Significant refactoring of the 4pcs class (uniform naming, clearer init etc)
This commit is contained in:
parent
34fb35c6c7
commit
b17fa09b37
|
@ -64,25 +64,46 @@ public:
|
|||
/* class for Parameters */
|
||||
struct Param
|
||||
{
|
||||
ScalarType delta; // Approximation Level
|
||||
int feetSize; // how many points in the neighborhood of each of the 4 points
|
||||
ScalarType overlap; // overlap estimation as a percentage
|
||||
int scoreFeet; // how many of the feetsize points must match (max feetsize*4) to try an early interrupt
|
||||
int n_samples_on_Q; // number of samples on P
|
||||
int seed;
|
||||
ScalarType cosAngle; // max admittable angle that can be admitted between matching points in alignments (expressed as cos(ang) )
|
||||
ScalarType overlap; // overlap estimation as a percentage of overlapping points.
|
||||
|
||||
int sampleNumP; // number of samples on moving mesh P (it determines the sampling radius to be used to sample Q too)
|
||||
float samplingRadius;
|
||||
|
||||
ScalarType deltaPerc; // Approximation Level (expressed as a percentage of the avg distance between samples)
|
||||
ScalarType deltaAbs; // Approximation Level
|
||||
int feetSize; // how many points in the neighborhood of each of the 4 points
|
||||
int scoreFeet; // how many of the feetsize points must match (max feetsize*4) to try an early interrupt
|
||||
ScalarType cosAngle; // max admittable angle that can be admitted between matching points in alignments (expressed as cos(ang) )
|
||||
int seed; // random seed used. Need for repeatability.
|
||||
|
||||
void Default(){
|
||||
delta = 0.5;
|
||||
feetSize = 25;
|
||||
overlap = 0.5;
|
||||
sampleNumP=500;
|
||||
samplingRadius=0;
|
||||
|
||||
deltaPerc = 0.5;
|
||||
deltaAbs = 0;
|
||||
feetSize = 25;
|
||||
scoreFeet = 50;
|
||||
n_samples_on_Q=500;
|
||||
seed =0;
|
||||
cosAngle = 0; // normals must differ more than 90 degree to be considered bad.
|
||||
}
|
||||
};
|
||||
|
||||
struct Stat
|
||||
{
|
||||
Stat() : initTime(0),selectCoplanarBaseTime(0),findCongruentTime(0),testAlignmentTime(0)
|
||||
{}
|
||||
clock_t initTime;
|
||||
clock_t selectCoplanarBaseTime;
|
||||
clock_t findCongruentTime;
|
||||
clock_t testAlignmentTime;
|
||||
float init() {return 1000.0f*float(initTime)/float(CLOCKS_PER_SEC);}
|
||||
float select() {return 1000.0f*float(selectCoplanarBaseTime)/float(CLOCKS_PER_SEC);}
|
||||
float findCongruent() {return 1000.0f*float(findCongruentTime)/float(CLOCKS_PER_SEC);}
|
||||
float testAlignment() {return 1000.0f*float(testAlignmentTime)/float(CLOCKS_PER_SEC);}
|
||||
};
|
||||
|
||||
class Couple
|
||||
{
|
||||
public:
|
||||
|
@ -90,17 +111,16 @@ public:
|
|||
Couple(VertexPointer i, VertexPointer j, float d) : p0(i),p1(j),dist(d){}
|
||||
float dist;
|
||||
const bool operator < (const Couple & o) const {return dist < o.dist;}
|
||||
VertexPointer operator[](const int &i){return (i==0)? this->p0 : this->p1;}
|
||||
VertexPointer operator[](const int &i) const {return (i==0)? this->p0 : this->p1;}
|
||||
};
|
||||
|
||||
struct Candidate
|
||||
{
|
||||
Candidate(){}
|
||||
Candidate(FourPoints _p,vcg::Matrix44<ScalarType>_T):p(_p),T(_T){}
|
||||
Candidate():score(0){}
|
||||
Candidate(FourPoints _p, vcg::Matrix44<ScalarType>_T):p(_p),T(_T){}
|
||||
FourPoints p;
|
||||
vcg::Matrix44<ScalarType> T;
|
||||
int score;
|
||||
int base; // debug: for which base
|
||||
inline bool operator <(const Candidate & o) const {return score > o.score;}
|
||||
};
|
||||
|
||||
|
@ -115,9 +135,12 @@ public:
|
|||
|
||||
|
||||
Param par; /// parameters
|
||||
Stat stat;
|
||||
|
||||
MeshType *P; // mesh from which the coplanar base is selected
|
||||
MeshType *Q; // mesh where to find the correspondences
|
||||
MeshType *P; // Moving Mesh (from which the coplanar base is selected)
|
||||
MeshType *Q; // Fixed Mesh (mesh where to find the correspondences)
|
||||
|
||||
math::MarsenneTwisterRNG rnd;
|
||||
|
||||
std::vector<VertexPointer> subsetQ; // subset of the vertices in Q
|
||||
std::vector<VertexPointer> subsetP; // random selection on P
|
||||
|
@ -125,35 +148,15 @@ public:
|
|||
ScalarType side; // side
|
||||
|
||||
PMesh Invr; // invariants
|
||||
math::MarsenneTwisterRNG rnd;
|
||||
std::vector< Candidate > U; // the
|
||||
int iwinner; // winner == U[iwinner]
|
||||
FourPoints B; // coplanar base
|
||||
std::vector<FourPoints> bases; // used bases
|
||||
std::vector<VertexType*> ExtB[4]; // selection of vertices "close" to the four point
|
||||
ScalarType radius;
|
||||
|
||||
std::vector<Couple > R1;
|
||||
ScalarType r1,r2;
|
||||
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType > ugridQ;
|
||||
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType > ugridP;
|
||||
|
||||
GridType *ugrid; // griglia
|
||||
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType > ugridQ;
|
||||
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType > ugridP;
|
||||
|
||||
// the two main functions to be used
|
||||
void Init(MeshType &Mov, MeshType &Fix);
|
||||
bool Align( int L, vcg::Matrix44f & result, vcg::CallBackPos * cb = NULL );
|
||||
|
||||
// ---- auxiliary functions
|
||||
bool SelectCoplanarBase(); // on P
|
||||
bool FindCongruent(); // of base B, on Q, with approximation delta
|
||||
void ComputeR1();
|
||||
bool IsTransfCongruent(FourPoints fp,vcg::Matrix44<ScalarType> & mat, float & trerr);
|
||||
int EvaluateSample(Candidate & fp, CoordType & tp, CoordType & np);
|
||||
void EvaluateAlignment(Candidate & fp);
|
||||
void TestAlignment(Candidate & fp);
|
||||
|
||||
/* returns the closest point between to segments x1-x2 and x3-x4. */
|
||||
/* returns the closest point between to segments x1-x2 and x3-x4. */
|
||||
void IntersectionLineLine(const CoordType & x1,const CoordType & x2,const CoordType & x3,const CoordType & x4, CoordType&x)
|
||||
{
|
||||
CoordType a = x2-x1, b = x4-x3, c = x3-x1;
|
||||
|
@ -161,78 +164,45 @@ public:
|
|||
}
|
||||
|
||||
|
||||
/* debug tools */
|
||||
public:
|
||||
std::vector<vcg::Matrix44f> allTr;// tutte le trasformazioni provate
|
||||
FILE * db;
|
||||
char namemesh1[255],namemesh2[255];
|
||||
int n_base;
|
||||
void InitDebug(const char * name1, const char * name2){
|
||||
db = fopen("debugPCS.txt","w");
|
||||
sprintf(&namemesh1[0],"%s",name1);
|
||||
sprintf(&namemesh2[0],"%s",name2);
|
||||
n_base = 0;
|
||||
}
|
||||
|
||||
void FinishDebug(){
|
||||
fclose(db);
|
||||
}
|
||||
};
|
||||
|
||||
template <class MeshType>
|
||||
void FourPCS<MeshType>:: Init(MeshType &_movP,MeshType &_fixQ)
|
||||
void Init(MeshType &_movP,MeshType &_fixQ)
|
||||
{
|
||||
P = &_movP;
|
||||
Q = &_fixQ;
|
||||
tri::UpdateBounding<MeshType>::Box(*P);
|
||||
if(par.seed==0) rnd.initialize(time(0));
|
||||
else rnd.initialize(par.seed);
|
||||
ugridQ.Set(Q->vert.begin(),Q->vert.end());
|
||||
ugridP.Set(P->vert.begin(),P->vert.end());
|
||||
clock_t t0= clock();
|
||||
P = &_movP;
|
||||
Q = &_fixQ;
|
||||
tri::UpdateBounding<MeshType>::Box(*P);
|
||||
if(par.seed==0) rnd.initialize(time(0));
|
||||
else rnd.initialize(par.seed);
|
||||
|
||||
float radius=0;
|
||||
tri::PoissonPruning(*Q,subsetQ,radius,par.n_samples_on_Q,par.seed);
|
||||
tri::PoissonPruning(*P,subsetP,radius,par.n_samples_on_Q,par.seed);
|
||||
float ratio = std::min<int>(Q->vert.size(),par.n_samples_on_Q) / (float) Q->vert.size();
|
||||
ugridQ.Set(Q->vert.begin(),Q->vert.end());
|
||||
ugridP.Set(P->vert.begin(),P->vert.end());
|
||||
|
||||
// estimate neigh distance
|
||||
float avD = 0.0;
|
||||
for(int i = 0 ; i < 100; ++i){
|
||||
int ri = rnd.generate(Q->vert.size());
|
||||
std::vector< CoordType > samples;
|
||||
std::vector<ScalarType > dists;
|
||||
std::vector<VertexType* > ress;
|
||||
vcg::tri::GetKClosestVertex<
|
||||
MeshType,
|
||||
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType>,
|
||||
std::vector<VertexType*>,
|
||||
std::vector<ScalarType>,
|
||||
std::vector< CoordType > >(*Q,ugridQ,2,Q->vert[ri].cP(),Q->bbox.Diag(), ress,dists, samples);
|
||||
assert(ress.size() == 2);
|
||||
avD+=dists[1];
|
||||
}
|
||||
avD /=100; // average vertex-vertex distance
|
||||
avD /= sqrt(ratio);
|
||||
if(par.samplingRadius==0)
|
||||
par.samplingRadius = tri::ComputePoissonDiskRadius(*P,par.sampleNumP);
|
||||
tri::PoissonPruning(*P, subsetP, par.samplingRadius, par.seed);
|
||||
tri::PoissonPruning(*Q, subsetQ, par.samplingRadius, par.seed);
|
||||
par.deltaAbs = par.samplingRadius * par.deltaPerc;
|
||||
side = P->bbox.Dim()[P->bbox.MaxDim()]*par.overlap; //rough implementation
|
||||
stat.initTime+=clock()-t0;
|
||||
}
|
||||
|
||||
par.delta = avD * par.delta;
|
||||
side = P->bbox.Dim()[P->bbox.MaxDim()]*par.overlap; //rough implementation
|
||||
}
|
||||
|
||||
template <class MeshType>
|
||||
bool FourPCS<MeshType>::SelectCoplanarBase()
|
||||
// Try to select four coplanar points such that they are at least side distance and
|
||||
//
|
||||
bool SelectCoplanarBase(FourPoints &B, ScalarType &r1, ScalarType &r2)
|
||||
{
|
||||
clock_t t0= clock();
|
||||
|
||||
// choose the inter point distance
|
||||
ScalarType dtol = side*0.1; //rough implementation
|
||||
|
||||
//choose the first two points
|
||||
|
||||
// first point random
|
||||
// **** first point: random
|
||||
B[0] = P->vert[ rnd.generate(P->vert.size())].P();
|
||||
|
||||
// second a point at distance d+-dtol
|
||||
// **** second point: a random point at distance side +-dtol
|
||||
int i;
|
||||
for(i = 0; i < P->vert.size(); ++i){
|
||||
int id = rnd.generate(P->vert.size()-1);
|
||||
int id = rnd.generate(P->vert.size());
|
||||
ScalarType dd = (P->vert[id].P() - B[0]).Norm();
|
||||
if( ( dd < side + dtol) && (dd > side - dtol)){
|
||||
B[1] = P->vert[id].P();
|
||||
|
@ -241,87 +211,82 @@ bool FourPCS<MeshType>::SelectCoplanarBase()
|
|||
}
|
||||
if(i == P->vert.size()) return false;
|
||||
|
||||
// third point at distance side*0.8 from middle way between B[0] and B[1]
|
||||
// **** third point: at distance less than side*0.8 from middle way between B[0] and B[1]
|
||||
const vcg::Point3f middle = (B[0]+B[1])/2.0;
|
||||
for(i = 0; i < P->vert.size(); ++i){
|
||||
int id = rnd.generate(P->vert.size()-1);
|
||||
ScalarType dd = (P->vert[id].P() - middle).Norm();
|
||||
if( ( dd < side*0.8) ){
|
||||
int id = rnd.generate(P->vert.size());
|
||||
if( Distance(P->vert[id].P(),middle) < side*0.8 ){
|
||||
B[2] = P->vert[id].P();
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(i == P->vert.size()) return false;
|
||||
|
||||
//fourth point
|
||||
float cpr = rnd.generate01();
|
||||
vcg::Point3f crossP = B[0] *(1-cpr)+B[1]*cpr;
|
||||
CoordType B4 = B[2]+(crossP-B[2]).Normalize()*side;
|
||||
CoordType n = ((B[0]-B[1]).normalized() ^ (B[2]-B[1]).normalized()).normalized();
|
||||
ScalarType radius = dtol;
|
||||
// **** fourth point:
|
||||
float cpr = rnd.generate01();
|
||||
vcg::Point3f crossP = B[0] *(1-cpr)+B[1]*cpr;
|
||||
CoordType B4 = B[2]+(crossP-B[2]).Normalize()*side;
|
||||
CoordType n = ((B[0]-B[1]).normalized() ^ (B[2]-B[1]).normalized()).normalized();
|
||||
ScalarType radius = dtol;
|
||||
|
||||
std::vector<typename MeshType::VertexType*> closests;
|
||||
std::vector<ScalarType> distances;
|
||||
std::vector<CoordType> points;
|
||||
std::vector<typename MeshType::VertexType*> closests;
|
||||
std::vector<ScalarType> distances;
|
||||
std::vector<CoordType> points;
|
||||
|
||||
vcg::tri::GetInSphereVertex<
|
||||
MeshType,
|
||||
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType >,
|
||||
std::vector<typename MeshType::VertexType*>,
|
||||
std::vector<ScalarType>,
|
||||
std::vector<CoordType>
|
||||
>(*P,ugridP,B4,radius,closests,distances,points);
|
||||
vcg::tri::GetInSphereVertex<
|
||||
MeshType,
|
||||
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType >,
|
||||
std::vector<typename MeshType::VertexType*>,
|
||||
std::vector<ScalarType>,
|
||||
std::vector<CoordType>
|
||||
>(*P,ugridP,B4,radius,closests,distances,points);
|
||||
|
||||
if(closests.empty())
|
||||
return false;
|
||||
int bestInd = -1; ScalarType bestv=std::numeric_limits<float>::max();
|
||||
for(i = 0; i <closests.size(); ++i){
|
||||
ScalarType dist_from_plane = fabs((closests[i]->P() - B[1]).normalized().dot(n));
|
||||
if( dist_from_plane < bestv){
|
||||
bestv = dist_from_plane;
|
||||
bestInd = i;
|
||||
}
|
||||
}
|
||||
if(bestv >dtol)
|
||||
return false;
|
||||
B[3] = closests[bestInd]->P();
|
||||
if(closests.empty())
|
||||
return false;
|
||||
int bestInd = -1; ScalarType bestv=std::numeric_limits<float>::max();
|
||||
for(i = 0; i <closests.size(); ++i){
|
||||
ScalarType dist_from_plane = fabs((closests[i]->P() - B[1]).normalized().dot(n));
|
||||
if( dist_from_plane < bestv){
|
||||
bestv = dist_from_plane;
|
||||
bestInd = i;
|
||||
}
|
||||
}
|
||||
if(bestv >dtol)
|
||||
return false;
|
||||
B[3] = closests[bestInd]->P();
|
||||
|
||||
//printf("B[3] %d\n", (typename MeshType::VertexType*)closests[best] - &(*P->vert.begin()));
|
||||
//printf("B[3] %d\n", (typename MeshType::VertexType*)closests[best] - &(*P->vert.begin()));
|
||||
|
||||
// compute r1 and r2
|
||||
CoordType x;
|
||||
// std::swap(B[1],B[2]);
|
||||
IntersectionLineLine(B[0],B[1],B[2],B[3],x);
|
||||
// compute r1 and r2
|
||||
CoordType x;
|
||||
// std::swap(B[1],B[2]);
|
||||
IntersectionLineLine(B[0],B[1],B[2],B[3],x);
|
||||
|
||||
r1 = (x - B[0]).dot(B[1]-B[0]) / (B[1]-B[0]).SquaredNorm();
|
||||
r2 = (x - B[2]).dot(B[3]-B[2]) / (B[3]-B[2]).SquaredNorm();
|
||||
r1 = (x - B[0]).dot(B[1]-B[0]) / (B[1]-B[0]).SquaredNorm();
|
||||
r2 = (x - B[2]).dot(B[3]-B[2]) / (B[3]-B[2]).SquaredNorm();
|
||||
|
||||
if( ((B[0]+(B[1]-B[0])*r1)-(B[2]+(B[3]-B[2])*r2)).Norm() > par.delta )
|
||||
return false;
|
||||
if( ((B[0]+(B[1]-B[0])*r1)-(B[2]+(B[3]-B[2])*r2)).Norm() > par.deltaAbs )
|
||||
return false;
|
||||
|
||||
radius =side*0.5;
|
||||
std::vector< CoordType > samples;
|
||||
std::vector<ScalarType > dists;
|
||||
radius = side*0.5;
|
||||
std::vector< CoordType > samples;
|
||||
std::vector<ScalarType > dists;
|
||||
|
||||
for(int i = 0 ; i< 4; ++i){
|
||||
vcg::tri::GetKClosestVertex<
|
||||
MeshType,
|
||||
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType >,
|
||||
std::vector<VertexType*>,
|
||||
std::vector<ScalarType>,
|
||||
std::vector< CoordType > >(*P,ugridP, par.feetSize ,B[i],radius, ExtB[i],dists, samples);
|
||||
}
|
||||
|
||||
//for(int i = 0 ; i< 4; ++i)
|
||||
// printf("%d ",ExtB[i].size());
|
||||
// printf("\n");
|
||||
return true;
|
||||
for(int i = 0 ; i< 4; ++i){
|
||||
vcg::tri::GetKClosestVertex<
|
||||
MeshType,
|
||||
vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType >,
|
||||
std::vector<VertexType*>,
|
||||
std::vector<ScalarType>,
|
||||
std::vector< CoordType > >(*P,ugridP, par.feetSize ,B[i],radius, ExtB[i], dists, samples);
|
||||
}
|
||||
|
||||
qDebug("ExtB %i",ExtB[0].size()+ExtB[1].size()+ExtB[2].size()+ExtB[3].size());
|
||||
stat.selectCoplanarBaseTime+=clock()-t0;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
template <class MeshType>
|
||||
bool FourPCS<MeshType>::IsTransfCongruent(FourPoints fp, vcg::Matrix44<ScalarType> & mat, float & trerr)
|
||||
bool IsTransfCongruent(const FourPoints &B, const FourPoints &fp, vcg::Matrix44<ScalarType> & mat)
|
||||
{
|
||||
std::vector<vcg::Point3<ScalarType> > fix(4);
|
||||
std::vector<vcg::Point3<ScalarType> > mov(4);
|
||||
|
@ -330,232 +295,219 @@ bool FourPCS<MeshType>::IsTransfCongruent(FourPoints fp, vcg::Matrix44<ScalarTyp
|
|||
fix[i]=fp[i];
|
||||
}
|
||||
|
||||
if(fabs( Distance(fix[0],fix[1]) - Distance(mov[0],mov[1]) ) > par.delta) return false;
|
||||
if(fabs( Distance(fix[0],fix[2]) - Distance(mov[0],mov[2]) ) > par.delta) return false;
|
||||
if(fabs( Distance(fix[0],fix[3]) - Distance(mov[0],mov[3]) ) > par.delta) return false;
|
||||
if(fabs( Distance(fix[1],fix[2]) - Distance(mov[1],mov[2]) ) > par.delta) return false;
|
||||
if(fabs( Distance(fix[1],fix[3]) - Distance(mov[1],mov[3]) ) > par.delta) return false;
|
||||
if(fabs( Distance(fix[2],fix[3]) - Distance(mov[2],mov[3]) ) > par.delta) return false;
|
||||
|
||||
/*
|
||||
vcg::Point3<ScalarType> n,p;
|
||||
n = (( B[1]-B[0]).normalized() ^ ( B[2]- B[0]).normalized())*( B[1]- B[0]).Norm();
|
||||
p = B[0] + n;
|
||||
mov.push_back(p);
|
||||
n = (( fp[1]-fp[0]).normalized() ^ (fp[2]- fp[0]).normalized())*( fp[1]- fp[0]).Norm();
|
||||
p = fp[0] + n;
|
||||
fix.push_back(p);
|
||||
*/
|
||||
if(fabs( Distance(fix[0],fix[1]) - Distance(mov[0],mov[1]) ) > par.deltaAbs) return false;
|
||||
if(fabs( Distance(fix[0],fix[2]) - Distance(mov[0],mov[2]) ) > par.deltaAbs) return false;
|
||||
if(fabs( Distance(fix[0],fix[3]) - Distance(mov[0],mov[3]) ) > par.deltaAbs) return false;
|
||||
if(fabs( Distance(fix[1],fix[2]) - Distance(mov[1],mov[2]) ) > par.deltaAbs) return false;
|
||||
if(fabs( Distance(fix[1],fix[3]) - Distance(mov[1],mov[3]) ) > par.deltaAbs) return false;
|
||||
if(fabs( Distance(fix[2],fix[3]) - Distance(mov[2],mov[3]) ) > par.deltaAbs) return false;
|
||||
|
||||
vcg::ComputeRigidMatchMatrix(fix,mov,mat);
|
||||
|
||||
ScalarType err = 0.0;
|
||||
for(int i = 0; i < 4; ++i) err+= (mat * mov[i] - fix[i]).SquaredNorm();
|
||||
|
||||
trerr = vcg::math::Sqrt(err);
|
||||
return trerr < par.delta;
|
||||
ScalarType maxSquaredDistance = 0.0;
|
||||
for(int i = 0; i < 4; ++i)
|
||||
maxSquaredDistance =std::max(maxSquaredDistance, SquaredDistance(mat * mov[i] ,fix[i]));
|
||||
return sqrt(maxSquaredDistance) < par.deltaAbs;
|
||||
}
|
||||
|
||||
template <class MeshType>
|
||||
void
|
||||
FourPCS<MeshType>::ComputeR1()
|
||||
/// Compute the vector R1 of couple of points on FixQ at a given distance.
|
||||
/// Used by FindCongruent
|
||||
void ComputeR1(std::vector<Couple > &R1)
|
||||
{
|
||||
R1.clear();
|
||||
for(int vi = 0; vi < subsetQ.size(); ++vi)
|
||||
for(int vj = vi; vj < subsetQ.size(); ++vj){
|
||||
// ScalarType d = ((Q->vert[subsetQ[vi]]).P()-(Q->vert[subsetQ[vj]]).P()).Norm();
|
||||
ScalarType d = (subsetQ[vi]->P()- subsetQ[vj]->P()).Norm();
|
||||
if( (d < side+par.delta))
|
||||
{
|
||||
R1.push_back(Couple(subsetQ[vi],subsetQ[vj],d ));
|
||||
R1.push_back(Couple(subsetQ[vj],subsetQ[vi],d));
|
||||
}
|
||||
R1.clear();
|
||||
for(int vi = 0; vi < subsetQ.size(); ++vi)
|
||||
for(int vj = vi; vj < subsetQ.size(); ++vj){
|
||||
ScalarType d = Distance(subsetQ[vi]->P(),subsetQ[vj]->P());
|
||||
if( (d < side+par.deltaAbs))
|
||||
{
|
||||
R1.push_back(Couple(subsetQ[vi],subsetQ[vj], d));
|
||||
R1.push_back(Couple(subsetQ[vj],subsetQ[vi], d));
|
||||
}
|
||||
}
|
||||
|
||||
std::sort(R1.begin(),R1.end());
|
||||
std::sort(R1.begin(),R1.end());
|
||||
}
|
||||
|
||||
template <class MeshType>
|
||||
bool FourPCS<MeshType>::FindCongruent() { // of base B, on Q, with approximation delta
|
||||
bool done = false;
|
||||
std::vector<EPoint> R2inv;
|
||||
int n_closests = 0, n_congr = 0;
|
||||
int ac =0 ,acf = 0,tr = 0,trf =0;
|
||||
ScalarType d1,d2;
|
||||
d1 = (B[1]-B[0]).Norm();
|
||||
d2 = (B[3]-B[2]).Norm();
|
||||
|
||||
typename PMesh::VertexIterator vii;
|
||||
typename std::vector<Couple>::iterator bR1,eR1,bR2,eR2,ite;
|
||||
bR1 = std::lower_bound<typename std::vector<Couple>::iterator,Couple>(R1.begin(),R1.end(),Couple(0,0,d1-par.delta));
|
||||
eR1 = std::lower_bound<typename std::vector<Couple>::iterator,Couple>(R1.begin(),R1.end(),Couple(0,0,d1+par.delta));
|
||||
bR2 = std::lower_bound<typename std::vector<Couple>::iterator,Couple>(R1.begin(),R1.end(),Couple(0,0,d2-par.delta));
|
||||
eR2 = std::lower_bound<typename std::vector<Couple>::iterator,Couple>(R1.begin(),R1.end(),Couple(0,0,d2+par.delta));
|
||||
|
||||
// in [bR1,eR1) there are all the pairs ad a distance d1 +- par.delta
|
||||
// in [bR1,eR1) there are all the pairs ad a distance d2 +- par.delta
|
||||
|
||||
if(bR1 == R1.end()) return false;// if there are no such pairs return
|
||||
if(bR2 == R1.end()) return false; // if there are no such pairs return
|
||||
|
||||
// put [bR1,eR1) in a mesh to have the search operator for free (lazy me)
|
||||
Invr.Clear();
|
||||
int i = &(*bR1)-&(*R1.begin());
|
||||
for(ite = bR1; ite != eR1;++ite){
|
||||
vii = vcg::tri::Allocator<PMesh>::AddVertices(Invr,1);
|
||||
// (*vii).P() = Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r1;
|
||||
(*vii).P() = R1[i].p0->P() + ( R1[i].p1->P() - R1[i].p0->P()) * r1;
|
||||
++i;
|
||||
}
|
||||
if(Invr.vert.empty() ) return false;
|
||||
|
||||
// index remaps a vertex of Invr to its corresponding point in R1
|
||||
typename PMesh::template PerVertexAttributeHandle<int> id = vcg::tri::Allocator<PMesh>::template AddPerVertexAttribute<int>(Invr,std::string("index"));
|
||||
i = &(*bR1)-&(*R1.begin());
|
||||
for(vii = Invr.vert.begin(); vii != Invr.vert.end();++vii,++i) id[vii] = i;
|
||||
|
||||
vcg::tri::UpdateBounding<PMesh>::Box(Invr);
|
||||
// printf("Invr size %d\n",Invr.vn);
|
||||
|
||||
ugrid = new GridType();
|
||||
ugrid->Set(Invr.vert.begin(),Invr.vert.end());
|
||||
|
||||
i = &(*bR2)-&(*R1.begin());
|
||||
// R2inv contains all the points generated by the couples in R2 (with the reference to remap into R2)
|
||||
for(ite = bR2; ite != eR2;++ite){
|
||||
// R2inv.push_back( EPoint( Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r2,i));
|
||||
R2inv.push_back( EPoint( R1[i].p0->P() + (R1[i].p1->P() - R1[i].p0->P()) * r2,i));
|
||||
++i;
|
||||
}
|
||||
|
||||
n_closests = 0; n_congr = 0; ac =0 ; acf = 0; tr = 0; trf = 0;
|
||||
printf("R2Inv.size = %d \n",R2inv.size());
|
||||
for(uint i = 0 ; i < R2inv.size() ; ++i){
|
||||
|
||||
std::vector<typename PMesh::VertexType*> closests;
|
||||
|
||||
// for each point in R2inv get all the points in R1 closer than par.delta
|
||||
vcg::Matrix44<ScalarType> mat;
|
||||
vcg::Box3f bb;
|
||||
bb.Add(R2inv[i].pos+vcg::Point3f(par.delta,par.delta, par.delta));
|
||||
bb.Add(R2inv[i].pos-vcg::Point3f(par.delta,par.delta, par.delta));
|
||||
|
||||
vcg::tri::GetInBoxVertex<PMesh,GridType,std::vector<typename PMesh::VertexType*> >
|
||||
(Invr,*ugrid,bb,closests);
|
||||
|
||||
if(closests.size() > 5)
|
||||
closests.resize(5);
|
||||
|
||||
n_closests+=closests.size();
|
||||
for(uint ip = 0; ip < closests.size(); ++ip){
|
||||
FourPoints p;
|
||||
p[0] = R1[id[closests[ip]]][0]->P();
|
||||
p[1] = R1[id[closests[ip]]][1]->P();
|
||||
p[2] = R1[ R2inv[i].pi][0]->P();
|
||||
p[3] = R1[ R2inv[i].pi][1]->P();
|
||||
|
||||
float trerr;
|
||||
n_base++;
|
||||
if(!IsTransfCongruent(p,mat,trerr)) {
|
||||
trf++;
|
||||
//char name[255];
|
||||
//sprintf(name,"faileTR_%d_%f.aln",n_base,trerr);
|
||||
//fprintf(db,"TransCongruent %s\n", name);
|
||||
//SaveALN(name, mat);
|
||||
}
|
||||
else{
|
||||
tr++;
|
||||
n_congr++;
|
||||
Candidate c(p,mat);
|
||||
EvaluateAlignment(c);
|
||||
|
||||
if( c.score > par.scoreFeet)
|
||||
U.push_back(c);
|
||||
|
||||
/*
|
||||
EvaluateAlignment(U.back());
|
||||
U.back().base = bases.size()-1;
|
||||
|
||||
if( U.back().score > par.scoreFeet){
|
||||
TestAlignment(U.back());
|
||||
if(U.back().score > par.scoreAln)
|
||||
{
|
||||
done = true; break;
|
||||
}
|
||||
}
|
||||
*/
|
||||
//char name[255];
|
||||
//sprintf(name,"passed_score_%5d_%d.aln",U.back().score,n_base);
|
||||
//fprintf(db,"OK TransCongruent %s, score: %d \n", name,U.back().score);
|
||||
//SaveALN(name, mat);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
delete ugrid;
|
||||
vcg::tri::Allocator<PMesh>::DeletePerVertexAttribute(Invr,id);
|
||||
printf("n_closests %5d = (An %5d ) + ( Tr %5d ) + (OK) %5d\n",n_closests,acf,trf,n_congr);
|
||||
|
||||
return done;
|
||||
// printf("done n_closests %d congr %d in %f s\n ",n_closests,n_congr,(clock()-start)/(float)CLOCKS_PER_SEC);
|
||||
// printf("angle:%d %d, trasf %d %d\n",ac,acf,tr,trf);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class MeshType>
|
||||
int FourPCS<MeshType>::EvaluateSample(Candidate & fp, CoordType & tp, CoordType & np)
|
||||
// Find congruent elements of a base B, on Q, with approximation delta
|
||||
// and put them in the U vector.
|
||||
bool FindCongruent(const std::vector<Couple > &R1, const FourPoints &B, const ScalarType r1, const ScalarType r2)
|
||||
{
|
||||
VertexType* v=0;
|
||||
clock_t t0=clock();
|
||||
int n_base=0;
|
||||
bool done = false;
|
||||
int n_closests = 0, n_congr = 0;
|
||||
int ac =0 ,acf = 0,tr = 0,trf =0;
|
||||
ScalarType d1,d2;
|
||||
d1 = (B[1]-B[0]).Norm();
|
||||
d2 = (B[3]-B[2]).Norm();
|
||||
|
||||
typename std::vector<Couple>::const_iterator bR1,eR1,bR2,eR2,ite;
|
||||
bR1 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d1-par.deltaAbs));
|
||||
eR1 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d1+par.deltaAbs));
|
||||
bR2 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d2-par.deltaAbs));
|
||||
eR2 = std::lower_bound(R1.begin(),R1.end(),Couple(0,0,d2+par.deltaAbs));
|
||||
|
||||
// in [bR1,eR1) there are all the pairs at a distance d1 +- par.delta
|
||||
// in [bR1,eR1) there are all the pairs at a distance d2 +- par.delta
|
||||
|
||||
if(bR1 == R1.end()) return false;// if there are no such pairs return
|
||||
if(bR2 == R1.end()) return false; // if there are no such pairs return
|
||||
|
||||
// put [bR1,eR1) in a mesh to have the search operator for free (lazy me)
|
||||
Invr.Clear();
|
||||
typename PMesh::VertexIterator vii;
|
||||
int i = &(*bR1)-&(*R1.begin());
|
||||
for(ite = bR1; ite != eR1;++ite){
|
||||
vii = vcg::tri::Allocator<PMesh>::AddVertices(Invr,1);
|
||||
// (*vii).P() = Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r1;
|
||||
(*vii).P() = ite->p0->P() + ( ite->p1->P() - ite->p0->P()) * r1;
|
||||
++i;
|
||||
}
|
||||
if(Invr.vert.empty() ) return false;
|
||||
|
||||
// per vertex attribute 'index' remaps a vertex of Invr to its corresponding point in R1
|
||||
typename PMesh::template PerVertexAttributeHandle<int> id = vcg::tri::Allocator<PMesh>::template AddPerVertexAttribute<int>(Invr,std::string("index"));
|
||||
i = &(*bR1)-&(*R1.begin());
|
||||
for(vii = Invr.vert.begin(); vii != Invr.vert.end();++vii,++i) id[vii] = i;
|
||||
|
||||
vcg::tri::UpdateBounding<PMesh>::Box(Invr);
|
||||
|
||||
|
||||
std::vector<EPoint> R2inv;
|
||||
i = &(*bR2)-&(*R1.begin());
|
||||
// R2inv contains all the points generated by the couples in R2 (with the reference to remap into R2)
|
||||
for(ite = bR2; ite != eR2;++ite){
|
||||
// R2inv.push_back( EPoint( Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r2,i));
|
||||
R2inv.push_back( EPoint( R1[i].p0->P() + (R1[i].p1->P() - R1[i].p0->P()) * r2,i));
|
||||
++i;
|
||||
}
|
||||
|
||||
GridType ugrid; // griglia
|
||||
ugrid.Set(Invr.vert.begin(),Invr.vert.end());
|
||||
n_closests = 0; n_congr = 0; ac =0 ; acf = 0; tr = 0; trf = 0;
|
||||
printf("R2Inv.size = %d \n",R2inv.size());
|
||||
for(uint i = 0 ; i < R2inv.size() ; ++i)
|
||||
{
|
||||
std::vector<typename PMesh::VertexType*> closests;
|
||||
|
||||
// for each point in R2inv get all the points in R1 closer than par.delta
|
||||
vcg::Matrix44<ScalarType> mat;
|
||||
vcg::Box3f bb;
|
||||
bb.Add(R2inv[i].pos+vcg::Point3f(par.deltaAbs,par.deltaAbs, par.deltaAbs));
|
||||
bb.Add(R2inv[i].pos-vcg::Point3f(par.deltaAbs,par.deltaAbs, par.deltaAbs));
|
||||
|
||||
vcg::tri::GetInBoxVertex<PMesh,GridType,std::vector<typename PMesh::VertexType*> >
|
||||
(Invr,ugrid,bb,closests);
|
||||
|
||||
if(closests.size() > 5)
|
||||
closests.resize(5);
|
||||
|
||||
n_closests+=closests.size();
|
||||
for(uint ip = 0; ip < closests.size(); ++ip)
|
||||
{
|
||||
FourPoints p;
|
||||
p[0] = R1[id[closests[ip]]][0]->cP();
|
||||
p[1] = R1[id[closests[ip]]][1]->cP();
|
||||
p[2] = R1[ R2inv[i].pi][0]->cP();
|
||||
p[3] = R1[ R2inv[i].pi][1]->cP();
|
||||
|
||||
n_base++;
|
||||
if(!IsTransfCongruent(B,p,mat)) {
|
||||
trf++;
|
||||
}
|
||||
else{
|
||||
tr++;
|
||||
n_congr++;
|
||||
Candidate c(p,mat);
|
||||
EvaluateAlignment(c);
|
||||
|
||||
if( c.score > par.scoreFeet)
|
||||
U.push_back(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
vcg::tri::Allocator<PMesh>::DeletePerVertexAttribute(Invr,id);
|
||||
printf("n_closests %5d = (An %5d ) + ( Tr %5d ) + (OK) %5d\n",n_closests,acf,trf,n_congr);
|
||||
|
||||
stat.findCongruentTime += clock()-t0;
|
||||
return done;
|
||||
}
|
||||
|
||||
|
||||
int EvaluateSample(Candidate & fp, const CoordType & tp, const CoordType & np)
|
||||
{
|
||||
CoordType ttp = fp.T * tp;
|
||||
vcg::Point4<ScalarType> np4 = fp.T * vcg::Point4<ScalarType>(np[0],np[1],np[2],0.0);
|
||||
CoordType tnp(np4[0],np4[1],np4[2]);
|
||||
|
||||
ScalarType dist ;
|
||||
radius = par.delta;
|
||||
tp = fp.T * tp;
|
||||
|
||||
vcg::Point4<ScalarType> np4;
|
||||
np4 = fp.T * vcg::Point4<ScalarType>(np[0],np[1],np[2],0.0);
|
||||
np[0] = np4[0]; np[1] = np4[1]; np[2] = np4[2];
|
||||
|
||||
if(ugridQ.bbox.IsIn(tp))
|
||||
v = vcg::tri::GetClosestVertex(*Q, ugridQ, tp, radius, dist );
|
||||
VertexType* v = vcg::tri::GetClosestVertex(*Q, ugridQ, ttp, par.deltaAbs*2.0, dist );
|
||||
|
||||
if(v!=0)
|
||||
{
|
||||
if( v->N().dot(np) > par.cosAngle ) return 1;
|
||||
if( v->N().dot(tnp) > par.cosAngle ) return 1;
|
||||
else return -1;
|
||||
}
|
||||
else return 0;
|
||||
}
|
||||
|
||||
|
||||
template <class MeshType>
|
||||
void
|
||||
FourPCS<MeshType>::EvaluateAlignment(Candidate & fp){
|
||||
// Check a candidate against the small subset of points ExtB
|
||||
void EvaluateAlignment(Candidate & fp){
|
||||
int n_delta_close = 0;
|
||||
for(int i = 0 ; i< 4; ++i) {
|
||||
for(uint j = 0; j < ExtB[i].size();++j){
|
||||
CoordType np = ExtB[i][j]->cN();;
|
||||
CoordType tp = ExtB[i][j]->P();
|
||||
n_delta_close+=EvaluateSample(fp,tp,np);
|
||||
n_delta_close+=EvaluateSample(fp, ExtB[i][j]->P(), ExtB[i][j]->cN());
|
||||
}
|
||||
}
|
||||
fp.score = n_delta_close;
|
||||
}
|
||||
|
||||
template <class MeshType>
|
||||
void FourPCS<MeshType>::TestAlignment(Candidate & fp){
|
||||
radius = par.delta;
|
||||
int n_delta_close = 0;
|
||||
for(uint j = 0; j < subsetP.size();++j){
|
||||
CoordType np = subsetP[j]->N();
|
||||
CoordType tp = subsetP[j]->P();
|
||||
n_delta_close+=EvaluateSample(fp,tp,np);
|
||||
}
|
||||
fp.score = n_delta_close;
|
||||
void TestAlignment(Candidate & fp)
|
||||
{
|
||||
clock_t t0 = clock();
|
||||
int n_delta_close = 0;
|
||||
for(uint j = 0; j < subsetP.size();++j){
|
||||
CoordType np = subsetP[j]->N();
|
||||
CoordType tp = subsetP[j]->P();
|
||||
n_delta_close+=EvaluateSample(fp,tp,np);
|
||||
}
|
||||
fp.score = n_delta_close;
|
||||
stat.testAlignmentTime += clock()-t0;
|
||||
}
|
||||
|
||||
|
||||
template <class MeshType>
|
||||
bool FourPCS<MeshType>:: Align( int L, vcg::Matrix44f & result, vcg::CallBackPos * cb )
|
||||
bool Align(vcg::Matrix44f & result, vcg::CallBackPos * cb )
|
||||
{
|
||||
int maxAttempt =100;
|
||||
int scoreThr = par.sampleNumP*0.8;
|
||||
|
||||
Candidate bestC;
|
||||
|
||||
std::vector<Couple > R1;
|
||||
ComputeR1(R1);
|
||||
for(int i = 0; i < maxAttempt && bestC.score<scoreThr ; ++i )
|
||||
{
|
||||
FourPoints B;
|
||||
ScalarType r1,r2;
|
||||
if(SelectCoplanarBase(B,r1,r2))
|
||||
{
|
||||
U.clear();
|
||||
FindCongruent(R1,B,r1,r2);
|
||||
qDebug("Attempt %i found %i candidate best score %i",i,U.size(),bestC.score);
|
||||
for(int i = 0 ; i < U.size() ;++i)
|
||||
{
|
||||
TestAlignment(U[i]);
|
||||
if(U[i].score > bestC.score)
|
||||
bestC = U[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
result = bestC.T;
|
||||
return bestC.score >0;
|
||||
}
|
||||
|
||||
bool Align(int L, vcg::Matrix44f & result, vcg::CallBackPos * cb )
|
||||
{
|
||||
int bestv = 0;
|
||||
bool found;
|
||||
|
@ -564,37 +516,40 @@ bool FourPCS<MeshType>:: Align( int L, vcg::Matrix44f & result, vcg::CallBa
|
|||
|
||||
if(L==0)
|
||||
{
|
||||
// overlap is expressed as the probability that a point in P(mov) can be found in Q (fix)
|
||||
L = (log(1.0-0.9) / log(1.0-pow((float)par.overlap,3.f)))+1;
|
||||
printf("using %d bases\n",L);
|
||||
}
|
||||
|
||||
ComputeR1();
|
||||
std::vector<Couple > R1;
|
||||
ComputeR1(R1);
|
||||
|
||||
for(int t = 0; t < L; ++t )
|
||||
{
|
||||
FourPoints B;
|
||||
ScalarType r1,r2;
|
||||
do
|
||||
{
|
||||
n_tries = 0;
|
||||
do
|
||||
{
|
||||
n_tries++;
|
||||
found = SelectCoplanarBase();
|
||||
found = SelectCoplanarBase(B,r1,r2);
|
||||
}
|
||||
while(!found && (n_tries <50));
|
||||
while(!found && (n_tries < 50));
|
||||
if(!found) {
|
||||
par.overlap*=0.9;
|
||||
side = P->bbox.Dim()[P->bbox.MaxDim()]*par.overlap; //rough implementation
|
||||
ComputeR1();
|
||||
ComputeR1(R1);
|
||||
}
|
||||
} while (!found && (par.overlap >0.1));
|
||||
|
||||
if(par.overlap <0.1) {
|
||||
if(par.overlap < 0.1) {
|
||||
printf("FAILED");
|
||||
return false;
|
||||
}
|
||||
bases.push_back(B);
|
||||
if(cb) cb(t*100/L,"Trying bases");
|
||||
if(FindCongruent())
|
||||
if(FindCongruent(R1,B,r1,r2))
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -619,6 +574,8 @@ bool FourPCS<MeshType>:: Align( int L, vcg::Matrix44f & result, vcg::CallBa
|
|||
return true;
|
||||
}
|
||||
|
||||
}; // end class
|
||||
|
||||
} // namespace tri
|
||||
} // namespace vcg
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue