) - StMS[1][1];
|
||||
// compute curvatures and curvature directions
|
||||
float Principal_Curvature1 = (3.0f * StMS[0][0]) - StMS[1][1];
|
||||
float Principal_Curvature2 = (3.0f * StMS[1][1]) - StMS[0][0];
|
||||
|
||||
CoordType Principal_Direction1 = T1 * c - T2 * s;
|
||||
CoordType Principal_Direction2 = T1 * s + T2 * c;
|
||||
|
||||
(*vi).PD1() = Principal_Direction1;
|
||||
(*vi).PD2() = Principal_Direction2;
|
||||
(*vi).K1() = Principal_Curvature1;
|
||||
(*vi).K2() = Principal_Curvature2;
|
||||
}
|
||||
(*vi).K1() = Principal_Curvature1;
|
||||
(*vi).K2() = Principal_Curvature2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
class AreaData
|
||||
|
|
Loading…
Reference in New Issue