added algorithm to compute harmonic fields.
This commit is contained in:
parent
667a4b50a0
commit
a472e201a3
|
@ -0,0 +1,252 @@
|
|||
#ifndef __VCGLIB_HARMONIC_FIELD
|
||||
#define __VCGLIB_HARMONIC_FIELD
|
||||
|
||||
#include <vcg/complex/complex.h>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
|
||||
#include <eigenlib/Eigen/Sparse>
|
||||
|
||||
namespace vcg {
|
||||
namespace tri {
|
||||
|
||||
template <class MeshType, typename Scalar = double>
|
||||
class Harmonic
|
||||
{
|
||||
public:
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
|
||||
typedef double CoeffScalar;
|
||||
|
||||
typedef typename std::pair<VertexType *, Scalar> Constraint;
|
||||
typedef typename std::vector<Constraint> ConstraintVec;
|
||||
typedef typename ConstraintVec::const_iterator ConstraintIt;
|
||||
|
||||
/**
|
||||
* @brief ComputeScalarField
|
||||
* Generates a scalar harmonic field over the mesh.
|
||||
* For more details see:\n Kai Xua, Hao Zhang, Daniel Cohen-Or, Yueshan Xionga,'Dynamic Harmonic Fields for Surface Processing'.\nin Computers & Graphics, 2009
|
||||
* @param m the mesh
|
||||
* @param constraints the Dirichlet boundary conditions in the form of vector of pairs <vertex pointer, value>.
|
||||
* @param field the accessor to use to write the computed per-vertex values (must have the [ ] operator).
|
||||
* @return true if the algorithm succeeds, false otherwise.
|
||||
* @note the algorithm has unexpected behavior if the mesh contains unreferenced vertices.
|
||||
*/
|
||||
template <typename ACCESSOR>
|
||||
static bool ComputeScalarField(MeshType & m, const ConstraintVec & constraints, ACCESSOR field)
|
||||
{
|
||||
typedef Eigen::SparseMatrix<CoeffScalar> SpMat; // sparse matrix type
|
||||
typedef Eigen::Triplet<CoeffScalar> Triple; // triplet type to fill the matrix
|
||||
std::vector<size_t> remap;
|
||||
|
||||
|
||||
RequirePerVertexFlags(m);
|
||||
RequireCompactness(m);
|
||||
RequireFFAdjacency(m);
|
||||
|
||||
int n = m.VN();
|
||||
|
||||
// Generate coefficients
|
||||
std::vector<Triple> coeffs; // coefficients of the system
|
||||
std::map<size_t,CoeffScalar> sums; // row sum of the coefficient matrix
|
||||
|
||||
vcg::tri::UpdateFlags<CMeshO>::FaceClearV(m);
|
||||
for (size_t i = 0; i < m.face.size(); ++i)
|
||||
{
|
||||
FaceType & f = m.face[i];
|
||||
|
||||
assert(!f.IsD());
|
||||
assert(!f.IsV());
|
||||
|
||||
f.SetV();
|
||||
|
||||
// Generate coefficients for each edge
|
||||
for (int edge = 0; edge < 3; ++edge)
|
||||
{
|
||||
CoeffScalar weight;
|
||||
WeightInfo res = CotangentWeightIfNotVisited(f, edge, weight);
|
||||
|
||||
if (res == EdgeAlreadyVisited) continue;
|
||||
assert(res == Success);
|
||||
|
||||
// Add the weight to the coefficients vector for both the vertices of the considered edge
|
||||
size_t v0_idx = vcg::tri::Index(m, f.V0(edge));
|
||||
size_t v1_idx = vcg::tri::Index(m, f.V1(edge));
|
||||
|
||||
coeffs.push_back(Triple(v0_idx, v1_idx, -weight));
|
||||
coeffs.push_back(Triple(v1_idx, v0_idx, -weight));
|
||||
|
||||
// Add the weight to the row sum
|
||||
sums[v0_idx] += weight;
|
||||
sums[v1_idx] += weight;
|
||||
}
|
||||
}
|
||||
|
||||
// Setup the system matrix
|
||||
SpMat laplaceMat; // the system to be solved
|
||||
laplaceMat.resize(n, n); // eigen initializes it to zero
|
||||
laplaceMat.reserve(coeffs.size());
|
||||
for (std::map<size_t,CoeffScalar>::const_iterator it = sums.begin(); it != sums.end(); ++it)
|
||||
{
|
||||
coeffs.push_back(Triple(it->first, it->first, it->second));
|
||||
}
|
||||
laplaceMat.setFromTriplets(coeffs.begin(), coeffs.end());
|
||||
|
||||
|
||||
// Setting the constraints
|
||||
const CoeffScalar alpha = pow(10, 8); // penalty factor alpha
|
||||
Eigen::Matrix<CoeffScalar, Eigen::Dynamic, 1> b, x; // Unknown and known terms vectors
|
||||
b.setZero(n);
|
||||
|
||||
for (ConstraintIt it=constraints.begin(); it!=constraints.end(); it++)
|
||||
{
|
||||
size_t v_idx = vcg::tri::Index(m, it->first);
|
||||
b(v_idx) = alpha * it->second;
|
||||
laplaceMat.coeffRef(v_idx, v_idx) += alpha;
|
||||
}
|
||||
|
||||
// Perform matrix decomposition
|
||||
Eigen::SimplicialLDLT<Eigen::SparseMatrix<CoeffScalar> > solver;
|
||||
solver.compute(laplaceMat);
|
||||
// TODO eventually use another solver (e.g. CHOLMOD for dynamic setups)
|
||||
if(solver.info() != Eigen::Success)
|
||||
{
|
||||
// decomposition failed
|
||||
switch (solver.info())
|
||||
{
|
||||
// possible errors
|
||||
case Eigen::NumericalIssue :
|
||||
case Eigen::NoConvergence :
|
||||
case Eigen::InvalidInput :
|
||||
default : return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Solve the system: laplacianMat x = b
|
||||
x = solver.solve(b);
|
||||
if(solver.info() != Eigen::Success)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// Set field value using the provided handle
|
||||
for (size_t i = 0; int(i) < n; ++i)
|
||||
{
|
||||
field[i] = Scalar(x[i]);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
enum WeightInfo
|
||||
{
|
||||
Success = 0,
|
||||
EdgeAlreadyVisited
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* @brief CotangentWeightIfNotVisited computes the cotangent weighting for an edge
|
||||
* (if it has not be done yet).
|
||||
* This must be ensured setting the visited flag on the face once all edge weights have been computed.
|
||||
* @param f the face
|
||||
* @param edge the edge of the provided face for which we compute the weight
|
||||
* @param weight the computed weight (output)
|
||||
* @return Success if everything is fine, EdgeAlreadyVisited if the weight
|
||||
* for the considered edge has been already computed.
|
||||
* @note the mesh must have the face-face topology updated
|
||||
*/
|
||||
template <typename ScalarT>
|
||||
static WeightInfo CotangentWeightIfNotVisited(const FaceType &f, int edge, ScalarT & weight)
|
||||
{
|
||||
const FaceType * fp = f.cFFp(edge);
|
||||
if (fp != NULL && fp != &f)
|
||||
{
|
||||
// not a border edge
|
||||
if (fp->IsV()) return EdgeAlreadyVisited;
|
||||
}
|
||||
|
||||
weight = CotangentWeight<ScalarT>(f, edge);
|
||||
|
||||
return Success;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief ComputeWeight computes the cotangent weighting for an edge
|
||||
* @param f the face
|
||||
* @param edge the edge of the provided face for which we compute the weight
|
||||
* @return the computed weight
|
||||
* @note the mesh must have the face-face topology updated
|
||||
*/
|
||||
template <typename ScalarT>
|
||||
static ScalarT CotangentWeight(const FaceType &f, int edge)
|
||||
{
|
||||
assert(edge >= 0 && edge < 3);
|
||||
|
||||
// get the adjacent face
|
||||
const FaceType * fp = f.cFFp(edge);
|
||||
|
||||
// v0
|
||||
// /|\
|
||||
// / | \
|
||||
// / | \
|
||||
// / | \
|
||||
// va\ | /vb
|
||||
// \ | /
|
||||
// \ | /
|
||||
// \|/
|
||||
// v1
|
||||
|
||||
ScalarT cotA = 0;
|
||||
ScalarT cotB = 0;
|
||||
|
||||
// Get the edge (a pair of vertices)
|
||||
VertexType * v0 = f.cV0(edge);
|
||||
VertexType * v1 = f.cV1(edge);
|
||||
|
||||
if (fp != NULL &&
|
||||
fp != &f)
|
||||
{
|
||||
// not a border edge
|
||||
VertexType * vb = fp->cV2(f.cFFi(edge));
|
||||
ScalarT angleB = ComputeAngle<ScalarT>(v0, vb, v1);
|
||||
cotB = vcg::math::Cos(angleB) / vcg::math::Sin(angleB);
|
||||
}
|
||||
|
||||
VertexType * va = f.cV2(edge);
|
||||
ScalarT angleA = ComputeAngle<ScalarT>(v0, va, v1);
|
||||
cotA = vcg::math::Cos(angleA) / vcg::math::Sin(angleA);
|
||||
|
||||
return (cotA + cotB) / 2;
|
||||
}
|
||||
|
||||
template <typename ScalarT>
|
||||
static ScalarT ComputeAngle(const VertexType * a, const VertexType * b, const VertexType * c)
|
||||
{
|
||||
// a
|
||||
// /
|
||||
// /
|
||||
// /
|
||||
// / ___ compute the angle in b
|
||||
// b \
|
||||
// \
|
||||
// \
|
||||
// \
|
||||
// c
|
||||
assert(a != NULL && b != NULL && c != NULL);
|
||||
Point3<ScalarT> A,B,C;
|
||||
A.Import(a->P());
|
||||
B.Import(b->P());
|
||||
C.Import(c->P());
|
||||
ScalarT angle = vcg::Angle(A - B, C - B);
|
||||
return angle;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
#endif // __VCGLIB_HARMONIC_FIELD
|
Loading…
Reference in New Issue