Added isotropic distance and anisotropic distance functor for biasing the geodesic computation.

This commit is contained in:
Paolo Cignoni 2013-07-26 12:13:45 +00:00
parent 636f818107
commit a2b05e1f66
1 changed files with 132 additions and 20 deletions

View File

@ -46,13 +46,110 @@ struct EuclideanDistance{
{return vcg::Distance(Barycenter(*f0),Barycenter(*f1));}
};
template <class MeshType>
class IsotropicDistance{
private:
// The only member of this class. The attribute handle used to
typename MeshType::template PerVertexAttributeHandle<float> wH;
public:
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::FacePointer FacePointer;
/// The constructor reads per vertex quality and transfer it into a per vertex attribute mapping it into the specified range.
/// The variance parameter specify how the distance is biased by the quality
/// the distance is scaled by a factor that range from 1/variance to variance according to a linear mapping of quality range.
/// So for example if you have a quality distributed in the 0..1 range and you specify a variance of 2 it means
/// that the distance will be scaled from 0.5 to 2 their original values.
IsotropicDistance(MeshType &m, float variance)
{
// the wH attribute store the scaling factor to be applied to the distance
wH = tri::Allocator<MeshType>:: template GetPerVertexAttribute<float> (m,"distW");
float qmin = 1.0f/variance;
float qmax = variance;
float qrange = qmax-qmin;
std::pair<float,float> minmax = Stat<MeshType>::ComputePerVertexQualityMinMax(m);
float range = minmax.second-minmax.first;
for(int i=0;i<m.vert.size();++i)
wH[i]=qmin+((m.vert[i].Q()-minmax.first)/range)*qrange;
// qDebug("Range %f %f %f",minmax.first,minmax.second,range);
}
ScalarType operator()( VertexType * v0, VertexType * v1)
{
float scale = (wH[v0]+wH[v1])/2.0f;
return (1.0f/scale)*vcg::Distance(v0->cP(),v1->cP());
}
};
template <class MeshType>
struct BasicCrossFunctor
{
BasicCrossFunctor(MeshType &m) { tri::RequirePerVertexCurvatureDir(m); }
typedef typename MeshType::VertexType VertexType;
Point3f D1(VertexType &v) { return v.PD1(); }
Point3f D2(VertexType &v) { return v.PD1(); }
};
/**
* Anisotropic Distance Functor
*
* Given a couple of vertexes over the surface (usually an edge)
* it returns a distance value that is biased according to a tangential cross field.
* It is assumed that the cross field is smooth enough so that you can safely blend the two directions
*
*/
template <class MeshType>
class AnisotropicDistance{
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexIterator VertexIterator;
typename MeshType::template PerVertexAttributeHandle<Point3f> wxH,wyH;
public:
template <class CrossFunctor > AnisotropicDistance(MeshType &m, CrossFunctor &cf)
{
wxH = tri::Allocator<MeshType>:: template GetPerVertexAttribute<Point3f> (m,"distDirX");
wyH = tri::Allocator<MeshType>:: template GetPerVertexAttribute<Point3f> (m,"distDirY");
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
wxH[vi]=cf.D1(*vi);
wyH[vi]=cf.D2(*vi);
}
}
ScalarType operator()( VertexType * v0, VertexType * v1)
{
Point3f dd = v0->cP()-v1->cP();
float x = dd * (wxH[v0]+wxH[v1])/2.0f;
float y = dd * (wyH[v0]+wyH[v1])/2.0f;
return sqrt(x*x+y*y);
}
};
/*! \brief class for computing approximate geodesic distances on a mesh
require VF Adjacency relation
\sa trimesh_geodesic.cpp
*/
template <class MeshType, class DistanceFunctor = EuclideanDistance<MeshType> >
template <class MeshType>
class Geodesic{
public:
@ -129,7 +226,9 @@ public:
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh
//************** (vedi figura in file distance.gif)
static ScalarType Distance(const VertexPointer &pw,
template <class DistanceFunctor>
static ScalarType Distance(DistanceFunctor &distFunc,
const VertexPointer &pw,
const VertexPointer &pw1,
const VertexPointer &curr,
const ScalarType &d_pw1,
@ -137,9 +236,9 @@ public:
{
ScalarType curr_d=0;
ScalarType ew_c = DistanceFunctor()(pw,curr);
ScalarType ew_w1 = DistanceFunctor()(pw,pw1);
ScalarType ec_w1 = DistanceFunctor()(pw1,curr);
ScalarType ew_c = distFunc(pw,curr);
ScalarType ew_w1 = distFunc(pw,pw1);
ScalarType ec_w1 = distFunc(pw1,curr);
CoordType w_c = (pw->cP()-curr->cP()).Normalize() * ew_c;
CoordType w_w1 = (pw->cP() - pw1->cP()).Normalize() * ew_w1;
CoordType w1_c = (pw1->cP() - curr->cP()).Normalize() * ec_w1;
@ -179,10 +278,12 @@ approximated geodesic distance to the closest seeds.
This is function is not meant to be called (although is not prevented). Instead, it is invoked by
wrapping function.
*/
template <class DistanceFunctor>
static VertexPointer Visit(
MeshType & m,
std::vector<VertDist> & seedVec, // the set of seed to start from
bool farthestOnBorder = false,
DistanceFunctor &distFunc,
// bool farthestOnBorder = false,
ScalarType distance_threshold = std::numeric_limits<ScalarType>::max(), // cut off distance (do no compute anything farther than this value)
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * vertSource = NULL, // if present we put in this attribute the closest source for each vertex
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * vertParent = NULL, // if present we put in this attribute the parent in the path that goes from the vertex to the closest source
@ -231,7 +332,7 @@ wrapping function.
d_curr = TD[curr].d;
bool isLeaf = (!farthestOnBorder || curr->IsB());
// bool isLeaf = (!farthestOnBorder || curr->IsB());
face::VFIterator<FaceType> x;int k;
@ -249,7 +350,7 @@ wrapping function.
const ScalarType & d_pw1 = TD[pw1].d;
{
const ScalarType inter = DistanceFunctor()(curr,pw1);//(curr->P() - pw1->P()).Norm();
const ScalarType inter = distFunc(curr,pw1);//(curr->P() - pw1->P()).Norm();
const ScalarType tol = (inter + d_curr + d_pw1)*.0001f;
if ( (TD[pw1].source != TD[curr].source)||// not the same source
@ -257,9 +358,9 @@ wrapping function.
(inter + d_pw1 < d_curr +tol ) ||
(d_curr + d_pw1 < inter +tol ) // triangular inequality
)
curr_d = d_curr + DistanceFunctor()(pw,curr);//(pw->P()-curr->P()).Norm();
curr_d = d_curr + distFunc(pw,curr);//(pw->P()-curr->P()).Norm();
else
curr_d = Distance(pw,pw1,curr,d_pw1,d_curr);
curr_d = Distance(distFunc,pw,pw1,curr,d_pw1,d_curr);
}
if(TD[pw].d > curr_d){
@ -269,12 +370,12 @@ wrapping function.
frontier.push_back(VertDist(pw,curr_d));
push_heap(frontier.begin(),frontier.end(),pred());
}
if(isLeaf){
// if(isLeaf){
if(d_curr > max_distance){
max_distance = d_curr;
farthest = curr;
}
}
// }
}
}// end while
@ -326,8 +427,17 @@ It requires per vertex Quality (e.g. vertex::Quality component)
\warning that this function has ALWAYS at least a linear cost (it use additional attributes that have a linear initialization)
\todo make it O(output) by using incremental mark and persistent attributes.
*/
static bool Compute( MeshType & m,
const std::vector<VertexPointer> & seedVec)
{
EuclideanDistance<MeshType> dd;
return Compute(m,seedVec,dd);
}
template <class DistanceFunctor>
static bool Compute( MeshType & m,
const std::vector<VertexPointer> & seedVec,
DistanceFunctor &distFunc,
ScalarType maxDistanceThr = std::numeric_limits<ScalarType>::max(),
std::vector<VertexPointer> *withinDistanceVec=NULL,
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sourceSeed = NULL,
@ -339,8 +449,7 @@ It requires per vertex Quality (e.g. vertex::Quality component)
typename std::vector<VertexPointer>::const_iterator fi;
for( fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
vdSeedVec.push_back(VertDist(*fi,0.0));
Visit(m, vdSeedVec, false, maxDistanceThr, sourceSeed, parentSeed, withinDistanceVec);
Visit(m, vdSeedVec, distFunc, maxDistanceThr, sourceSeed, parentSeed, withinDistanceVec);
return true;
}
@ -358,9 +467,9 @@ It is just a simple wrapper of the basic Compute()
if( (*vi).IsB())
fro.push_back(&(*vi));
if(fro.empty()) return false;
EuclideanDistance<MeshType> dd;
tri::UpdateQuality<MeshType>::VertexConstant(m,0);
return Compute(m,fro,std::numeric_limits<ScalarType>::max(),0,sources);
return Compute(m,fro,dd,std::numeric_limits<ScalarType>::max(),0,sources);
}
@ -384,8 +493,9 @@ It is just a simple wrapper of the basic Compute()
return true;
}
template <class DistanceFunctor>
static void PerFaceDijsktraCompute(MeshType &m, const std::vector<FacePointer> &seedVec,
DistanceFunctor &distFunc,
ScalarType maxDistanceThr = std::numeric_limits<ScalarType>::max(),
std::vector<FacePointer> *InInterval=NULL,
FacePointer FaceTarget=NULL,
@ -426,7 +536,7 @@ It is just a simple wrapper of the basic Compute()
if(!face::IsBorder(*curr,i) )
{
FacePointer nextF = curr->FFp(i);
ScalarType nextDist = curr->Q() + DistanceFunctor()(curr,nextF);
ScalarType nextDist = curr->Q() + distFunc(curr,nextF);
if( (nextDist < maxDistanceThr) &&
(!tri::IsMarked(m,nextF) || nextDist < nextF->Q()) )
{
@ -448,7 +558,9 @@ It is just a simple wrapper of the basic Compute()
template <class DistanceFunctor>
static void PerVertexDijsktraCompute(MeshType &m, const std::vector<VertexPointer> &seedVec,
DistanceFunctor &distFunc,
ScalarType maxDistanceThr = std::numeric_limits<ScalarType>::max(),
std::vector<VertexPointer> *InInterval=NULL,bool avoid_selected=false,
VertexPointer target=NULL)
@ -490,7 +602,7 @@ It is just a simple wrapper of the basic Compute()
{
VertexPointer nextV = vertVec[i];
if ((avoid_selected)&&(nextV->IsS()))continue;
ScalarType nextDist = curr->Q() + DistanceFunctor()(curr,nextV);
ScalarType nextDist = curr->Q() + distFunc(curr,nextV);
if( (nextDist < maxDistanceThr) &&
(!tri::IsMarked(m,nextV) || nextDist < nextV->Q()) )
{