first release version
This commit is contained in:
parent
2fe129645b
commit
a7c702c81d
|
@ -0,0 +1,286 @@
|
|||
/****************************************************************************
|
||||
* VCGLib o o *
|
||||
* Visual and Computer Graphics Library o o *
|
||||
* _ O _ *
|
||||
* Copyright(C) 2004 \/)\/ *
|
||||
* Visual Computing Lab /\/| *
|
||||
* ISTI - Italian National Research Council | *
|
||||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||||
* for more details. *
|
||||
* *
|
||||
****************************************************************************/
|
||||
|
||||
#ifndef VCG_TANGENT_FIELD_OPERATORS
|
||||
#define VCG_TANGENT_FIELD_OPERATORS
|
||||
|
||||
namespace vcg {
|
||||
namespace tri{
|
||||
|
||||
template <class MeshType>
|
||||
class CrossField
|
||||
{
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
typedef typename MeshType::PerFaceAttributeHandle<CoordType> PerFaceAttributeHandle;
|
||||
|
||||
private:
|
||||
static ScalarType Sign(ScalarType a){return (ScalarType)((a>0)?+1:-1);}
|
||||
|
||||
public:
|
||||
|
||||
///fird a tranformation matrix to transform
|
||||
///the 3D space to 2D tangent space specified
|
||||
///by the cross field (where Z=0)
|
||||
static vcg::Matrix33<ScalarType> TransformationMatrix(FaceType &f)
|
||||
{
|
||||
typedef typename FaceType::CoordType CoordType;
|
||||
typedef typename FaceType::ScalarType ScalarType;
|
||||
|
||||
bool CrossDir0 = vcg::tri::HasPerFaceAttribute(mesh,"CrossDir0");
|
||||
assert(CrossDir0);
|
||||
Fh0= vcg::tri::Allocator<MeshType>::GetPerFaceAttribute<CoordType>(mesh,std::string("CrossDir0"));
|
||||
|
||||
///transform to 3d
|
||||
CoordType axis0=Fh0[&f];
|
||||
CoordType axis1=axis0^axis2;
|
||||
CoordType axis2=f.N();
|
||||
|
||||
vcg::Matrix33<ScalarType> Trans;
|
||||
|
||||
///it must have right orientation cause of normal
|
||||
Trans[0][0]=axis0[0];
|
||||
Trans[0][1]=axis0[1];
|
||||
Trans[0][2]=axis0[2];
|
||||
Trans[1][0]=axis1[0];
|
||||
Trans[1][1]=axis1[1];
|
||||
Trans[1][2]=axis1[2];
|
||||
Trans[2][0]=axis2[0];
|
||||
Trans[2][1]=axis2[1];
|
||||
Trans[2][2]=axis2[2];
|
||||
|
||||
/////then find the inverse
|
||||
//f.InvTrans=Inverse(f.Trans);
|
||||
}
|
||||
|
||||
///transform a given angle from UV (wrt the cross field)
|
||||
///to a 3D direction
|
||||
static CoordType AngleToVect(const FaceType &f,const ScalarType &angle)
|
||||
{
|
||||
///find 2D vector
|
||||
vcg::Point2<ScalarType> axis2D=vcg::Point2<ScalarType>(cos(angle),sin(angle));
|
||||
CoordType axis3D=CoordType(axis2D.X(),axis2D.Y(),0);
|
||||
vcg::Matrix33<ScalarType> Trans=TransformationMatrix(f);
|
||||
vcg::Matrix33<ScalarType> InvTrans=Inverse(Trans);
|
||||
///then transform
|
||||
return (InvTrans*axis3D);
|
||||
}
|
||||
|
||||
///find an angle with respect to a given face by a given vector
|
||||
///in 3D space, it must be projected and normalized with respect to face's normal
|
||||
static ScalarType VectToAngle(const FaceType &f,
|
||||
const CoordType &vect3D)
|
||||
{
|
||||
vcg::Matrix33<ScalarType> Trans=TransformationMatrix(f);
|
||||
///trensform the vector to the reference frame by rotating it
|
||||
CoordType vect_transf=Trans*vect3D;
|
||||
|
||||
///then put to zero to the Z coordinate
|
||||
vcg::Point2<ScalarType> axis2D=vcg::Point2<ScalarType>(vect_transf.X(),vect_transf.Y());
|
||||
axis2D.Normalize();
|
||||
|
||||
///then find the angle with respact to axis 0
|
||||
ScalarType alpha=atan2(axis2D.Y(),axis2D.X()); ////to sum up M_PI?
|
||||
if (alpha<0)
|
||||
alpha=(2*M_PI+alpha);
|
||||
if (alpha<0)
|
||||
alpha=0;
|
||||
return alpha;
|
||||
}
|
||||
|
||||
///return the direction of the cross field in 3D
|
||||
static void CrossVector(MeshType &mesh,
|
||||
const FaceType &f,
|
||||
CoordType axis[4])
|
||||
{
|
||||
bool CrossDir0 = vcg::tri::HasPerFaceAttribute(mesh,"CrossDir0");
|
||||
assert(CrossDir0);
|
||||
MeshType::PerFaceAttributeHandle<CoordType> Fh0=
|
||||
vcg::tri::Allocator<MeshType>::GetPerFaceAttribute<CoordType>(mesh,std::string("CrossDir0"));
|
||||
axis[0]=Fh0[&f];
|
||||
axis[1]=f.cN()^axis[0];
|
||||
axis[2]=-axis[0];
|
||||
axis[3]=-axis[1];
|
||||
}
|
||||
|
||||
///return a specific direction given an integer 0..3
|
||||
///considering the reference direction of the cross field
|
||||
static CoordType CrossVector(const FaceType &f,const int &index)
|
||||
{
|
||||
CoordType axis[4];
|
||||
CrossVector(f,axis);
|
||||
return axis[index];
|
||||
}
|
||||
|
||||
///rotate a given vector from a face to another
|
||||
///vector is expressend in 3d coordinates
|
||||
CoordType Rotate(const FaceType &f0,const FaceType &f1,const CoordType &dir3D)
|
||||
{
|
||||
CoordType N0=f0.cN();
|
||||
CoordType N1=f1.cN();
|
||||
|
||||
///find the rotation matrix that maps between normals
|
||||
vcg::Matrix33<ScalarType> rotation=vcg::RotationMatrix(N0,N1);
|
||||
CoordType rotated=rotation*dir3D;
|
||||
return rotated;
|
||||
}
|
||||
|
||||
// returns the 90 deg rotation of a (around n) most similar to target b
|
||||
static CoordType K_PI(const CoordType &a, const CoordType &b, const CoordType &n)
|
||||
{
|
||||
CoordType c = (a^n).normalized();
|
||||
ScalarType scorea = a*b;
|
||||
ScalarType scorec = c*b;
|
||||
if (fabs(scorea)>=fabs(scorec)) return a*Sign(scorea); else return c*Sign(scorec);
|
||||
}
|
||||
|
||||
///interpolate cross field with barycentric coordinates
|
||||
static CoordType InterpolateCrossField(const CoordType &t0,
|
||||
const CoordType &t1,
|
||||
const CoordType &t2,
|
||||
const CoordType &n,
|
||||
const CoordType &bary)
|
||||
{
|
||||
CoordType trans0=t0;
|
||||
CoordType trans1=K_PI(t1,t0,n);
|
||||
CoordType trans2=K_PI(t2,t0,n);
|
||||
CoordType sum = trans0*bary.X() + trans1 * bary.Y() + trans2 * bary.Z();
|
||||
return sum;
|
||||
}
|
||||
|
||||
///interpolate cross field with barycentric coordinates using normalized weights
|
||||
static typename typename CoordType InterpolateCrossField(const std::vector<CoordType> &TangVect,
|
||||
const std::vector<ScalarType> &Weight,
|
||||
const std::vector<CoordType> &Norms,
|
||||
const typename CoordType &BaseNorm,
|
||||
const typename CoordType &BaseDir)
|
||||
{
|
||||
typedef TangentFieldGen< FaceType >::CrossField MyCross;
|
||||
typedef typename FaceType::CoordType CoordType;
|
||||
typedef typename FaceType::ScalarType ScalarType;
|
||||
|
||||
CoordType sum = CoordType(0,0,0);
|
||||
for (int i=0;i<TangVect.size();i++)
|
||||
{
|
||||
CoordType N1=Norms[i];
|
||||
///find the rotation matrix that maps between normals
|
||||
vcg::Matrix33<ScalarType> rotation=vcg::RotationMatrix(N1,BaseNorm);
|
||||
CoordType rotated=rotation*TangVect[i];
|
||||
CoordType Tdir=K_PI(rotated,BaseDir,BaseNorm);
|
||||
Tdir.Normalize();
|
||||
sum+=(Tdir*Weight[i]);
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
///interpolate cross field with barycentric coordinates
|
||||
template <class FaceType>
|
||||
typename FaceType::CoordType InterpolateCrossField(const typename FaceType::CoordType &t0,
|
||||
const typename FaceType::CoordType &t1,
|
||||
const typename FaceType::CoordType &n,
|
||||
const typename FaceType::ScalarType &weight)
|
||||
{
|
||||
CoordType trans0=t0;
|
||||
CoordType trans1=K_PI(t1,t0,n);
|
||||
CoordType sum = t0*weight + MyCross::V( t1, t0, n ) * (1.0-weight);
|
||||
return sum;
|
||||
}
|
||||
|
||||
|
||||
|
||||
///compute the mismatch between 2 faces
|
||||
int MissMatch(const FaceType &f0,const FaceType &f1)
|
||||
{
|
||||
CoordType dir0=CrossVector(f0,0);
|
||||
CoordType dir1=CrossVector(f1,0);
|
||||
|
||||
CoordType dir1Rot=Rotate(f1,f0,dir1);
|
||||
dir1Rot.Normalize();
|
||||
|
||||
ScalarType angle_diff=VectToAngle(f0,dir1Rot);
|
||||
|
||||
ScalarType step=M_PI/2.0;
|
||||
int i=(int)floor((angle_diff/step)+0.5);
|
||||
if (i>=0)
|
||||
k=i%4;
|
||||
else
|
||||
k=(-(3*i))%4;
|
||||
return k;
|
||||
}
|
||||
|
||||
///this function return true if a
|
||||
///given vertex is a singular vertex by
|
||||
///moving around i n a roder wai and accounting for
|
||||
///missmatches.. it requires VF topology
|
||||
template <class VertexType>
|
||||
bool IsSingular(VertexType &v)
|
||||
{
|
||||
typedef typename VertexType::FaceType FaceType;
|
||||
///check that is on border..
|
||||
if (v.IsB())
|
||||
return false;
|
||||
|
||||
///get first face sharing the edge
|
||||
FaceType *f_init=v.VFp();
|
||||
int edge_init=v.VFi();
|
||||
|
||||
int missmatch=0;
|
||||
///and initialize the pos
|
||||
vcg::face::Pos<FaceType> VFI(f_init,edge_init);
|
||||
bool complete_turn=false;
|
||||
do
|
||||
{
|
||||
FaceType *curr_f=VFI.F();
|
||||
int curr_edge=VFI.E();
|
||||
|
||||
///assert that is not a border edge
|
||||
assert(curr_f->FFp(curr_edge)!=curr_f);
|
||||
|
||||
///find the current missmatch
|
||||
FaceType *next_f=curr_f->FFp(curr_edge);
|
||||
missmatch+=MissMatch(next_f);
|
||||
|
||||
///continue moving
|
||||
VFI.FlipF();
|
||||
VFI.FlipE();
|
||||
|
||||
FaceType *next_f=VFI.F();
|
||||
|
||||
///test if I've finiseh with the face exploration
|
||||
complete_turn=(next_f==f_init);
|
||||
/// or if I've just crossed a mismatch
|
||||
}while (!complete_turn);
|
||||
return((missmatch%4)!=0);
|
||||
}
|
||||
|
||||
void CopyFromCurvature()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
};///end class
|
||||
} //End Namespace Tri
|
||||
} // End Namespace vcg
|
||||
#endif
|
Loading…
Reference in New Issue