first working version
This commit is contained in:
parent
25b916162d
commit
aacbec3178
|
@ -0,0 +1,199 @@
|
|||
/****************************************************************************
|
||||
* VCGLib o o *
|
||||
* Visual and Computer Graphics Library o o *
|
||||
* _ O _ *
|
||||
* Copyright(C) 2004 \/)\/ *
|
||||
* Visual Computing Lab /\/| *
|
||||
* ISTI - Italian National Research Council | *
|
||||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||||
* for more details. *
|
||||
* *
|
||||
****************************************************************************/
|
||||
/****************************************************************************
|
||||
History
|
||||
|
||||
$Log: not supported by cvs2svn $
|
||||
|
||||
****************************************************************************/
|
||||
|
||||
|
||||
|
||||
#ifndef __VCGLIB_RAY2
|
||||
#define __VCGLIB_RAY2
|
||||
|
||||
#include <vcg/space/point2.h>
|
||||
|
||||
namespace vcg {
|
||||
|
||||
/** \addtogroup space */
|
||||
/*@{*/
|
||||
/**
|
||||
Templated class for 3D rays.
|
||||
This is the class for infinite rays in 3D space. A Ray is stored just as two Point3:
|
||||
an origin and a direction (not necessarily normalized).
|
||||
@param RayScalarType (template parameter) Specifies the type of scalar used to represent coords.
|
||||
@param NORM: if on, the direction is always Normalized
|
||||
*/
|
||||
template <class RayScalarType, bool NORM=false>
|
||||
class Ray2
|
||||
{
|
||||
public:
|
||||
|
||||
/// The scalar type
|
||||
typedef RayScalarType ScalarType;
|
||||
|
||||
/// The point type
|
||||
typedef Point2<RayScalarType> PointType;
|
||||
|
||||
/// The ray type
|
||||
typedef Ray2<RayScalarType,NORM> RayType;
|
||||
|
||||
private:
|
||||
|
||||
/// Origin
|
||||
PointType _ori;
|
||||
|
||||
/// Direction (not necessarily normalized, unless so specified by NORM)
|
||||
PointType _dir;
|
||||
|
||||
public:
|
||||
|
||||
//@{
|
||||
/** @name Members to access the origin or direction
|
||||
Direction() cannot be assigned directly.
|
||||
Use SetDirection() or Set() instead.
|
||||
**/
|
||||
///
|
||||
inline const PointType &Origin() const { return _ori; }
|
||||
inline PointType &Origin() { return _ori; }
|
||||
inline const PointType &Direction() const { return _dir; }
|
||||
/// sets the origin
|
||||
inline void SetOrigin( const PointType & ori )
|
||||
{ _ori=ori; }
|
||||
/// sets the direction
|
||||
inline void SetDirection( const PointType & dir)
|
||||
{ _dir=dir; if (NORM) _dir.Normalize(); }
|
||||
/// sets origin and direction.
|
||||
inline void Set( const PointType & ori, const PointType & dir )
|
||||
{ SetOrigin(ori); SetDirection(dir); }
|
||||
//@}
|
||||
|
||||
//@{
|
||||
/** @name Constructors
|
||||
**/
|
||||
/// The empty constructor
|
||||
Ray2() {};
|
||||
/// The (origin, direction) constructor
|
||||
Ray2(const PointType &ori, const PointType &dir) {SetOrigin(ori); SetDirection(dir);};
|
||||
//@}
|
||||
|
||||
/// Operator to compare two rays
|
||||
inline bool operator == ( RayType const & p ) const
|
||||
{ return _ori==p._ori && _dir==p._dir; }
|
||||
/// Operator to dispare two rays
|
||||
inline bool operator != ( RayType const & p ) const
|
||||
{ return _ori!=p._ori || _dir!=p._dir; }
|
||||
/// Projects a point on the ray
|
||||
inline ScalarType Projection( const PointType &p ) const
|
||||
{ if (NORM) return ScalarType((p-_ori)*_dir);
|
||||
else return ScalarType((p-_ori)*_dir/_dir.SquaredNorm());
|
||||
}
|
||||
/// returns wheter this type is normalized or not
|
||||
static bool IsNormalized() {return NORM;};
|
||||
/// calculates the point of parameter t on the ray.
|
||||
inline PointType P( const ScalarType t ) const
|
||||
{ return _ori + _dir * t; }
|
||||
/// normalizes direction field (returns a Normalized Ray)
|
||||
inline Ray2<ScalarType,true> &Normalize()
|
||||
{ if (!NORM) _dir.Normalize(); return *((Ray2<ScalarType,true>*)this);}
|
||||
/// normalizes direction field (returns a Normalized Ray) - static version
|
||||
static Ray2<ScalarType,true> &Normalize(RayType &p)
|
||||
{ p.Normalize(); return *((Ray2<ScalarType,true>*)(&p));}
|
||||
/// importer for different ray types (with any scalar type or normalization beaviour)
|
||||
template <class Q, bool K>
|
||||
inline void Import( const Ray2<Q,K> & b )
|
||||
{ _ori.Import( b.Origin() ); _dir.Import( b.Direction() );
|
||||
if ((NORM) && (!K)) _dir.Normalize();
|
||||
//printf("(=)%c->%c ",(!NORM)?'N':'n', NORM?'N':'n');
|
||||
}
|
||||
/// constructs a new ray importing it from an existing one
|
||||
template <class Q, bool K>
|
||||
static RayType Construct( const Ray2<Q,K> & b )
|
||||
{ RayType res; res.Import(b); return res;
|
||||
}
|
||||
PointType ClosestPoint(const PointType & p) const{
|
||||
return P(Projection(p));
|
||||
}
|
||||
/// flips the ray
|
||||
inline void Flip(){
|
||||
_dir=-_dir;
|
||||
};
|
||||
|
||||
//@{
|
||||
/** @name Linearity for 3d rays
|
||||
(operators +, -, *, /) so a ray can be set as a linear combination
|
||||
of several rays. Note that the result of any operation returns
|
||||
a non-normalized ray; however, the command r0 = r1*a + r2*b is licit
|
||||
even if r0,r1,r2 are normalized rays, as the normalization will
|
||||
take place within the final assignement operation.
|
||||
**/
|
||||
inline Ray2<ScalarType,false> operator + ( RayType const & p) const
|
||||
{return Ray2<ScalarType,false> ( _ori+p.Origin(), _dir+p.Direction() );}
|
||||
inline Ray2<ScalarType,false> operator - ( RayType const & p) const
|
||||
{return Ray2<ScalarType,false> ( _ori-p.Origin(), _dir-p.Direction() );}
|
||||
inline Ray2<ScalarType,false> operator * ( const ScalarType s ) const
|
||||
{return Ray2<ScalarType,false> ( _ori*s, _dir*s );}
|
||||
inline Ray2<ScalarType,false> operator / ( const ScalarType s ) const
|
||||
{ScalarType s0=((ScalarType)1.0)/s; return RayType( _ori*s0, _dir*s0 );}
|
||||
//@}
|
||||
|
||||
|
||||
//@{
|
||||
/** @name Automatic normalized to non-normalized
|
||||
"Ray2dN r0 = r1" is equivalent to
|
||||
"Ray2dN r0 = r1.Normalize()" if r1 is a Ray2d
|
||||
**/
|
||||
/// copy constructor that takes opposite beaviour
|
||||
Ray2(const Ray2<ScalarType,!NORM > &r)
|
||||
{ Import(r); };
|
||||
/// assignment
|
||||
inline RayType & operator = ( Ray2<ScalarType,!NORM> const &r)
|
||||
{ Import(r); return *this; };
|
||||
//@}
|
||||
|
||||
}; // end class definition
|
||||
|
||||
typedef Ray2<short> Ray2s;
|
||||
typedef Ray2<int> Ray2i;
|
||||
typedef Ray2<float> Ray2f;
|
||||
typedef Ray2<double> Ray2d;
|
||||
|
||||
typedef Ray2<short ,true> Ray2sN;
|
||||
typedef Ray2<int ,true> Ray2iN;
|
||||
typedef Ray2<float ,true> Ray2fN;
|
||||
typedef Ray2<double,true> Ray2dN;
|
||||
|
||||
/// returns closest point
|
||||
template <class ScalarType, bool NORM>
|
||||
Point3<ScalarType> ClosestPoint( Ray2<ScalarType,NORM> r, const Point3<ScalarType> & p)
|
||||
{
|
||||
ScalarType t = r.Projection(p);
|
||||
if (t<0) return r.Origin();
|
||||
return r.P(t);
|
||||
}
|
||||
|
||||
/*@}*/
|
||||
|
||||
} // end namespace
|
||||
#endif
|
Loading…
Reference in New Issue